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W
e aim to contribute to the development,
analysis, and assessment of the statisti-
cal femur model when combined with a

set of different analytical kernel functions. Re-
ported results demonstrate the superior perfor-
mance of data-driven femur model (computed
from a few femur examples) when combined
with an anisotropic kernel. These femur models
have great potential for surgery applications.

1 Introduction
The topic of this paper is the construction of the femoral
Statistical Shape Model (SSM) from a limited number of
data for surgical applications to build a patient-specific
femur model and to plan implant placement. Most
of the current models are based on deep learning and
trained on big data. However, in medical image analysis
despite the large anatomical variations in size and shape,
sometimes only a few medical data are available. In
this context, statistical models have demonstrated to
be promising [1, 2]. The main goal of SSMs is to build a
flexible shape model using the statistics computed from
a set of shape instances. Many variants of SSMs exist in
the literature [3]. Among them, the Point Distribution
Model (PDM) [4] is the most known. Considering a set
of aligned and in correspondence shapes, PDMs model
the shapes as a normal distribution of point variations.
Gaussian Process Morphable Models (GPMMs) [5] are
the generalization of PDMs which model shapes by
deformations from a reference shape. GPMMs offer
more flexibility in defining covariance (also known as
‘kernel’) function than in PDMs. This paper describes
the impact of using different kernel functions in GPMM-
based modeling of the morphological variation of femurs.
Performances on a femur dataset are presented.

This work was partly supported by the Investissements
d’Avenir programme (Labex CAMI) under reference ANR-11-
LABX-0004. Contact: alireza.asvadi@univ-brest.fr

2 Materials and methods

2.1 The Femur Dataset

Our dataset was generated using cadaveric femurs which
were scanned at the University Hospital of Brest (CHRU
Brest). It consists of a set of 13 femur meshes (about
116k points per mesh) and their corresponding land-
marks (6 anatomical landmarks per femur, similar to
Albrecht et al. [6]). The dataset was shuffled and parti-
tioned into two groups: 9 meshes as training and 4 as
the test set. To perform this study Scalismo framework
[7] was used.

2.2 Shape Modeling Pipeline

Figure 1 shows the global femur modeling pipeline.
The first step consists in preprocessing to make the
meshes in our training dataset rigidly aligned using
landmarks and scaled using bounding box information
of femurs. Next step is establishing the dense corre-
spondences among the meshes. This step is crucial
and involves: Firstly, the rigid registration to build
the unbiased reference mesh using IMCP algorithm [8]
followed by the screened poisson surface reconstruction
algorithm [9]. The reference mesh was decimated to
about 5k points. Secondly, the non-rigid registration
which involves the construction of the ‘deformable fe-
mur model’ using the unbiased reference mesh with
smooth Gaussian deformation assumption. The Gaus-
sian deformation kernel parameters were considered as
s:100 and `:100. The ‘deformable femur model’ was
fitted to each of the aligned and scaled meshes using
non-rigid ICP algorithm based on Gaussian Process
(GP) regression. The fitting Root Mean Square Error
(RMSE) in this step was computed as 1.22 ± 0.09 mm.
The fits (i.e., the set of fitted ‘deformable femur model’
to the meshes in the training set) were considered as the
‘incorrespondence mesh set’. It consists of the aligned,
scaled and incorrespondence mesh data. It was used to
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Figure 1: The shape modeling pipeline.

Table 1: Comparison of employed kernel functions.

Kernel func. Parameters

Data-driven Computed from 9 samples

Gaussian s:50 `:50

Multiscale s1:50 `1:200, s2:200 `2:50

Anisotropic sx:50 `x:50, sy :50 `y :50, sz :200 `z :200

data-driven (DD) DD+anisotropic

Figure 2: Six dominant modes of variation of the data-
driven model and its combination with the
anisotropic kernel. Represented in red and green
are the variation of the mean femur by three
times standard deviations along eigenmodes.

build the ‘data-driven model’ using GPMM-based SSM
algorithm [5]. The next step was the combination of
‘data-driven model’ with the defined analytical kernel
functions (see Table 1). The Gaussian kernel was de-

fined by k(x, x′) = s e−(x−x′)
2
/`2 , where s is the scale

and l indicates the length-scale (the influence radius
of the kernel). The multiscale kernel was constructed
by the summation of 2 Gaussians. The anisotropic ker-
nel was defined as having more variation in the length
direction of the femur. The kernels were low-ranked
using the 10 prominent basis functions.

3 Experiments and results

Experiments were carried out for a comparative study
to evaluate the model performance when combined with
the specified kernels. The evaluation is performed by
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Figure 3: Evaluation of different kernel functions.

fitting the SSMs to mesh data in the test set and then
computing RMSE of the fitted femur models to the test
set. Figure 2 shows some modes of the data-driven SSM
and its combination with the anisotropic kernel. Results
for comparing the SSMs can be seen in Fig. 3. The
RMSE for the data-driven SSM and its combination
with the Gaussian, multiscale and anisotropic kernels
were computed as 6.48 ± 4.53, 5.36 ± 2.98, 3.73 ± 1.36
and 3.27 ± 1.00 mm, respectively.

4 Discussion and conclusion
The current study developed SSMs for femur bone mod-
eling based on GPMMs. Out of different analytical
kernels (Gaussian, multiscale and anisotropic kernels)
and keeping the 10 most prominent basis functions, it
has been found that the combination of our data-driven
model with the anisotropic kernel more accurately en-
codes the patterns of variability of femurs in our dataset.
Specifically, we observed that the modes of data-driven
SSM when combined with the anisotropic kernel corre-
sponds well with the actual deformation of the femur
bone (this can be confirmed by seeing how the dom-
inant modes vary in Figure 2). Exploration of other
customized kernels or transferring the knowledge of fe-
mur variations from a larger dataset can be considered
for future works.
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