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On the geometry of polytopes generated by heavy-tailed
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Shahar Mendelson ‡ Holger Rauhut§

July 16, 2019

Abstract

We study the geometry of centrally-symmetric random polytopes, generated by N inde-
pendent copies of a random vector X taking values in Rn. We show that under minimal
assumptions on X, for N & n and with high probability, the polytope contains a determin-
istic set that is naturally associated with the random vector—namely, the polar of a certain
floating body. This solves the long-standing question on whether such a random polytope
contains a canonical body. Moreover, by identifying the floating bodies associated with vari-
ous random vectors we recover the estimates that have been obtained previously, and thanks
to the minimal assumptions on X we derive estimates in cases that had been out of reach, in-
volving random polytopes generated by heavy-tailed random vectors (e.g., when X is q-stable
or when X has an unconditional structure). Finally, the structural results are used for the
study of a fundamental question in compressive sensing—noise blind sparse recovery.

1 Introduction

Let X be a symmetric random vector in Rn and let X1, . . . , XN be independent copies of X. The
goal of this article is to study the geometry of the random polytope absconv(X1, . . . , XN ), that
is, the convex hull of the points ±X1, . . . ,±XN . Various aspects of the geometry of such random
polytopes have been the subject of extensive study for many years. As a starting point, let us
formulate two notable results in the direction we are interested in, and to that end, denote by Bnp
the unit ball in `np .

Theorem 1.1. [18] Let X be the standard Gaussian random vector in Rn, set 0 < α < 1 and
consider N ≥ c0(α)n. Then

c1(α)
√

log(eN/n)Bn2 ⊂ absconv(X1, . . . , XN ) (1.1)

with probability at least 1 − 2 exp(−c2N1−αnα). Here c0 and c1 are constants that depend on α
and c2 is an absolute constant.
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Theorem 1.1 can be extended beyond the Gaussian case, to random polytopes generated by
a random vector X = (ξ1, . . . , ξn) where the ξi’s are independent copies of a mean-zero, variance
1 random variable ξ that is L-subgaussian1. This class of random vectors includes, in particular,
the Rademacher vector X, which is uniformly distributed in {−1, 1}n.

A version of Theorem 1.1 for the Rademacher vector was established in [17] (with a slightly
suboptimal dependence of N on the dimension n). The optimal estimate when ξ is an arbitrary
subgaussian random variable is the following special case of a result in [26].

Theorem 1.2. [26] Let ξ be a mean-zero random variable that has variance 1 and is L-subgaussian,
and set X = (ξi)

n
i=1 as above. Let 0 < α < 1 and set N ≥ c0(α,L)n. Then there exists an absolute

constant c1 such that with probability at least 1− 2 exp(−c1N1−αnα)

c2(α,L)
(
Bn∞ ∩

√
log(eN/n)Bn2

)
⊂ absconv(X1, . . . , XN ). (1.2)

In both cases, the typical random polytope absconv(X1, . . . , XN ) contains a large regular
convex body: a multiple of the Euclidean unit ball whenX is the standard Gaussian random vector,
and an intersection body of two `p balls when X is L-subgaussian and has i.i.d. coordinates. As
we explain in what follows, the fact that the bodies that are contained in absconv(X1, . . . , XN ) are
different in these two examples is not a coincidence. Rather, it reflects the fact that a subgaussian
random vector may in general generates a different geometry than the Gaussian one.

Motivated by these two facts, we study the following questions:

Question 1.3. (1) Is it possible to find a set K that is naturally associated with X and is
contained in absconv(X1, . . . , XN ) with high probability?

(2) If the answer to (1) is yes, when does K contain large (intersections of) `p balls as, for
example, in Theorems 1.1 and 1.2?

Both Theorem 1.1 and Theorem 1.2, as well as the numerous other results in this direction,
can be explained by a general principle stated in our main result, Theorem 1.6, that answers part
(1) of Question 1.3. The geometric features of X that are significant in this context are reflected
by the natural floating bodies associated with X. Part (2) of Question 1.3 will be answered in
Section 3 by identifying those floating bodies for a variety of choices of X—thus recovering, and
at times improving, previously known results, as well as establishing new estimates in cases that
were out of reach before.

Definition 1.4. Let X be a symmetric random vector in Rn. For p ≥ 1, we define the associated
floating body

Kp(X) := {t ∈ Rn : P(〈X, t〉 ≥ 1) ≤ exp(−p)} .

The notion of floating bodies plays a crucial role in the study of approximation of convex bodies
by polytopes, see, e.g., [36, 32, 3], where X is distributed according to the uniform probability
measure on the given convex body. It is known how to identify the floating bodies associated to
Gaussian or Rademacher random vectors, see below.

In order to continue we require the following notation. Given sets A,B ⊂ Rn, A ∼ B denotes
that there are absolute constants c1 and c2 such that c1A ⊂ B ⊂ c2B. We write A ∼κ B if the
constants c1 and c2 depend on the parameter κ. Identifying each t ∈ Rn with the linear functional

〈·, t〉, we define, for p > 0, the Lp(X) (quasi-) norm of t ∈ Rn to be ‖ 〈X, t〉 ‖Lp
= (E| 〈X, t〉 |p)1/p

,
and denote its unit ball by

B(Lp(X)) := {t ∈ Rn : ‖ 〈X, t〉 ‖Lp
≤ 1}.

For 1 ≤ q <∞ and t = (t1, . . . , tn), let

‖t‖q =

(
n∑
i=1

|ti|q
)1/q

and ‖t‖∞ = max
i=1,...,n

|ti|.

1Recall that a centered random variable is L-subgaussian if for every p ≥ 2, (E|ξ|p)1/p ≤ L√p.
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For 1 ≤ q ≤ ∞, let Bnq = {t ∈ Rn : ‖t‖q ≤ 1} be the unit ball of the normed space `nq , and set q′

to be the conjugate index of q; that is, 1
q + 1

q′ = 1. Finally, for T ⊂ Rn let

T ◦ = {x ∈ Rn : 〈t, x〉 ≤ 1 for every t ∈ T};

the set T ◦ is the polar body of T , which is a convex, centrally symmetric subset of Rn if T is
centrally symmetric.

With this notation in place, consider the following examples:

• Let X = G be the standard Gaussian random vector in Rn. Then for every p ≥ 1,

Kp(G) ∼ (1/
√
p)Bn2 , (1.3)

which can be shown by a direct calculation using the rotation invariance of G. Thus, the
polar body of Kp(G) satisfies (Kp(G))◦ ∼ √pBn2 .

• Let X = E be the Rademacher random vector in Rn (i.e., X is uniformly distributed in
{−1, 1}n). Results in [34] imply that

Kp(E) ∼ conv(Bn1 ∪ (1/
√
p)Bn2 ),

and in particular, (Kp(E))◦ ∼ Bn∞ ∩
√
pBn2 .

Thus, the assertions of Theorem 1.1 for X = G and of Theorem 1.2 for X = E can be formulated
in a unified way: with high probability, it holds that

absconv(X1, . . . , XN ) ⊃ c1
(
Kp(X)

)◦
,

for p = c2 log(eN/n), where c1 and c2 are suitable constants. Our main result shows that this
phenomenon holds under minimal assumptions on X, which we explain in the following.

Let ‖ · ‖ be a norm on Rn and set

B = B‖·‖ = {x ∈ Rn : ‖x‖ ≤ 1} and S = S‖·‖ = {x ∈ Rn : ‖x‖ = 1}.

The random vector X is said to satisfy a small-ball condition with respect to the norm ‖ · ‖ with
constants γ and δ if for every t ∈ Rn,

P(| 〈X, t〉 | ≥ γ‖t‖) ≥ δ. (1.4)

Also, for some r > 0, X is said to satisfy an Lr condition with respect to the norm ‖ · ‖ and with
constant L if for every t ∈ Rn,

(E| 〈X, t〉 |r)1/r ≤ L‖t‖. (1.5)

Assumption 1.5. We assume that X satisfies a small-ball condition with constants γ > 0 and
δ > 0, and an Lr condition with constant L for some r > 0 with respect to the same norm ‖ · ‖.

Assumption 1.5 implies that the random vector X is not degenerate: the small-ball condition
(1.4) means that marginals of X do not have ‘too much’ mass at 0, and the Lr condition (1.5) leads
to some minimal uniform control on the tail decay of each marginal. Also, it is straightforward to
verify from (1.4) and (1.5) that

1

L
B ⊂ B(Lr(X)) ⊂ 1

γδ1/r
B.

Our answer to the first part of Question 1.3 is that under Assumption 1.5, a typical realization
of absconv(X1, . . . , XN ) contains a constant multiple of (Kp(X))◦ for p ∼ log(eN/n).
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Theorem 1.6. Let X be a symmetric random vector that satisfies Assumption 1.5 with respect
to a norm ‖ · ‖ and some δ, γ, r, L > 0. Let 0 < α < 1 and set p = α log(eN/n) and assume that
N ≥ c0n for a constant c0 = c0(α, δ, r, L/γ). Let X1, . . . , XN be independent copies of X then
with probability at least 1− 2 exp(−c1N1−αnα),

absconv(X1, . . . , XN ) ⊃ 1

2

(
Kp(X)

)◦
, (1.6)

where c1 is an absolute constant.

Remark 1.7. Theorem 1.6 still holds – even with the same constants and the same proof –
when absconv(X1, . . . , XN ) is replaced by the standard convex hull conv(X1, . . . , XN ), see also
Remark 2.6.

Assumption 1.5 is weaker than any of the assumptions in all previous results on the inner
structure of absconv(X1, . . . , XN ). In particular, we allow heavy-tailed distributions and do not
require independence of the entries of X. The freedom of choosing the norm ‖·‖ makes the method
very flexible. Observe that (1.6) does not depend on the specific choice of ‖ · ‖, but the constant
c0 = c0(α, δ, r, L/γ) does. In fact, the constants L and γ may change when chaining the norm. So
the art consists in choosing a norm such that quotient L/γ, and hence, the constant c0 become as
small as possible.

As applications of Theorem 1.6 we show in Section 3 how one can recover or improve the
previous central results on the geometry of the random polytope absconv(X1, . . . , XN ) in this
context. This is done by answering the second part of Question 1.3: we identify the floating
bodied Kp(X) in all those cases, for example, when X is the Gaussian vector ([18]); when X has
i.i.d. subgaussian centered coordinates ([26]); when X is an isotropic, log-concave random vector
([10]); and when X has i.i.d. centered coordinates that satisfy a small-ball condition ([19]).

In addition, and thanks to the universality of Theorem 1.6, one may establish various new
outcomes that were previously completely out of reach like when X is an unconditional random
vector without necessarily independent entries, see Theorem 3.9. The main applications we present
in this introduction are two results that we found to be particularly surprising: firstly, an answer
to Question 1.3 when X has i.i.d. q-stable coordinates for 1 ≤ q < 2 (e.g., a Cauchy random
vector); and secondly, an answer to a fundamental question on sparse recovery.

1.1 Stable random vectors

Consider standard q-stable random vectors for 1 ≤ q < 2 (a 2-stable random vector is just a Gaus-
sian), that is, vectors that have i.i.d. standard q-stable random variables as coordinates. Recall
that a random variable ξ is standard q-stable if its characteristic function satisfies E[exp(itX)] =
exp(−|t|q/2) for every t ∈ R (we consider only the symmetric case). The following features of a
standard q-stable random variable ξ are of significance here:

• ξ belongs to the weak-Lq space; i.e., supu>0 u
qP(|ξ| > u) ≤ Cq, and for large values of u,

P(|ξ| > u) ≥ cq/uq.

• the stability property: if ξ1, . . . , ξn are i.i.d. copies of ξ and t ∈ Rn then
∑n
i=1 tiξi has the same

distribution as ‖t‖q ξ.

For a more comprehensive discussion on q-stable random variables see, e.g., [25, Chapter 5]. Note
that for q < 2, ξ does not have a finite second moment, which makes the analysis of the structure
of the random polytope absconv(X1, . . . , XN ) more challenging.

The answer to Question 1.3 for a q-stable random vector is as follows:

Theorem 1.8. Let ξ be a standard, q-stable random variable for some 1 ≤ q < 2. Let ξ1, . . . , ξn
be independent copies of ξ and set X = (ξi)

n
i=1. Then for 0 < α < 1 and N ≥ c0(α, q)n, with

probability at least 1− 2 exp(−c1N1−αnα),

absconv(X1, . . . , XN ) ⊃ c2(q)

(
N

n

)α/q
Bnq′
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where 1/q + 1/q′ = 1.
In particular, if ξ is a standard Cauchy random variable (corresponding to q = 1) then with
probability at least 1− 2 exp(−c1N1−αnα)

absconv(X1, . . . , XN ) ⊃ c3
(
N

n

)α
Bn∞.

Observe that a typical realization of absconv(X1, . . . , XN ) is much larger than, say, the typical
realization of the random polytope generated by the Gaussian random vector. Indeed, the latter
only contains

√
log(eN/n)Bn2 , which is a much smaller set than c(N/n)α/qBnq′ . The intuitive

reason behind this phenomenon is that for q < 2, a q-stable random variable is more ‘heavy-tailed’
than the Gaussian random variable: its tail decay is of the order of u−q rather than exp(−u2/2)
and that difference leads to the polynomial growth of the “inner radius” of absconv(X1, . . . , XN ).
At the same time, the difference in the canonical body contained in absconv(X1, . . . , XN ) is due
to the natural metric associated with X: each marginal 〈t,X〉 is distributed as ‖t‖q ξ rather than
as ‖t‖2 ξ.

The proof of Theorem 1.8 is presented in Section 3.1.1.

1.2 Relation to Compressive Sensing

The second surprising outcome of Theorem 1.6 is related to a fundamental question in the area of
compressive sensing2: can sparse signals be recovered efficiently when the given data consist of a
few measurements that are noisy, but the ‘noise level’ is not known.

Suppose one would like to recover an unknown vector (signal) x ∈ RN from an underdetermined
set of a linear measurements, i.e., from y = Ax ∈ Rn, where A ∈ Rn×N with n much smaller than
N . While this is impossible in general, the theory of compressive sensing studies when such
recovery is possible by efficient methods for (s-)sparse vectors, i.e., vectors in RN that satisfy
‖x‖0 = |{` : x` 6= 0}| ≤ s� n.

One of the main achievement of compressive sensing was the discovery that a computationally
efficient recovery procedure can be used to recover the signal. Indeed, if x] is the solution of the
`1-minimization problem

min
z∈RN

‖z‖1 subject to Az = y, (1.7)

then for a well-chosen ∼ s log(eN/s) measurements, x] coincides with the original s-sparse x. This
upper estimate on the required number of measurements is optimal, and it is attained by a wide
variety of random measurement ensembles—for example, if the measurements are (〈Gi, x〉)ni=1,
i.e., A is a draw of a random matrix with independent, mean-zero, variance one, Gaussian entries.

Naturally, to be of value in real-life applications, recovery should be possible in the presence of
noise. The additional appeal of `1-minimization is that it can be modified to perform well even if
the given measurements (〈Ax, ei〉)ni=1 are corrupted by noise, and if the signal x is not necessarily
sparse but only approximately sparse in some appropriate sense. Indeed, assume that the data
one is given is ȳ = Ax+w for x ∈ RN and a vector w ∈ Rn of perturbations (noise) with a known
noise level ‖w‖2 ≤ η. It is important to emphasize that unlike standard problems in statistics,
here w is an arbitrary vector, rather than a random draw according to some statistical law.

One can show that for a variety of random matrices, a sample size of n ∼ s log(eN/s) suffices
to ensure that the minimizer x] of the modified `1-minimization problem

min
z∈RN

‖z‖1 subject to ‖Az − ȳ‖2 ≤ η (1.8)

satisfies

‖x− x]‖1 . σs(x)1 + η

√
s

n
, (1.9)

2For more information on compressive sensing we refer the reader to [14, 9, 16], and for more a detailed expla-
nation on the connections between the geometry of random polytopes and sparse recovery, see [12, 40, 9, 16, 15, 8].
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where
σs(x)1 = inf

z:‖z‖0≤s
‖x− z‖1

is the best `1 approximation error of x by an s-sparse vector; again, this is the best estimate one
can hope for.

Unfortunately, the `1-minimization procedure of (1.8) requires accurate information on the
true noise level ‖w‖2, or at least a good upper estimate of it. However, in real world applications,
this information is often not available. Getting the noise level wrong renders the estimate (1.9)
useless: if the employed value of η is an underestimation of the true noise level then the error
bound (1.9) need not be valid. On the other hand, if η is chosen to be significantly larger than
the true noise level, the resulting error estimate (1.9) (involving the chosen η) is terribly loose.

As it happens, one can show that noise blind recovery, in which the noise level is not known,
is possible if the measurement matrix A satisfies two conditions:

(1) A version of the null space property (NSP), see (B.1). We refer the reader to [9, 16] for a
detailed exposition on the NSP.

Identifying matrices that satisfy the null space property has been of considerable interest in
recent years and many examples can be found, for example, in [2, 9, 16, 23, 31, 13]. From
our perspective, and somewhat inaccurately put, it is important to note that the NSP is
(almost) a necessary condition for sparse recovery in noise-free problems. Therefore, to have
any hope of successful recovery in noisy problems, the measurement matrix has to satisfy
some version of the NSP.

(2) The second, and seemingly more restrictive condition is the so-called `1 quotient property
[12]. The matrix A satisfies the `1 quotient property with respect to the norm ||| ||| if for
every w ∈ Rn there exists a vector v ∈ RN such that Av = w and

‖v‖1 ≤ D−1 |||w||| . (1.10)

It follows that if A satisfies an appropriate null space property and the `1-quotient property, then
the solution x] of (1.7) for y = Ax+ w satisfies

‖x] − x‖1 . σs(x)1 + |||w||| ; (1.11)

in other words, the noise-blind recovery error depends on ‘how far’ x is from being sparse and on
the norm |||w||| of the noise vector. For the sake of completeness, an outline of the proof of (1.11)
can be found in Appendix B.

Theorem 1.6 implies that contrary to prior belief, (2) is not restrictive at all; in fact, it is
almost universal. Indeed, let |||·|||p be the norm whose unit ball is the polar body (Kp(X))◦, i.e.,

|||x|||p = inf{t > 0 : x ∈ t(Kp(X))◦}.

Set A = (X1| · · · |XN ) to be the random matrix whose columns are independent random draws of
the random vector X. Then the inclusion from Theorem 1.6 implies that for each vector w ∈ Rn
there exists a vector v ∈ RN such that Av = w and

‖v‖1 ≤ c−1
2 |||w|||p , (1.12)

which is precisely the `1 quotient property with respect to the norm |||·|||.

Thanks to the study of the floating bodies Kp(X) presented in Section 3, the norm ||| |||p can be
identified in a variety of cases, and in some of which the appropriate null space property has already
been established – leading the error bound (1.11). These examples include some of the natural
random ensembles that are used in sparse recovery, for example, when X has i.i.d. subgaussian
or subexponential coordinates [2, 15]; when X is an isotropic, log-concave random vector [2]; and
when X has independent coordinates that have log(N) finite moments [31, 13] (for example, when
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the coordinates are distributed according to the Student-t distribution with ∼ logN degrees of
freedom).

Thanks to Theorem 1.6, the `1 quotient property can be established in those (and many
other) cases, implying that noise-blind recovery is possible. To give a flavour of such a result, we
present the example of the Student-t distribution in an appendix. More information and numerical
experiments are given in [22].

2 Proof of the main result

For the proof of Theorem 1.6, we need some basic properties of the floating body

Kp(X) =
{
t ∈ Rn,P(〈X, t〉 ≥ 1) ≤ e−p

}
.

Recall that a set K is star-shaped around 0 if for every x ∈ K and any 0 ≤ λ ≤ 1, λx ∈ K.

Proposition 2.1. Let X be a symmetric random vector on Rn. Then

(1) The set Kp(X) is star-shaped and symmetric around 0. Moreover, for any a > 0,

aKp(X) =
{
t ∈ Rn,P(〈X, t〉 ≥ a) ≤ e−p

}
.

(2) Let ‖ · ‖ be a norm on Rn and denote its unit ball by B = B‖·‖ = {t ∈ Rn : ‖t‖ ≤ 1}. If X
satisfies the small-ball condition (1.4) with respect to the norm ‖ · ‖ with constants γ and δ,
then for p > log(2/δ),

γ absconv(Kp(X)) ⊂ B. (2.1)

(3) If X satisfies the Lr condition (1.5) with respect to the norm ‖ · ‖ with constant L, then

B ⊂ L exp(p/r)Kp(X). (2.2)

Proof. The first observation is straightforward. To prove (2.1) observe that by convexity, it is
enough to show that γKp(X) ⊂ B. But if ‖t‖ ≥ 1 then the small-ball condition and the symmetry
of X imply that

P(〈X, t〉 ≥ γ) ≥ P(〈X, t〉 ≥ γ‖t‖) ≥ δ

2
> exp(−p),

provided that δ > 2 exp(−p), as was assumed. Hence, t /∈ γKp(X).
As for (2.2), note that for ‖u‖ ≤ 1, the Lr condition yields that E| 〈X,u〉 |r ≤ Lr and thus by

Markov’s inequality

P(〈X,u〉 ≥ L exp(p/r)) ≤ E| 〈X,u〉 |r

Lr
exp(−p) ≤ exp(−p),

hence, u ∈ L exp(p/r)Kp(X).

An outcome of Proposition 2.1 is that if X satisfies Assumption 1.5 and

p > log(2/δ), (2.3)

then Kp(X) is a centrally symmetric subset of Rn that is star-shaped around 0 and for which

(1/L) exp(−p/r)B ⊂ Kp(X) ⊂ (1/γ)B. (2.4)

Let S be the unit sphere of (Rn, ‖ · ‖). For θ ∈ S set

r(θ) = sup{β ≥ 0 : βθ ∈ Kp(X)}

and note that by (2.4), (1/L) exp(−p/r) ≤ r(θ) ≤ 1/γ. With a possible abuse of notation, put

∂Kp(X) = {r(θ)θ : θ ∈ S}. (2.5)

Note that ∂Kp(X) may not coincide with the topological boundary of Kp(X) as θ 7→ r(θ) need
not be continuous on S for general X.
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Corollary 2.2. For every θ ∈ S,

P(〈X, r(θ)θ〉 ≥ 1) ≥ exp(−p).

Proof. It follows from the definition of r(θ) that for any ρ > 1, ρr(θ)θ 6∈ Kp(X), and thus,

P(〈X, ρr(θ)θ〉 ≥ 1) > exp(−p).

Taking the intersection of these events for any ρ > 1 gives the result.

The proof of Theorem 1.6 follows the path set in the (much simpler) proof of Theorem 1.5
from [30]. The goal is to show that if X satisfies Assumption 1.5, and

N ≥ c0(α, δ, r, L/γ)n, p = α log(eN/n),

then with probability at least
1− 2 exp(−c1N1−αnα),

one has that
1

2
(Kp(X))◦ ⊂ absconv(X1, . . . , XN ). (2.6)

For a symmetric convex body U with a nonempty interior, define its support function hU by

hU (t) = sup
u∈U
〈u, t〉 , for all t ∈ Rn.

The inclusion (2.4) ensures that (Kp(X))◦ has nonempty interior. Therefore, (2.6) is equivalent
to

1

2
h(Kp(X))◦(t) ≤ habsconv(X1,...,XN )(t)

for every t ∈ Rn; and the negation of this event is that there exists t ∈ Rn such that

1

2
sup

u∈(Kp(X))◦
〈u, t〉 > sup

v∈absconv(X1,...,XN )

〈v, t〉 . (2.7)

By homogeneity of (2.7) and since θ 7→ r(θ) is bounded away from 0 on S, it suffices to show that
there is t ∈ ∂Kp(X) for which (2.7) holds. Denote by Γ : Rn → RN the random matrix whose
rows are X1, . . . , XN . Observe that absconv(X1, . . . , XN ) = Γ∗BN1 , and therefore

sup
u∈Γ∗BN

1

〈u, t〉 = sup
x∈BN

1

〈x,Γt〉 = ‖Γt‖∞. (2.8)

Moreover, for t ∈ ∂Kp(X), the definition of polarity gives supu∈(Kp(X))◦ 〈u, t〉 ≤ 1. Hence, for the
proof of Theorem 1.6 it remains to show that

P
(

inf
t∈∂Kp(X)

‖Γt‖∞ ≤ 1/2

)
≤ 2 exp(−c1N1−αnα). (2.9)

The proof of (2.9) is based on the small-ball method (see, for example, [29]). First, fix any
t ∈ ∂Kp(X) and recall that by Corollary 2.2,

P(〈X, t〉 ≥ 1) ≥ exp(−p).

Therefore, by independence of the Xi and Chernoff’s inequality, with probability at least

1− exp(−N exp(−p)/8), (2.10)

it holds that

|{i : 〈Xi, t〉 ≥ 1}| ≥ N

2
exp(−p). (2.11)
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Second, thanks to the high probability estimate (2.10), it follows from the union bound that if
T ⊂ ∂Kp(X) with

|T | ≤ exp(N exp(−p)/16), (2.12)

then

inf
t∈T
|{i : 〈Xi, t〉 ≥ 1}| ≥ N

2
exp(−p). (2.13)

with probability at least
1− exp(−N exp(−p)/16).

The only restriction on the set T ⊂ ∂Kp(X) is its cardinality. With this in mind, we will define
T as a covering of ∂Kp(X) with balls of appropriate radius associated to the norm ‖ · ‖.

Observe that by (2.1), ∂Kp(X) ⊂ (1/γ)B provided that p > log(2/δ). By a standard volumetric
estimate, see, e.g., [16, Proposition C.3], for every ρ > 0 there exists a η/γ-cover of ∂Kp(X) with
respect to the norm ‖ · ‖ of cardinality at most (1 + 2/η)n. This η/γ-cover has the required
cardinality (2.12) if

η ≥ 2

(
exp

(
N

16n
exp(−p)

)
− 1

)−1

. (2.14)

If
N ≥ 16 ln(2) exp(p)n (2.15)

then (2.14) is satisfied for the choice

η = 4 exp

(
− N

16n
exp(−p)

)
. (2.16)

Denoting by A1 the event on which (2.13) holds for T that is a minimal η/γ-cover of ∂Kp(X), it
is evident that

P(A1) ≥ 1− exp(−N exp(−p)/16).

Finally, for every t ∈ ∂Kp(X) let πt ∈ T be the nearest element to t in the (η/γ)-cover with
respect to the norm ‖ · ‖. Consider the event A2 on which

sup
t∈T
|{i : | 〈Xi, t− πt〉 | ≥ 1/2}| ≤ 3N

8
exp(−p). (2.17)

For each t ∈ ∂Kp(X) consider the sets of indices

I1(t) := {i : 〈Xi, πt〉 ≥ 1}, I2(t) := {i : | 〈Xi, t− πt〉 | ≥ 1/2}.

and observe that on the event A = A1 ∩ A2,

|I1(t)| ≥ N

2
exp(−p), |I2(t)| ≤ 3N

8
exp(−p).

Clearly,

|I1(t)|+ |Ic2(t)| ≥ N

2
exp(−p) + (N − 3N

8
exp(−p)) = N +

N

8
exp(−p)),

and therefore

|I1(t) ∩ Ic2(t)| ≥ N

8
exp(−p).

For each t ∈ I(t) := I1(t) ∩ Ic2(t) the triangle inequality gives

〈Xi, t〉 ≥ 〈Xi, πt〉 − | 〈Xi, t− πt〉 | ≥
1

2
.

In particular, on the event A, it holds that inft∈∂Kp(X) ‖Γt‖∞ ≥ 1
2 and

P
(

inf
t∈∂Kp(X)

‖Γt‖∞ ≤ 1/2

)
≤ P

(
Ac
)
.
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Finally, let us show that P(A2) is ‘large enough’ for the right choice of p. To that end, observe
that for every t ∈ ∂Kp(X), ‖t− πt‖ ≤ (η/γ), and therefore,

sup
t∈∂Kp(X)

|{i : | 〈Xi, t− πt〉 | ≥ 1/2}| ≤ sup
u∈(η/γ)B

|{i : | 〈Xi, u〉 | ≥ 1/2}|

= sup
u∈(η/γ)B

N∑
i=1

1{|〈Xi,u〉|≥1/2},

which is the supremum of an empirical process indexed by the class of indicator functions

F =
{
1{|〈·,u〉|≥1/2} : u ∈ (η/γ)B

}
. (2.18)

The wanted estimate on this supremum is based on an outcome of Talagrand’s concentration
inequality for bounded empirical processes, in the special case in which the indexing class is
binary-valued and has a finite Vapnik-Chervonenkis (VC) dimension (for a definition of the VC
dimension, see, e.g., [39]).

Before stating this result, let us first recall the definition of VC dimension and a basic bound
needed in our proof.

Definition 2.3. Let F be a class of {0, 1}-valued functions on a space Ω. The class shatters
{x1, . . . , xk} ⊂ Ω, if for every I ⊂ {1, . . . , k} there exists a function fI ∈ F for which fI(xi) = 1
if i ∈ I and fI(xi) = 0 if i 6∈ I. Let

V C(F) = sup {|A| : A ⊂ Ω, A is shattered by F} .

Lemma 2.4. Let D be a set of subsets of Ω such that the set of indicator functions F = {1D :

D ⊂ D} satisfies V C(F) = d. If F̃ = {1D∪D′ : D,D′ ∈ D} then V C(F̃) < 10d.

Proof. The statement is a special case of [4, Lemma 3.2.3], which treats the case of the class of
k unions, i.e., Dk = {D1 ∪ · · · ∪Dk : D1, . . . , Dk ∈ D}, and states that the VC dimension of the
corresponding class Fk of indicator functions satisfies V C(Fk) < 2dk log2(3k). For k = 2 one has

V C(F̃) = cd with c = 4 log2(6) ≈ 10.34. The slightly better constant 10 (or even 9.4) follows from

an inspection of the proof, which shows that a strict upper bound for the VC dimension of F̃ is
any m such that (em/d)2d < 2m. An explicit calculation shows that m = 10d is a valid choice.

Let us now state the outcome of Talagrand’s concentration inequality when the indexing set
of functions is a VC class (see [37] and also [28, Lemma 3.7]).

Theorem 2.5. Let F be a class of {0, 1}-valued functions for which V C(F) ≤ d and supf∈F Ef2 ≤
σ2. Set

R := 64
d

N
log
( c

σ2

)
+ 8σ

√
d

N
log
( c

σ2

)
, (2.19)

where c = 8e2
√

2 ≈ 83.6. Then for any x > 0,

P

(
sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

f(Xi)− Ef

∣∣∣∣∣ ≥ R+ x

)
≤ exp

(
−N x2/2

σ2 + 2R+ x/3

)
.

For the sake of completeness, we provide a sketch of the argument in Appendix A.

Let us return to the proof of Theorem 1.6 and consider F as defined in (2.18). Each f ∈ F
is the indicator of a union of two half spaces in Rn. By Radon’s theorem, the VC dimension of
the class of indicators of half spaces in Rn is n + 1, see e.g. [33, Theorem 3.4]. It follows from
Lemma 2.4 that d := V C(F) < 10(n + 1). Moreover, by the Lr condition from Assumption 1.5
and Markov’s inequality, for any θ ∈ [0, 1],

sup
f∈F

Ef2 = sup
u∈(η/γ)B

P
(
| 〈X,u〉 | ≥ 1

2

)
≤ min

{
1,

(
2Lη

γ

)r}
≤ min

{
1,

(
2Lη

γ

)θr}
.
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Hence, any σ2 ≥ (2Lη/γ)θr is a valid choice in the context of Theorem 2.5. By our choice of η in
(2.16), this requirement is fulfilled for

σ2 = (max{1, 8L/γ})θr exp

(
−θr N

16n
exp(−p)

)
.

With that choice of σ and p = α log(eN/n) the first term in the definition (2.19) of R can be
bounded as

T1 :=
64d

N
log
( c
σ

)
<

640(n+ 1)

N

(
log(c) + θr

(
− log(max{1, 8L/γ}) +

N

16n
exp(−p)

))
≤ 640 log(c)(n+ 1)

N
+

40(n+ 1)

n
θr
( n

eN

)α
.

Choosing θ = c1 min{1, 1/r} with c1 = 1/(16 · 80) and assuming N ≥ c2n for a suitable constant

c2 = c2(α), it is evident that 640 log(c)(n+1)
N ≤

(
n
eN

)α
/16 and therefore,

T1 ≤
1

8

( n

eN

)α
=

1

8
exp(−p). (2.20)

Also, under the same assumptions, the second term in the definition (2.19) of R can be estimated
using (2.20) as

T2 := 8σ

√
d

N
log
( c

σ2

)
≤ 8σ

√
1

8 · 64
exp(−p)

≤ (max{1, 8L/γ})θr/2 exp

(
−θr N

32n
exp(−p)

)√
1

8
exp(−p)

=
(max{1, 8L/γ})c1

min{1,r}
2

√
8

exp

(
−c1

min{1, r}
32eα

(
N

n

)1−α

− α

2
ln(eN/n)

)

≤ 1

8
exp(−α ln(eN/n)) =

1

8
exp(−p),

provided that N ≥ c3n for some suitable c3 = c3(α, r, L/γ). Combining the two estimates, it
follows that

R = T1 + T2 ≤
1

4
exp(−p).

Moreover, with a similar argument we have that

σ ≤ 1

16
exp(−p)

provided that N ≥ c4n with c4 = c4(α, r, L/γ); furthermore,

sup
f∈F

Ef ≤ sup
f∈F

(Ef2)1/2 ≤ σ ≤ 1

16
exp(−p).

Now, recall that we assumed (2.3), i.e., that p > log(2/δ), which by definition of p is equiv-
alent to N > e(2/δ)1/αn. At the same time, the requirement (2.15) is equivalent to N ≥
(16 ln(2)eα)1/(1−α)n.

Summarizing, all required conditions on N are satisfied if N ≥ c0n with

c0 = c0(α, r, L/γ, δ) = max
{
c2(α), c3(α, r, L/γ), c4(α, r, L/γ), 3(2/δ)1/α, (16 ln(2)eα)1/(1−α)

}
.

In this case, choosing x = exp(−p)/16 in Theorem 2.5 and noting that

sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

f(Xi)

∣∣∣∣∣ ≤ sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

f(Xi)− Ef

∣∣∣∣∣+ σ,
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it is evident that

sup
u∈(η/γ)B

1

N

N∑
i=1

1{|〈Xi,z〉≥1/2} ≤ R+ σ + x ≤ 3

8
exp(−p)

outside an event whose probability is at most

exp

(
−N x2/2

σ2 + 2R+ x/3

)
≤ exp

(
−N exp(−p)2/(2 · 162)

exp(−p)2/256 + exp(−p)/2 + exp(−p)/48

)
≤ exp (−c6N exp(−p)) = exp(−c1N1−αnα),

where c6 = 3/806 and c1 = c6/e ≈ 0.0014. This completes the proof of (2.17) and, hence, of
Theorem 1.6.

Remark 2.6. The proof only needs very little adaptation if one replaces absconv(X1, . . . , XN ) by
the standard convex hull conv(X1, . . . , XN ). In fact, conv(X1, . . . , XN ) = Γ∗∆N

1 , where ∆N
1 =

{x ∈ RN : xi ≥ 0,
∑N
i=1 xi ≤ 1} is the standard simplex. Then ‖Γt‖∞ in (2.8) and (2.9) is replaced

by maxi=1,...,N (Γt)i = maxi=1,...,N 〈Xi, t〉. Now, (2.11) works without the absolute values around
〈Xi, t〉, anyway, so that the rest of the proof remains the same.

3 The floating bodies for various random vectors

Although Theorem 1.6 is (almost) universal, it is unrealistic to expect that the second part of
Question 1.3 can be addressed with a single result. Therefore, the identity of the sets Kp(X)
has to be studied on a case-by-case basis. Having said that, there are some general principles
that can be used to identify, or at least approximate the sets Kp(X). Firstly, as outlined in what
follows, there are natural examples in which Kp(X) can be identified directly—among them are
the standard Gaussian vector X = G; the standard Rademacher vector X = E ; and when X is
a q-stable random vector. Secondly, we show in Section 3.2 that if linear forms 〈X, t〉 have p-th
moments and satisfy a weak regularity condition, then Kp(X) is equivalent to B(Lp(X)). Perhaps,
one could have actually expected a variant of Theorem 1.6 withKp(X) replaced byB(Lp(X)) in the
first place, but clearly B(Lp(X)) does not work in heavy-tailed situations, where it may be trivial
if p = α log(eN/n) > r. This observation, combined with Theorem 1.6 improves the main result
from [10] which studies random polytopes generated by isotropic, log-concave random vectors.
Then, in Section 3.3, we explain how stochastic domination can be translated to information on
the structures of the floating bodies. That allows one to show that absconv(X1, . . . , XN ) contains
large canonical sets for very general random vectors, even when X does not necessarily have
independent entries.

3.1 Direct analysis of the floating body

The first two natural examples one should consider are X = G, the standard Gaussian random
vector and X = E , the standard Rademacher random vector. A direct computation shows that

c1
1
√
p
Bn2 ⊂ Kp(G) ⊂ c2

1
√
p
Bn2 ,

and by [34],
c′1conv(Bn1 ∪ (1/

√
p)Bn2 ) ⊂ Kp(E) ⊂ c′2conv(Bn1 ∪ (1/

√
p)Bn2 ),

where c1, c′1, c2 and c′2 are absolute constants. Therefore, in both cases, Theorem 1.6 implies that
absconv(X1, . . . , XN ) contains a large canonical body. In particular, one recovers the estimates
of Theorem 1.1 and of Theorem 1.2 for the Rademacher random vector E stating that with high
probability,

absconv(G1, . . . , GN ) ⊃ c2
√
α log(eN/n)Bn2
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and
absconv(E1, . . . , EN ) ⊃ c′2

(
Bn∞ ∩

√
α log(eN/n)Bn2

)
.

We explain how Theorem 1.2 can be recovered from Theorem 1.6 in full generality in Section 3.3.

Another, more surprising example in which Kp(X) can be computed directly consists in the
case that X is a standard q-stable random vector, a situation outlined in Theorem 1.8.

3.1.1 Proof of Theorem 1.8

Recall that for 1 ≤ q < 2, a random variable ξ is called standard q-stable if its characteristic
function satisfies E[exp(itX)] = exp(−|t|q/2) for every t ∈ R (we consider only the symmetric
case). The proof of Theorem 1.8 is based on several well known facts, see, e.g., [25, Chapter 5].

(F1) If ξ1, . . . , ξn are independent copies of a standard q-stable random variable ξ, and X =
(ξi)

n
i=1, then for any t ∈ Rn, 〈t,X〉 has the same distribution as ξ‖t‖q.

(F2) While a standard q-stable random variable does not belong to Lq, it does belong to the
weak-Lq space Lq,∞, i.e., supu>0 u

qP(|ξ| ≥ u) ≤ Cq for some constant Cq > 0.

(F3) The weak Lq behaviour of ξ is sharp: there exist constants Mq, cq > 0 such that for any
u ≥Mq, P(|ξ| ≥ u) ≥ cq/uq.

From here on, let ξ be a standard q-stable random variable for some 1 ≤ q < 2. Let us first
show that X satisfies Assumption 1.5, though obviously, due to the stability property (F1), not
with respect to the Euclidean norm, but rather with respect to ‖ · ‖q. By (F2), ξ has a bounded
Lr (quasi)-norm for any 0 < r < q. As a result, X satisfies the Lr condition (1.5) with respect to
‖ · ‖q for r = q/2 and constant L = Lq. At the same time, e.g., by a Paley-Zygmund argument
(see e.g. [11, Chapter 3.3]), it is straightforward to verify that X satisfies the small-ball condition
(1.4) with respect to ‖ · ‖q for constants γ = γq and δ = δq that depend only on q.

Therefore, invoking Theorem 1.6, a typical realization of absconv(X1, . . . , XN ) contains
c(Kp(X))◦ for p = α log(eN/n). It remains to identify the floating body Kp(X). To this end,
observe that

Kp(X) ⊂ c2(q)
( n
N

)α/q
Bnq . (3.1)

Indeed, let t ∈ Kp(X). By (F1), 〈X, t〉 has the same distribution as ξ‖t‖q and

P
(
ξ ≥ 1

‖t‖q

)
= P(〈X, t〉 ≥ 1) ≤ exp(−p) =

( n

eN

)α
.

Since N/n is ‘large enough’, it follows that for Mq as in (F3), ‖t‖q ≤ 1/Mq; indeed, otherwise
P(ξ ≥ Mq) ≤ (n/(eN))α which is impossible when N/n is larger than a suitable constant. Now,
by (F3) ,

cq (‖t‖q)q ≤ P
(
ξ ≥ 1

‖t‖q

)
≤
( n

eN

)α
,

implying that

‖t‖q ≤ c2
( n

eN

)α/q
,

where c2 = c2(q) = c
1/q
q . This establishes (3.1) and completes the proof of Theorem 1.8 by taking

the polar.
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3.2 Floating bodies and the unit ball of Lp(X).

In order to get a better intuition on the role of the sets Kp(X), let us consider a case in which X
is a ‘reasonably nice’ random vector, in the sense that each 〈X, t〉 has sufficiently many moments
and exhibits a weak kind of regularity. As we show next, the sets Kp(X) are then equivalent to

B(Lp(X)) =
{
t ∈ Rn : (E| 〈X, t〉 |p)1/p ≤ 1

}
, p ≥ 1.

The polar body
Zp(X) := B(Lp(X))◦ (3.2)

is called the Lp-centroid body of X. The fact that there is a connection between Kp(X) and
B(Lp(X)) is an immediate outcome of Markov’s inequality:

P(〈X, t〉 ≥ e‖ 〈X, t〉 ‖Lp) ≤ P(| 〈X, t〉 |p ≥ ep‖ 〈X, t〉 ‖pLp
) ≤ exp(−p).

Therefore, if ‖ 〈X, t〉 ‖Lp
≤ 1/e then t ∈ Kp(X), i.e.,

1

e
B
(
Lp(X)

)
⊂ Kp(X). (3.3)

In order to prove a reverse inequality one requires an additional regularity condition on X.

Definition 3.1. The random vector X satisfies a regularity condition with constant D if for every
q ≥ 2 and every t ∈ Rn,

‖ 〈t,X〉 ‖L2q
≤ D‖ 〈t,X〉 ‖Lq

. (3.4)

Lemma 3.2. Let X be a symmetric random vector for which (3.4) holds. Then, for every p ≥ c2,

Kp(X) ⊂ 2B
(
Lc1p(X)

)
,

where c1 = 1/(4 log(4D/3)) and c2 = max{2c1, 2 log(2)}.

Proof. Fix t ∈ Rn. By the symmetry of X,

P(〈X, t〉 ≥ 1) =
1

2
P(| 〈X, t〉 | ≥ 1),

and invoking the Paley-Zygmund inequality (see, e.g.[11, Chapter 3.3]) yields, for any q ≥ 2,

P
(
| 〈X, t〉 | ≥ 1

2
‖ 〈X, t〉 ‖Lq

)
≥
(

(1− (1/2)q)
‖ 〈X, t〉 ‖Lq

‖ 〈X, t〉 ‖L2q

)2q

≥
(

3

4D

)2q

(3.5)

= exp(−2q log(4D/3)).

Hence, if q = c1p with c1 = c1(D) = 1/(4 log(4D/3)) and p ≥ 2 log(2) then

P
(
〈X, t〉 ≥ 1

2
‖ 〈X, t〉 ‖Lq

)
≥ 1

2
exp(−q/(2c1)) ≥ exp(−p/2− p/2) = exp(−p).

Hence, if t ∈ Kp(X) then ‖ 〈X, t〉 ‖Lq ≤ 2, as claimed.

Remark 3.3. Note that in order to prove that Kp(X) ⊂ 2B(Lp(X)) for a fixed value of p it
suffices that X satisfies that ‖ 〈X, t〉 ‖L2q ≤ D‖ 〈X, t〉 ‖Lq for q = c′p.
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Log-concave random vectors

Let us give one generic example in which (3.4) holds and Kp(X) is equivalent to B(Lp(X)). There
are many other natural examples of random vectors that satisfy (3.4) (e.g., the Rademacher vector
E , thanks to Borell’s hypercontractivity inequality [5]), but since the focus of this note is on random
polytopes generated by a heavy-tailed random vectors we will not pursue this direction further.

A random vector is log-concave if it has a density f satisfying that for every x, y in its support
and any 0 < λ < 1, f(λx + (1 − λ)y) ≥ fλ(x)f1−λ(y). The Lp-centroid bodies Zp(X) defined in
(3.2) play a crucial role in the study of log-concave measures [27, 35]. For more information on
log-concave random vectors we refer the reader to [7, 20].

Let X be a symmetric log-concave random vector that is non-degenerate, i.e., whose support
is not contained in a proper subspace of Rn. It follows from Borell’s inequality [5] (see e.g. [20,
Proposition 5.16]) that for every t ∈ Rn and 1 ≤ p ≤ q <∞,

‖ 〈X, t〉 ‖Lp
≤ ‖ 〈X, t〉 ‖Lq

≤ 12
q

p
‖ 〈X, t〉 ‖Lp

. (3.6)

Therefore, X satisfies the weak regularity condition (3.4) with constant D = 24, implying that
B(Lp(X)) ∼ Kp(X). Further, by (3.5) with q = 2, X satisfies a small-ball condition with respect
to the norm ‖t‖X := (E|〈X, t〉|2)1/2 = ‖Σ1/2t‖2 with constants γ = 1/2 and δ = (1/32)4. Here Σ =
EXXT is the covariance matrix of X, which is nonsingular by the non-degenerateness assumption
on X so that ‖·‖X is actually a norm. Moreover, (3.6) also implies that X satisfies the Lr-condition
for r = 4 with respect to ‖t‖X with L = 24.

Theorem 1.6 then leads to the following result.

Theorem 3.4. Let X be a symmetric, non-degenerate, log-concave random vector. Let 0 < α < 1,
set N ≥ c0(α)n and put p = α log(eN/n). Then, with probability at least 1− 2 exp(−c1N1−αnα),

absconv(X1, . . . , XN ) ⊃ c2Zp(X) (3.7)

where c2 is a universal constant.

Theorem 3.4 improves the main result from [10], which states that if X is an isotropic (which
means that its covariance matrix Σ is the identity), log-concave random vector and Γ is the random
matrix whose rows are X1, . . . , XN , then with probability at least 1 − 2 exp(−c1(α)N1−αnα) −
P(‖Γ : `n2 → `N2 ‖ ≥ c

√
N),

absconv(X1, . . . , XN ) ⊃ c2(α)Zp(X).

Thanks to the progress made in [1] in the study of random matrices with i.i.d. isotropic log-
concave rows, it is known that

P(‖Γ : `n2 → `N2 ‖ ≥ c
√
N) ≤ exp(−c′

√
n).

Therefore, the probability bound of the result in [10] is weaker than the one Theorem 3.4.

3.3 Stochastic domination

Up to this point, the examples focused on random vectors X for which Kp(X) can either be studied
directly, or is equivalent to a natural convex body. One way of extending the scope of the analysis
of the random polytopes absconv(X1, . . . , XN ) is by comparing the floating bodies Kp(X) that
are associated with different random vectors. As it happens, this comparison is simply a way of
coding stochastic domination.

Definition 3.5. Let X and Y be centered random vectors in Rn. The random vector X dominates
Y with constants λ1 and λ2 if for every t ∈ Rn and every u > 0,

P(〈X, t〉 ≥ u) ≥ λ1P(〈Y, t〉 ≥ λ2u).
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This means that if X dominates Y with constants λ1 and λ2 then

Kp(X) ⊂ λ2Kp′(Y ) (3.8)

for p′ = p− log(1/λ1).

It is well known that this notion of domination is well-suited for the study of random vectors
with i.i.d. coordinates because it is preserved under tensorization:

Theorem 3.6. [24] There are absolute constants c1 and c2 for which the following holds. Let x
and y be symmetric random variables and assume that for every u > 0, P(x > u) ≥ λ1P(y ≥ λ2u).
Let x1, . . . , xn be independent copies of X and set y1, . . . , yn to be independent copies of y. Then
X = (xi)

n
i=1 dominates Y = (yi)

n
i=1 with constants c1λ1 and c2λ2.

Theorem 3.6 leads to many structural results on absconv(X1, . . . , XN ) for vectors with i.i.d.
coordinates, by comparing x to a canonical random variable like a Rademacher random variable
(i.e., a symmetric, {−1, 1}-valued random variable) or to the standard Gaussian random variable.
Observe that if x is a symmetric random variable that satisfies P(|x| ≥ γ0) ≥ δ0 then we have

P(x ≥ u) ≥ δ0P(ε > u/γ0),

where ε is a Rademacher random variable. Hence, from Theorem 3.6, we get that if x1, . . . , xn
are independent copies of x and X = (xi)

n
i=1, then X dominates the Rademacher vector E with

constants λ1 and λ2 that depend only on γ0 and δ0. As a result, by (3.8),

Kp(X) ⊂ λ2Kp′(E),

where p′ = p− log(1/λ1). Thanks to the characterization of Kp(E) and Theorem 1.6 one immedi-
ately recovers Theorem 1.2 as well as the main result from [19].

Theorem 3.7. Let x be a symmetric random variable that satisfies Ex2 = 1 and set x1, . . . , xn
to be independent copies of x and put X = (xi)

n
i=1. If there are constants γ and δ such that

P(|x| ≥ γ) ≥ δ, then for N ≥ c0n, with probability at least 1− 2 exp(−c1N1−αnα),

absconv(X1, . . . , XN ) ⊃ c2(Bn∞ ∩
√
α log(eN/n)Bn2 );

here c0 depends on α, γ and δ, c2 depends on γ and δ, and c1 is an absolute constant.

The result can be pushed much further. The fact that X has i.i.d. coordinates can be relaxed to
an unconditional assumption. Moreover, X need not have a covariance, as in fact, Assumption 1.5
suffices to get the desired conclusion.

Definition 3.8. A random vector X = (xi)
n
i=1 is unconditional if for every (εi)

n
i=1 ∈ {−1, 1}n,

(xi)
n
i=1 has the same distribution as (εixi)

n
i=1.

Theorem 3.9. For every 0 < δ < 1 there is a constant c = c(δ) such that the following holds. Let
X be an unconditional random vector that satisfies the small-ball condition with constants γ and
δ. Then, for any p > c0(δ) = 4 log(8/δ) + log(4),

Kp(X) ⊂ c(δ)

γ
Kp(E).

In particular, if X satisfies Assumption 1.5 and N ≥ c0(α, δ, r, L/γ)n, then with probability at
least 1− 2 exp(−c1N1−αnα),

absconv(X1, . . . , XN ) ⊃ 1

2

(
Kp(X)

)◦ ⊃ c′(δ)γ(Bn∞ ∩√α log(eN/n)Bn2
)
.
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The proof of Theorem 3.9 is based on contraction inequalities for the Rademacher random
vector (see, e.g. [25]): if |ai| ≤ |bi| for 1 ≤ i ≤ n then for every p ≥ 1,(

E
∣∣ n∑
i=1

εiai
∣∣p)1/p

≤
(
E
∣∣ n∑
i=1

εibi
∣∣p)1/p

, (3.9)

and for every u > 0,

P
(∣∣ n∑
i=1

εiai
∣∣ ≥ u) ≤ 2P

(∣∣ n∑
i=1

εibi
∣∣ ≥ u). (3.10)

We also require Borell’s hypercontractivity inequality [5]: for every t ∈ Rn and q > p > 1,

‖ 〈E , t〉 ‖Lq
≤ q − 1

p− 1
‖ 〈E , t〉 ‖Lp . (3.11)

Proof of Theorem 3.9. The second part of the theorem is an immediate outcome of the first
part, Theorem 1.6, and the fact that X satisfies Assumption 1.5. To establish the first part, let
us show that if X = (x1, . . . , xn) is an unconditional random vector and there are γ, δ > 0 such
that for every 1 ≤ i ≤ n,

P(|xi| ≥ γ) ≥ δ, (3.12)

then Kp(X) ⊂ c(δ)
γ Kp(E). Note that for this part of the theorem, X does not need to satisfy the

small-ball condition 1.4 for every direction, but rather only for coordinate directions.
Let t ∈ Kp(X). Since X is unconditional and symmetric, it holds that

1

2
PX⊗ε

(∣∣ n∑
i=1

εi|xi||ti|
∣∣ ≥ 1

)
= PX

( n∑
i=1

xiti ≥ 1
)
≤ exp(−p). (3.13)

Let φ : R→ R+ be the truncation at level γ, that is,

φ(z) =

{
|z| if |z| ≤ γ,
γ if |z| > γ,

and set Zt =
∑n
i=1 εiφ(xi)|ti|. Since φ(z) ≤ |z| the contraction principle (3.10) yields, for every

(xi)
n
i=1 ∈ Rn,

P(|Zt| ≥ 1) = EXPε(|Zt| ≥ 1) ≤ 2EXPε
(∣∣ n∑
i=1

εi|xi||ti|
∣∣ ≥ 1

)
= 4PX

( n∑
i=1

xiti ≥ 1
)

≤ 4 exp(−p). (3.14)

Observe that for every 1 ≤ i ≤ n,

EXφ(xi) ≥ γP(|xi| ≥ γ) ≥ γδ,

where the last inequality follows from the small ball assumption (3.12). This observation implies
that for any q > 1,

(E|Zt|2q)1/2q ≤ γ
(
Eε
( n∑
i=1

εiti
)2q)1/2q

≤ 2q − 1

q − 1
γ
(
Eε
∣∣ n∑
i=1

εiti
∣∣q)1/q

≤ 2q − 1

q − 1
δ−1
(
Eε
∣∣ n∑
i=1

εiEXφ(xi)|ti|
∣∣q)1/q

≤ 2q − 1

q − 1
δ−1(E|Zt|q)1/q. (3.15)

Here, the first inequality used that φ(z) ≤ γ as well as the contraction principle (3.9), the second
inequality is based on the hypercontractivity inequality for the Rademacher vector (3.11) and the
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last inequality follows from Jensen’s inequality. Therefore, by the Paley-Zygmund inequality (as
in, e.g., [11, Chapter 3.3]), we have that

P
(
|Zt| ≥ (E|Zt|q/2)1/q

)
≥
(

1

2

(E|Zt|q)1/q

(E|Zt|2q)1/2q

)2q

≥
(
δ(q − 1)

2(2q − 1)

)2q

= exp

(
−2q log

(
4q − 2

(q − 1)δ

))
. (3.16)

If q is such that

2q log

(
4q − 2

(q − 1)δ

)
< p− log(4), (3.17)

then it follows that E|Zt|q < 2 because otherwise (3.16) would be in contraction to (3.14). Before
elaborating on the implication of E|Zt|q < 2, let us discuss the particular choice

q =
p− log(4)

2 log(8/δ)
.

Since p > 4 log(8/δ) + log(4) by assumption, it follows that q > 2 and q − 1 > q/2 so that
(4q − 2)/(q − 1) < 8− 4/q < 8 and

2q log

(
4q − 2

(q − 1)δ

)
< 2q log(8/δ) = p− log(4),

so that (3.17) is satisfied. Note that since q > 2 and p > 4 log(8/δ) + log(4),

Cp,q :=
p− 1

q − 1
<
p− 1

q/2
=

p− 1

p− log(4)
4 log(8/δ) =

(
1 +

log(4)− 1

p− log(4)

)
4 log(8/δ)

< 4 log(8/δ) + log(4)− 1 =: Cδ.

By hypercontractivity combined with (3.15) (starting with the term after the second inequality in
the first line) and the observation that (E|Zt|q)1/q < 21/q <

√
2, we obtain(

Eε

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣
p)1/p

≤ p− 1

q − 1

(
Eε

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣
q)1/q

≤ Cp,q
1

γδ
(E|Zt|q)1/q < Cδ

√
2

γδ
=: C(δ, γ).

Markov’s inequality gives

Pε

(
n∑
i=1

εiti ≥ eC(δ, γ)

)
≤ exp(−p).

Hence, for

c(δ) =

√
2e(4 log(8/δ) + log(4/e))

δ

it holds that c(δ)/γ = eC(δ, γ) and Kp(X) ⊂ c(δ)
γ Kp(E) as claimed.

A Concentration inequality for VC classes of functions

We prove Theorem 2.5 in this section, basically following [28] but with a simplification (avoiding
the use of [28, Lemma 3.6] due to Talagrand [37]). The main tool is the following version of
Talagrand’s concentration inequality [38] due to Bousquet [6], see also [16, Theorem 8.42], which
features explicit and small constants.
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Theorem A.1. Let G be a set of functions g : Rn → R. Let X1, . . . , XN be independent random
vectors in Rn such that Eg(X`) = 0 and |g(X`)| ≤ K almost surely for all ` = 1, . . . , N and for
all g ∈ F for some constant K > 0. Introduce

Z = sup
g∈G

∣∣∣∣∣
N∑
`=1

g(X`)

∣∣∣∣∣ . (A.1)

Let σ2
` > 0 such that E

[
g(X`)

2
]
≤ σ2

` for all g ∈ G and ` = 1, . . . , N . Then, for all t > 0,

P(Z ≥ EZ + t) ≤ exp

(
− t2/2

σ2
G + 2KEZ + tK/3

)
, (A.2)

where σ2
G =

∑N
`=1 σ

2
` .

In the situation of Theorem 2.5, we consider G = {g = f−E[f(X)] : f ∈ F}, so that Eg(X) = 0
and |g(X)| ≤ 1 =: K almost surely for all g ∈ G. Moreover, σ2

` ≤ σ2 = supf∈F E[f(X`)
2] so that

σ2
G ≤ Nσ2. It remains to estimate EZ.

Symmetrization, see e.g. [25, Lemma 6.3], and Dudley’s inequality in the form of [16, Theorem
8.23] yield, for a Rademacher sequence ε1, . . . , εN independent of X1, . . . , XN ,

EZ = E sup
f∈F

∣∣∣∣∣∣
N∑
j=1

f(X`)− E[f(X`)]

∣∣∣∣∣∣ ≤ 2E sup
f∈F

∣∣∣∣∣∣
N∑
j=1

εjf(X`)

∣∣∣∣∣∣
≤ 8
√

2NEX
∫ ∆X(F)/2

0

√
log(2N (F , dX,2, u))du,

where the metric dX,2 is given as

dX,2(f, g) =

 1

N

N∑
j=1

(f(Xj)− g(Xj))
2

1/2

=

Eε

 1√
N

N∑
j=1

εj(f(Xj)− g(Xj))

2


1/2

and N (F , dX,2, u) denote the covering numbers of F , i.e., the minimal number of balls of radius
u in the metric dX,2 required to cover F and

∆X(F) :=

sup
f∈F

1

N

N∑
j=1

f(Xj)
2

1/2

=
(

sup
f∈F

1

N

N∑
j=1

f(Xj)︸ ︷︷ ︸
=:Y

)1/2

,

where we have used that f takes only values in {0, 1} in the equality. It follows from Haussler’s
theorem [21] and the fact that the functions in F are {0, 1}-valued (so that ‖f − g‖2L2(µ) =

‖f − g‖L1(µ) for any probability measure µ) that the covering numbers can be estimated via the
VC-dimension d as

N (F , dX,2, t) ≤ e(d+ 1)(2e)dt−2d.

Plugging this into our estimate of EZ above and noting that (2e(d+ 1))1/2d takes the maximum
for d = 1, so that (2e(d+ 1))1/2d ≤ 2

√
e for all d ≥ 1, gives

EZ ≤ 8
√

2NE
∫ √Y /2

0

√
log(2e(d+ 1)(2e/u)2d)du ≤ 16

√
NdE

∫ √Y /2
0

√
log(2e

√
2/u)du

We use the Cauchy-Schwarz inequality to estimate the integral∫ α

0

√
log(γ/u)du ≤

√∫ α

0

1du

√∫ α

0

log(γ/u)du =
√
α

√
γ

∫ ∞
γ/α

log(t)t−2dt = α
√

log(eγ/α).
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Setting α =
√
Y /2 and γ = 2e

√
2, noting that t 7→

√
t log(2e

√
2/t) is concave and applying

Jensen’s inequality gives

EZ ≤ 16
√
NdE

√√√√Y

4
log

(
2e2
√

2

Y/4

)
≤ 16

√
Nd

√√√√EY
4

log

(
2e2
√

2

EY/4

)
.

Now observe that by the triangle inequality and since each f takes values in {0, 1},

Y ≤ Z/N + sup
f∈F

Ef(X) = Z/N + sup
f∈F

Ef2(X) ≤ Z/N + σ2.

Since t 7→
√
t log(2e2

√
2/t) is increasing, this yields

EZ ≤ 8
√
Nd

√√√√EZ +Nσ2

N
log

(
8e2
√

2

EZ/N + σ2

)
≤ 8
√
d

√√√√(EZ +Nσ2) log

(
8e2
√

2

σ2

)
.

Setting Q := 8

√
d log

(
8e2
√

2
σ2

)
and squaring leads to the inequality (EZ)2 ≤ Q2(EZ + Nσ2) so

that

EZ ≤ Q2/2 +
√
Q2Nσ2 +Q4/4 ≤ Q2 +Q

√
Nσ

= 64d log

(
8e2
√

2

σ2

)
+ 8σ

√√√√Nd log

(
8e2
√

2

σ2

)
= NR.

It follows from (A.2) that

P

sup
f∈F

∣∣ N∑
j=1

(f(Xj)− Ef(Xj))
∣∣ ≥ NR+ t

 ≤ exp

(
− t2/2

Nσ2 + 2NR+ t/3

)
,

which is equivalent to the statement of Theorem (2.5).

B Sparse recovery

We begin this section with an outline of the proof of how the `1-quotient property leads to (1.11).
The null space property of A of order s with constant ρ < 1 requiring that∑

j∈S
|vj | ≤ ρ

∑
j∈Sc

|vj | for all v ∈ kerA \ {0} and all S ⊂ {1, . . . , N} with #S = s, (B.1)

implies by [16, Theorem 4.12] that the solution x] of equality constrained `1-minimization (1.7)
with y = Ax satisfies

‖x− x]‖1 ≤
2(1 + ρ)

1− ρ
σs(x)1. (B.2)

If y = Ax + w, then the `1-quotient property yields the existence of v ∈ Rn satisfying (1.10), so
that we can write y = A(x+ v). The error bound (B.2) then leads to

‖x] − x‖1 ≤
2(1 + ρ)

1− ρ
inf

z:‖z‖0≤s
‖x+ v − z‖1 ≤

2(1 + ρ)

1− ρ

(
inf

z:‖z‖0≤s
‖x− z‖1 + ‖v‖1

)
≤ 2(1 + ρ)

1− ρ
σs(x)1 +

2(1 + ρ)

c2(1− ρ)
|||w|||p ,
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which is (1.11).

Next, let us turn to the example of noise-blind recovery when the measurement matrix has
i.i.d. columns, selected according to the random vector X, which has i.i.d. coordinates, distributed
according to the (L2-normalized) Student-t entries with d = 2 logN degrees of freedoms. In
particular, the first moments of each coordinate are equivalent to that of a Gaussian random
variable: for any q ≤ logN , c1‖g‖Lq ≤ ‖ξ‖Lq ≤ c2‖g‖Lq . This example is particularly interesting
because it was recently shown (see, e.g., [31] and [13, Example 9]) that the corresponding random
matrix satisfies the null space property (B.1) of order s with high probability as long as s ∼
n/ log(eN/n). In addition, numerical tests in [13] show that this random matrix behaves precisely
like a Gaussian random matrix in practical sparse recovery problems. However, the `1-quotient
property of a Student-t matrix was previously open.

It is straightforward to verify that for any q ≤ logN and every w ∈ Rn, ‖ 〈X,w〉 ‖Lq ∼
‖ 〈G,w〉 ‖Lq

. Moreover, setting p = α log(eN/n), the results in Section 3.2 imply that

Kp(X) ∼ B(Lp(X)) ∼ B(Lp(G)) ∼
√

log(eN/n)Bn2 ;

therefore,
|||w|||p ∼α ‖w‖2

√
log(eN/n).

The general error estimate (1.11) and Theorem 1.6 together with s ∼ n/ log(eN/n) lead to

‖x] − x‖1 . σs(x)1 +
√

log(eN/n)‖w‖2 ∼ σs(x)1 + ‖w‖2
√
s

n
. (B.3)

Note that (B.3) yields the same error estimate as (1.9) (up to absolute constants), but while (1.9)
requires an a priori threshold for the noise level, (B.3) does not, and the error depends on the
true noise level ‖w‖2 rather than a potentially pessimistic upper bound. We refer to [22] for more
results in this direction and corresponding numerical experiments.
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