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Abstract— Learning dynamics at cognitive process level is
difficult to study and emulate because of the complexity of
intricate psychological and neuronal mechanisms and dynamics.
When considering the parallel processing of a task, the diffi-
culty relies on the execution concurrency making the process
contributions indistinguishable. We present here a metric for
rewarding increasingly the right parallel cognitive processes
with respect to the wrong ones through learning steps. The
metric, based on the symmetric difference between task parallel
processes, proves to correctly achieve collective and individual
credit assignment of the processes.

Keywords: Learning dynamics, cognitive task, parallel pro-
cessing, collective credit assignment.

I. INTRODUCTION

In psychology, information process theory distinguishes
between series and parallel execution of the cognitive pro-
cesses of a task, from a stimulus to an action [7]. While series
execution requires the ending of a process before starting a
new process, parallel execution concerns thus the ability of
the brain to execute several processes in parallel. Learning a
task allows parallelizing the execution of processes initially
in series. For example, learning to drive, a driver will learn
sequentially to change gear and turn the wheel while it
becomes natural for a driver to account for both actions at
the same time.

Looking at the learning dynamics into more details par-
allelization could be viewed as trying to combine differ-
ent processes until finding the right combination. However,
performing different processes in parallel makes hard the
individual evaluation of the processes. On the one hand,
achieving at the same time a right and a wrong process can
unexpectedly lead to a right behavior at action level. It is hard
to distinguish then the contribution of right and wrong tasks.
On the other hand, it is usually the exact conjunction of the
right processes that leads to achieving correctly a cognitive
task. Therefore, an efficient evaluation of parallel processing
would find the minimum number of right processes to exe-
cute, not too many, not too few. Another difficulty concerns
the individual evaluation of processes with respect to the
learning dynamics of parallel processing. Learning different
processes in parallel consists of trying many processes, right
and wrong, until finding the right combination. Then, right
tasks have an individual contributions that should accumulate
more reward than wrong tasks through trials.

We provide here an evaluation method for combining
automatically processes in parallel through different trials.
At the end of the evaluation process, we prove that the right
processes get more individual reward than the wrong ones
through different trials, allowing to find exactly the right
set of tasks, without adding wrong processes nor missing
right processes, while achieving the correct task at collective
level. Also, we prove and quantify the fact that increasing the
candidate set of processes makes it more and more difficult to
distinguish the right from the wrong processes independently
from the size target set of processes.

The manuscript is organized as follows: In Section II,
the basic structures and learning mechanisms are introduced
informally, as well as the evaluation issue, which belongs
to the class of credit assignment problems; in Section III,
the credit assignment problem of parallel processing is
formalized showing the correctness of the evaluation metrics
proposed and simulation results are provided.

II. PARALLEL PROCESSING EVALUATION

Although the processes presented here are internal pro-
cesses, they are presented in the context of an agent-
environment interaction thus providing a general context. The
learning dynamics of the algorithm proposed here is then
presented in a simple way. After, credit assignment, a well
known generic problem in artificial intelligence, is discussed
in the context of parallel processing learning evaluation.

A. Task parallel processing

Fig.1 presents the agent-environment interaction as well as
the internal parallel processing. This is a usual representation
used in reinforcement learning [7]. As our goal is to set
a correct evaluation method of the learning dynamics, let
us consider that the environment is a computer program in
charge of evaluating the process performances of the agent.

Fig.2 presents the different parallel processing as networks
of computational components (or processes) generated and
tried over trials. Over these trials, the algorithm should
provide a correct evaluation of the right and wrong processes,
such that it is ensured that the right processes get iteratively
more credit than the wrong ones.
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Fig. 1. Interaction between an “agent” performing a cognitive task
composed of parallel processes a,b,c in parallel against an “environment”.
The achievement of the task in the environment provides an evaluation
feedback to be used for credit assignment to the processes. Processes can
be “right” (in continuous lines) or “wrong” (in dashed lines). Right processes
participate positively to the task achievement while wrong ones participate
negatively.

B. Credit assignment problem

The credit assignment problem corresponds to the issue
of evaluating a system’s overall performance due to various
contributions of its components [5], [6]. In playing a complex
game such as chess, one has a definite success criterion -
the game is won or lost. But in the course of play, each
ultimate success or failure is associated with a vast number
of internal decisions. This is equivalent to learn the player
to win the game. The evaluation difficulty consists of being
able to incrementally evaluate the steps towards the success.
As we will quantify, increasing at each step the number of
possible choices makes harder to distinguish between right
or wrong decisions.

In the context of credit assignment, the collective credit
assignment problem is even harder [7]. This problem can
be easily understood by learning to evaluate and compose
a good team (at soccer, hockey, etc.) or a good brain
assembly to perform a cognitive task. The components of
the system (and their interactions) are then so difficult to
experiment and model that component credit assignment
is a difficult problem. Indeed, it is well known that it is
usually not composing a team with good players that a
good team is obtained. On the other hand, concerning the
brain, the number of neuronal processes is so vast that it
is also a challenge to identify them and discriminating the
components (as players in a team) that really contribute to
the achievement of the task at a collective level.

III. CREDIT ASSIGNMENT OF PARALLEL PROCESSES

In a previous work [3], the following conjecture was
obtained

Conjecture 1. Consider any composition whether series,
parallel, or feedback in any combination. Let each compo-
nent have right and wrong alternatives and let the outcome

be measured by the number of right selections. If the alterna-
tives are selected uniformly and independently at random in
every trial, then the expected credit assigned by ACA to each
right alternative always exceeds the expected credit assigned
to the corresponding wrong alternative.

This section provides a first element of proof of this con-
jecture, considering parallel components. The ACA metric
is evaluated for every component in the search space and a
proof is provided stipulating that the components of the target
network get always, on the long term, a better evaluation than
the components which are not in the target network.

Our goal is to set an ACA search algorithm able to gener-
ate and evaluate candidate networks of parallel components
(processes). The evaluation should permit to determine the
target component among the candidate components. Let us
define more properly these elements:

Definition 1. Score of parallel process networks Let C be a
finite set of candidate components (processes) composed of
n ∈N∗ elements. A candidate network is a sub-set of the set
of candidate components, i.e., N ⊆C. The set of all candidate
networks consists of N = P(C). The target network is an
element of the set of candidate networks, N∗ ∈N. The the
score, denoted as S, is a measure of the component number
difference between the target network N∗ ∈N and a given
candidate network N ∈N. It is defined as

S(N) =
1

1+D(N∗,N)
, (1)

where D(N∗,N) is the cardinality of the symmetric difference
between N∗ and N

D(N∗,N) =| (N∗ \N)∪ (N \N∗) |=|M∪W |

This difference counts the number of missing components M
(i.e., components that are in N∗ and not in N through the
difference | N∗ \N |) and the number of wrong components
W (i.e., components that are in N and not in N∗ through the
difference | N \N∗ |).

Remark that

1) ∀N ∈N, 0 <
1
|C|

6 S(N)6 1.

2) S(N) = 1 ⇔ N = N∗.

We show how to compute the score of a network through
the following example.

Example 1. Score of a candidate network Let N∗= {a,c,d},
so a search algorithm in charge of generating candidate
networks and evaluating/comparing them with the target
network will, e.g., generate and test a candidate network
N = {a,d, f} at one trial and N′ = {a,c}, at another trial.
Score S(N) = 1

3 because the candidate network N is missing
one component, c, and adding one wrong component, f .
Score S(C′) = 1

2 because the candidate network N′ is missing
one component, d.

While the score provides an evaluation at network level,
our goal is to evaluate the components individually based on
their trial-by-trial contributions.
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Fig. 2. Processes are “components” of a “network”. Different networks are generated and evaluated overs trials. Components accumulate credit over the
trials. Increasing credits consist of colors yellow, orange, dark orange, and red. Notice that at Trial 1, as the network gets the two components of the target
network the components get more credit (dark orange) than in trials 2 and 3, At the end of the search the “right” components should have a higher credit
than the “wrong” ones.

Definition 2. We define the average credit of a component
e, evaluated in each candidate network E ∈N as follows

cr(e) =
1
ne

(
∑

E∈N
S(E)

)
=

1
ne

(
∑

E∈N

1
1+D(N∗,E)

)
Where ne =| {E ⊂ P(C) | e ∈ E} |= 2|C|−1 = 2n−1 is the
number of networks in N = P(C) such that e ∈ E. Note
that we have always cr(e) ∈ [0,1],∀e ∈ N.
Finally, we define the difference of right and wrong average
credits, denoted ∆, the quantity

∆ = cr(a)−cr(b), ∀a ∈ N∗,∀b 6∈ N∗.

Right (resp. wrong) average credits is simply cr(a) for a ∈
N∗ (resp. for a 6∈ N∗).

Lemma 1. Considering the set of candidate networks N

as defined in Def.2 and the target network N∗. A search
algorithm evaluating all the candidate networks to find the
target one, exhibits the following properties:

1) cr(a) = α ∈]0,1], ∀a ∈ N∗ (every component of the
target network gets the same average credit),

2) cr(b) = β ∈]0,1[, ∀b 6∈ N∗ (every component which
does not belong to the target network gets the same
average credit),

3) ∆ is strictly positive and independent on the choice
and the size of the target network N∗.

Proof 1. The proof follows three main steps: 1) the credit of
a component in the target network, a ∈ N∗, is computed, 2)
the credit of a component not in the target network, b /∈ N∗,
is computed, 3) the difference between both is computed. For
that, consider a set of candidates C composed of n ∈ N∗.

1) The credit of a component in the target network,
a ∈ N∗, consists of averaging the score obtained by
all the subsets of C that contains the component a.
This set is is given by P(C\{a}) ∪ {a} which its
cardinality is na = 2n−1. The second remark is that the
distance function D(N∗, .) does not take into account
the identity of a component, in the sens that one
have the same distance, i.e. the same score; given by
different candidate networks. The distance verifies a
binomial distribution (the number of candidates sets
with distance equal to k is Cn−1

k .) Hence, we have the
average credit of a as follow

cr(a) =
1
na

(
∑

A∈N
S(A)

)
=

1
na

(
∑

A∈N

1
1+D(N∗,A)

)
,

=
1

2n−1

(n−1

∑
k=0

Cn−1
k

k+1

)
= α ∈]0,1[.

2) For a component b not in the target N∗, we use the
same observation as in 1. However, when evaluating
the distance of a candidate network in this case to the
target network, +1 will always be added to the distance
because of b is not present in the target. While the
distance still verifies the the binomial distribution, the
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average credit for b /∈ N∗, consists of

cr(b) =
1
nb

(
∑

B∈N
S(B)

)
=

1
nb

(
∑

B∈N

1
1+D(N∗,B)

)
,

=
1

2n−1

(n−1

∑
k=0

Cn−1
k

k+2

)
= β ∈]0,1[.

3) Let a ∈ N∗ and b 6∈ N∗. We have for all E ∈P(N)

D
(
N∗,E ∪{a}

)
< D

(
N∗,E ∪{b}

)
.

This implies that

S
(
E ∪{a},N∗

)
> S

(
E ∪{b},N∗

)
, ∀E ∈N.

Hence

∑
E∈N

S
(
N∗,E ∪{a}

)
> ∑

E∈N
S
(
N∗,E ∪{b}

)
,

⇔ ∑
E∈N:a∈E

S
(
N∗,E

)
> ∑

E∈N:b∈E
S
(
N∗,E

)
,

⇔ 1
2n−1 ∑

E∈N:a∈E
S
(
N∗,E

)
>

1
2n−1 ∑

E∈N:b∈E
S
(
N∗,E

)
,

⇔ cr(a)> cr(b),

⇔ ∆ > 0.

This proof ensures that the right components will get
more accumulated credit, at individual level, than the wrong
components, while ensuring the right global task at network
level.

Example 2. Consider the following set of components: C =
{a,b,c}. And consider the target as N∗ = {a,c}. Hence,
the set of all possible candidates network will be N ={
{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}

}
. Let us com-

pute the credit of the component a ∈ N∗ and b 6∈ N∗

cr(a) =
1
22

(
S({a})+S({a,b})+S({a,c})+S({a,b,c})

)
=

1
4
( 1

1+1
+

1
1+2

+
1

1+0
+

1
1+1

)
=

1
4
(1

2
+

1
3
+

1
1
+

1
2
)
=

1
4

7
3
=

7
12
' 0.583

cr(b) =
1
22

(
S({b})+S({b,a})+S({b,c})+S({b,a,c})

)
=

1
4
( 1

1+3
+

1
1+2

+
1

1+2
+

1
1+1

)
=

1
4
(1

4
+

1
3
+

1
3
+

1
2
)
=

1
4

17
12

=
17
48
' 0.354.

Hence, the difference of right and wrong credit is

δ = cr(a)−cr(b)' 0.23

Figure 3 shows the evolution of both score and average
credits through trials. On can see that at the beginning of
the simulation, the average credit of wrong components
is below the one of right components. However, the the
average credit of right components quickly exceeds the one

of right components. This corresponds to the accumulation of
credits through trials that can bee conceived as increasingly
reinforcing the right components with respect to the wrong
ones through trials (cf. Fig.3).

Fig. 3. At the top: Score evolution at each trial for each candidate network
N ∈N. At the bottom: Average accumulated credits for right and wrong
components. The simulation is done using a set of candidates C composed
of n = 8 components. The average accumulated right credit (resp. wrong
credit) was computed using an element belonging to the target (resp. does
not belonging to the target).

Fig. 4. Comparison of the credit distribution (logarithmic scale) between
right (red) and wrong (blue) component. It shows that the evaluation of a
right component has more score that a wrong component. This figure was
generated using a set of 16 components.
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Fig.4 shows the comparison of the score distribution
between right and wrong components. It can be seen that
higher scores are obtained for the right component, while for
the wrong component gets smaller scores during the search.
This is due to the fact that for a wrong component, the
distance D(.,N∗) will always add +1 compared to the right
component, and by definition a wrong component does not
belong to the target, hence at least one component will be
missing. During the search for a right component, it should
pass by a candidate network which corresponds to the target
network, this can be seen in Fig.3 at trial 42, the score is
1 which means that the distance with evaluated candidate
network N was 0 i.e. N = N∗.

The previous lemma has the following corollary:

Corollary 1. ∆ decreases as the size n of the components
set C increases.

Proof 2. Denote, for a set of components C composed of
n ∈ N∗ elements, ∆n = crn(a)−crn(b) as the difference
between the right credit and the wrong credit. We stress that
the right and wrong credit are both decreasing sequences
(sequence with respect to the size of the set of components n).
Hence the difference ∆n will be decreasing too as n increases.
From 3 in Theorem, ∆n has zero as a lower bound. This gives
that (∆n)n∈N∗ ↘ 0 as n→ ∞.

Fig. 5. Difference between right and wrong average credit ∆ as a function
the size of the set of candidate networks N.

The main implication from previous corollary is that
whatever the size of the target network, the difficulty to
distinguish right and wrong components, through a credit-
based evaluation, increases with the size of the set of
candidate networks. On the one hand, this means that, for
example, in a set of candidate networks of size 100, finding
2 cognitive processes is as difficult as finding 10 cognitive
processes (based on component credit differences). On the
other hand, finding 2 cognitive processes in 1000 candidate
networks is obviously harder than in 10 candidate networks.

IV. CONCLUSION AND PERSPECTIVES
We presented a first step towards a general solution

for credit assignment at cognitive task level. The parallel
processes composing the task are evaluated individually ac-
cumulating credit through trials. The credit assignment pro-
posed proved to evaluate correctly the right components with
respect to the wrong ones while achieving the right cognitive
task (represented by the target network of components). The
task evaluation is based on a symmetric difference, which is a
metric decreasing based on the number of missing and wrong
processes (components) present in the candidate task (or
network) with respect to the processes (components) present
in the target task (or network). The evaluation proved to
incrementally mimic the sequences of trials and errors of
processes reinforcing the right processes with respect to the
wrong ones. To achieve this goal, the symmetric difference
proved to be a good partial reward mechanism to finally
find the right target task (or network). This way, the whole
search dynamics proved to be a good metaphor of learning
dynamics.

A single metric was used to evaluate both the processes
(at component level) and the task (at behavioral network
level). At brain level neuro-imaging is used to correlate
task achievement with neuronal activity either for parallel
processing [8] or for sequential processing [9]. The brain
regions more frequently active when a particular task is
achieved are then correlated to the task. Our next perspective
is to extend our proof of the ACA conjecture presented in [3]
for parallel and sequential processing, based on an activity-
based credit assignment [1]. Based on this new metric,
the activity of the processes (components corresponding to
neurons or brain regions) can be correlated to the score of
task achievements. The difficulty then will be to set correctly
the score evaluation functions at task level with respect to
the evolution of local component activity, in order to get
the components rewarded increasingly based on their activity
contribution to different tasks.

ACKNOWLEDGMENT
This research is funded by the Computabrain

project (http://univ-cotedazur.fr/en/idex/projet-
structurant/cauca/projects/computabrain/) of the Université
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