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Abstract
In this work, we consider the problem of learning regression models from a

finite set of functional objects. In particular, we introduce a novel framework to
learn a Gaussian process model on the space of Strictly Non-decreasing Distribu-
tion Functions (SNDF). Gaussian processes (GPs) are commonly known to provide
powerful tools for non-parametric regression and uncertainty estimation on vector
spaces. On top of that, we define a Riemannian structure of the SNDF space and we
learn a GP model indexed by SNDF. Such formulation enables to define an appro-
priate covariance function, extending the Matérn family of covariance functions.
We also show how the full Gaussian process methodology, namely covariance pa-
rameter estimation and prediction, can be put into action on the SNDF space. The
proposed method is tested using multiple simulations and validated on real-world
data.

Keywords: Gaussian process; Riemannian manifold; Functional data.

1 Introduction
In this paper, we consider the problem of learning regression models from a finite set of
functional objects. This problem has become very common in several contexts of appli-
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funding by DEEL-IRT and C. Samir acknowledges the funding by CNRS Prime.
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cations, including science and technology. For example in functional data analysis and
medical data it is very common to compare two objects (functions, curves, surfaces,
volumes, etc.) in order to find optimal correspondences between their representations.
This methodology, is usually refereed to as statistical shape analysis in [13, 24, 18].
The mathematical formulation leads to a wide range of applications when studying
temporal or spatial changes to characterize a population or to build predictive mod-
els [11, 26]. In particular, we are interested in studying variations corresponding to
domain deformations in observed objects. For instance, the human heart beating of
the same person during a cycle can be different under different circumstances. Hence
any regression model should take into account the domain (timing) difference (defor-
mation) in observations when studying them. Consequently, such models will become
more realistic, efficient, and parsimonious. Many authors have studied registration
methods using dynamic time warping models or semi-parametric deformation models,
see for instance [9, 19, 10].

Gaussian process regression has been successfully applied in many fields. It has
been introduced in [15] by Kolmogrov in the 1940s and applied for multivariate re-
gression starting from 1960s. As a supervised learning process, we will refer to a
Kriging approach without restriction to any area of research such as geostatistics, time
series, etc. The usual Kriging procedure consists in assuming that we observe a ran-
dom process Z = (ZI) indexed by an object I living on a compact space E , also called
the index space. Hence predicting unobserved values of the process leads to estimat-
ing conditional expectation which can be done as soon as a covariance, between the
process observed at different locations, can be defined. Actually for Ii and Ij in E ,
the main issue is to build a proper covariance between ZIi and ZIj . In particular, this
covariance can define a notion of stationarity for the process. In this work, we consider
the case where for any i = 1, . . . , N Ii is a nonlinear deformation of a common pat-
tern I∗. In this framework, we assume that Ii can be written as Ii = I∗ ◦ Fi with Fi
being a strictly non-increasing distribution, and I being a one-dimensional real-valued
function.

In order to capture deformations between observed functions I’s and perform opti-
mal predictions for unobserved data, we thus consider a Gaussian Process on the space
of distributions functions F where Z ∼ GP (m,C) is defined by a mean function
m : F → R and a covariance function C : F ×F → R. To reach such goal we will
present properties for the Gaussian process on F using isometric mappings defined in
Section 2.2. Indeed, the regression problem on the space of strictly non-decreasing
distribution functions will be re-defined as follows. Given a finite set of observations
{(Fi, yi) ∈ F × R, 1 ≤ i,≤ n}, define a regression model and an estimate of the
conditional expectation E[y|y1, . . . , yn], for a new pair (F, y)

Applications. In this section, we describe some typical applications and explain
why they require regression on distribution functions. We consider some applications
which belong to the case when the observed curves are real-valued functions (func-
tional data) defined on an interval of the real line. We point out that the choice of
application is independent of the proposed method. In particular, we are interested in
studying variability in different groups and utilizing full function patterns from such
analysis for subsequent classification. An added difficulty in the problem at hand is
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the fact that the observed objects do not have the same parametrization of the domain.
Without loss of generality, we consider that their respective parametrization are defor-
mations (as a convolution with a distribution function) of the unit interval [0, 1]. In
other words, different individuals will present different amounts of time, and thus, it
becomes important to focus on deformations rather than the common pattern. Thus,
we require a comprehensive statistical framework for analysis of functional data that
allows for statistically analyzing variabilities. There exists a large body of literature
on statistical analysis of functions; see for example [20, 14, 26, 23]. When restricting
to the analysis of functions that require temporal alignment, the literature is somehow
limited [10, 17, 16, 12, 24]. Another class of methods are variations of the Dynamic
Time Warping (DTW) algorithm that was first applied for speech recognition [22] and
has been extended to other engineering and computer science areas [8]. The main
differences between our suggested method and those in the literature are: (i) defor-
mations are continuous in our formulations instead of discrete vectors, (ii) we present
the asymptotic properties of the regression model, and (iii) our formulation can be
extended for other domains’ deformations.

1.1 Contribution:
The goal of this study is to develop a new set of measures that can enhance classification
of functional observations based on distribution functions as element of a Riemannian
manifold. To that end, we show how Gaussian process regression works in this setting.
Beyond the previous methods, the main contribution of this paper can be summarized
in:

• We consider the problem of prediction from a finite set of an observed pattern
I∗ where the randomness is caused by deformations of its domain. When the
deformations are strictly nondecreasing distributions in a space F , we propose
to consider a Gaussian process regression on F with a covariance defined on a
Riemannian manifold.

• Since a Gaussian process is determined by its mean function m and covariance
function C, we focus on C and we extend the Matérn covariance functions on
the SNDF space.

• We study the asymptotic properties of the Gaussian process model, by showing
a general microergodicity result.

The rest of this paper is organized as follows. Section 2 describes our framework
for Gaussian process models indexed by distributions as well as a reminder for tools
needed for our formulation. Section 3 extends the Matérn covariance function to this
context, and provides the microergodicity result. Section 4 presents experimental re-
sults. In particular, we compare the classification accuracy using different simulations
and real medical data. Conclusions are proposed in section 4 while all proofs are post-
poned to the Appendix.
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2 Proposed Method
In this section, we first formulate the problem and then introduce the tools for the
manifold Gaussian process regression model.

2.1 Problem Formulation
Let I1, . . . , In denote a finite set of n observed objects that are non-linear deformations
of a specific pattern I?. By deformation, we mean that for all i = 1, . . . , N there is a
unique distribution Fi ∈ F such that

Ii = I? ◦ Fi : Ω = [0, 1]→ Rd.

In this study, we will focus on strictly nondecreasing distribution functions belonging
to the space F = {F : Ω = [0, 1] 7→ [0, 1], F (0) = 0, F (1) = 1, f > 0},
letting f = Ḟ , has been studied to solve statistical shape analysis problem with various
applications in medical imaging, computer vision, and mechanics. The space F can
be viewed as a Lie group without topological structures which acts onto the space of
objects Is on the right as follows:

(I, F ) = I ◦ F

Thus, the notion of dissimilarity between any two objects Ii = (I? ◦ Fi) and Ij =
(I? ◦Fj) must be measured with respect to the deformation between these two objects,
namely using a proper distance between the two distribution functions Fi and Fj . To
reach such goal one needs to consider F as a Riemannian manifold by putting a Rie-
mannian structure on it in order to define a geodesic distance for our study.

2.2 Background and Space of Representations
We endow F with the Fisher-Rao metric so that, for any F ∈ F and TF (F) being the
tangent space to F at F we have:

< g1, g2 >F=

∫ 1

0

ġ1(t)ġ2(t)
1

f(t)
dt.

for any g1, g2 ∈ TF (F). Note that F is now a nonlinear manifold due to boundary
conditions and that this metric defines a Riemannian structure on it. As mentioned
above, performing Kriging on F directly is not straightforward. In this work we will
use a mapping fromF to another Riemannian manifold and will exploit the isometry to
extend the notion of Gaussian process to the space of strictly increasing functions. In-
deed, we map each distribution F to the square root of its derivative, the corrresponding
density function as follows:

Ψ : F → H
F 7→ φ = Ψ(F ) =

√
f.
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Here H = {φ : Ω = [0, 1] → R,
∫ 1

0
φ(t)2dt = 1, φ > 0}. Note that φ =

√
f is

well defined since f > 0 by definition and that Ψ(idF ) = 1 is a constant function.
Following the definition of the metric given above, we assume that the new space of φ,
denoted byH, is a subset of L2[0, 1]. Then, since

‖φ‖22 =

∫ 1

0

φ(t)φ(t)dt = 1,

H is a subset of the unit Hilbert sphere with a Riemannian structure that will be useful
later to ease the analysis of SNDFs. We remind that the geodesic distance on the sphere
is given by the length of the connecting arc and that the parallel transport is a rotation.
The reader can refer to [6, 7] for more details. Furthermore, Ψ is an isometry with the
following inverse:

Ψ−1 : H → F

φ 7→
(
t→

∫ t

0

φ2(s)ds =

∫ t

0

f(s)ds

)
.

One of the main advantages of this formulation is to exploit the nice properties of the
sphere:

• Geodesic distance. Let F1, F2 be any two elements ∈ F and let ξ ∈ [0, 1], then
the geodesic between F1 and F2 at time instant ξ is given by the Ψ inverse of the
geodesic arc between φ1 and φ2:

η(ξ) =
1

sin(β)
[sin(β − βξ)φ1 + sin(βξ)φ2]

where β = arccos
(
<
√
f1,
√
f2 >2

)
.

• The exponential map. Let φ be any element in H and w its tangent vector
w ∈ Tφ(H), then the exponential map exp is defined as an isometry from H to
its tangent space Tφ(H) by:

w 7→ expφ(w) = cos(‖w‖)φ+
sin(‖w‖)
‖w‖

w.

• Log map. As the inverse of the exponential map from φj ∈ H to Tφ(H) is given
by logφ:

φj 7→ wj = logφ(φj) =
β

sin(β)
(φj − cos(β)φ).

Therefore and as a special case, we note E = T1(H) the tangent space of H at the
constant function one and V the space of functions v such that v − 1 belongs to E :

V = {v ∈ L(Ω,R) :

∫ 1

0

v(t) = 1, ‖v‖ ≤ π

2
}.
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3 Gaussian Processes on F
Gaussian Processes (GP) are used to provide a probabilistic framework for a large
variety of machine learning methods. We refer for instance to [21] and references
therein. In this paper, they enable to optimally predict an unobserved value y associated
to a deformed curve I?◦F , from observed values y1, . . . , yn corresponding to deformed
curves I? ◦ F1, . . . , I

? ◦ Fn. Here, F, F1, . . . , Fn belong to F , so that we focus on
constructing Gaussian processes on F .

A Gaussian processZ onF is a random field indexed byF so that (Z(F1), . . . , Z(Fn))
is a Gaussian vector for any n ∈ N, F1, . . . , Fn ∈ F . We point out that a Gaussian
process Z is characterized by its mean function m : F → R and by its covariance
function C : F2 → R. The fact that these two functions characterize the Gaussian
process is a simplicity benefit, and is one of the reasons for the popularity of Gaussian
processes.

In this paper, we consider Gaussian processes with zero mean function and focus
on the issue of constructing a proper covariance function for distribution functions in
F .

3.1 Constructing Covariance Functions on F
A covariance function C on F must satisfy the following conditions. For any n ∈ N,
F1, . . . , Fn ∈ F , the matrix [C(Fi, Fj)]1≤i,j,≤n is symmetric non-negative definite.
Furthermore, C is called non-degenerate when the above matrix is invertible whenever
F1, . . . , Fn are two-by-two distincts [4].

The strategy we adopt to construct covariance functions is to exploit the isometric
map log1, based on the tangent space of H at 1. That is, we construct covariance
functions of the form

C(F1, F2) = K(|| log1(φ1)− log1(φ2)||), (1)

where ||.|| is the Euclidean norm in the Hilbert space E and with K : R+ → R.
We remark that it is common to define covariance functions Cd on Rd of the form

Cd(v1, v2) = K(||v1 − v2||) [21]. These covariance functions are called isotropic. In
the next proposition, we show that, for any K so that Cd is a (non-degenerate) covari-
ance function for any d ∈ N, then C is also a (non-degenerate) covariance function.
The next proposition has been partially addressed in [5]. For the sake of completeness,
we give a complete statement and proof here.

Proposition 1. Let K : R+ → R be such that, for any d ∈ N, the function K :
Rd × Rd → R defined by K(u, v) = K(||u − v||) is a covariance function. Let C be
defined as in (1). Then C is a covariance function.

Furthermore, assume that for any d ∈ N and for any pairwise different u1, . . . , un ∈
Rd, the matrix (K(‖ui − uj‖){i,j} is invertible. Then C is non-degenerate.

In practice, we can select the function K from the Matérn family [25], letting for
t ≥ 0

Kθ(t) =
σ2(αt)ν

F(ν)2ν−1
Kν(αt)
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for θ = (σ2, α, ν) ∈ (0,∞)3. We obtain the Matérn covariance functions Cθ on F
defined by Cθ(F1, F2) = Kθ(|| log1(φ1) − log1(φ2)||) for F1, F2 ∈ F . These func-
tions Cθ are indeed covariance functions and are non-degenerate from Proposition 1,
and from the fact that the Matérn covariance function is non-degenerate on Rd for any
d ∈ N.

3.2 Asymptotic Properties
Consider a parametric set of covariance functions {Cθ; θ ∈ Θ}, with Θ ⊂ Rp and
where, for θ ∈ Θ and F1, F2 ∈ F , Cθ(F1, F2) = Kθ(|| log1(φ1) − log1(φ2)||) with
Kθ : R+ → R.

We can see a Gaussian process Z as an application from (Ω,M) × F to R, with
(Ω,M) a measurable space. For any θ ∈ Θ, we can consider a probability measure Pθ
on Ω so that Z : (Ω,M,Pθ)×F → R is a Gaussian process with mean function zero
and covariance function Cθ.

Following [25], we say that the covariance parameter θ is microergodic if, for any
θ1 6= θ2 so that θ1, θ2 ∈ Θ, the measures Pθ1 and Pθ2 are orthogonal.

For Gaussian processes indexed by a fixed bounded subset of Rd, for d ∈ N, mi-
croergodicity is an important concept. Indeed, it is a necessary condition for consistent
estimators of θ to exist under fixed-domain asymptotics [25], and a fair amount of
work has been devoted to showing microergodicity or non-microergodicity of parame-
ters, for various models of covariance functions [25, 27, 1]. In this section, we extend
these types of results to Gaussian processes indexed on F . In the next theorem, we
show that the covariance parameter θ is microergodic under very mild conditions.

Theorem 1. Assume that there does not exist θ1, θ2 ∈ Θ, with θ1 6= θ2, so that
t → Kθ1(t) − Kθ2(t) is constant on [0, π/2]. Then the covariance parameter θ is
microergodic.

In particular, Theorem 1 applies to the Matérn family of covariance functions de-
scribed above.

3.3 Covariance Parameter Estimation and Prediction
Consider a data set of labeled objects of the form (I? ◦ F1, y1), . . . , (I? ◦ Fn, yn),
with F1, . . . , Fn ∈ F and y1, . . . , yn ∈ R. We adopt the point of view of Gaussian
processes and assume that, for i = 1, . . . , n, yi = Z(Fi) + εi, where Z is a Gaussian
process on F and with (ε1, . . . , εn)t ∼ N (0, ρIn), independently of ε. Here ρ is the
observation noise variance, that we assume to be known for simplicity.

Assume that Z has mean function zero and covariance function in the set {Cθ; θ ∈
Θ}, for Θ ⊂ Rp. Then, θ can be selected by the maximum likelihood, with

θ̂ ∈ argmin
θ∈Θ

log det(Rθ + ρIn) + yt(Rθ + ρIn)−1y (2)

where Rθ = [Cθ(Fi, Fj)]1≤i,j≤n and with y = (y1, . . . , yn)t. We remark that alterna-
tive estimation techniques exist, for instance cross validation [2, 3, 28]. Then, for any
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Algorithm 1 Learning RGP
Input: (Ii, yi) for i = 1 . . . n

Output: θ̂, Cθ̂,yθ̂(F )

1: Compute Fi for every Ii = I∗ ◦ Fi with i = 1 . . . n
2: Compute φi = Ψ(Fi) with i = 1 . . . n
3: Define the tangent space T1(H)
4: Compute the exponential map log1 and its inverse
5: Compute the covariance function Kθ in eq 1
6: Find θ̂ that maximizes the likelihood in eq 2
7: Compute Cθ̂ and yθ̂(F )

new object of the form I? ◦ F with F ∈ F , the corresponding label can be predicted
by ŷθ̂(F ), with

ŷθ(F ) = rθ(F )t(Rθ + ρIn)−1y,

where rθ(F ) = (Cθ(F, F1), . . . , Cθ(F, Fn))t. The prediction ŷθ(F ) is the conditional
expectation of Z(F) given y1, . . . , yn, when Z has covariance function Cθ.

The above formulas for maximum likelihood and prediction can be found in [21] for
instance. The simplicity of the prediction formula explains the popularity of Gaussian
process models. Overall steps of the proposed method are summarized in Algorithm 1.

4 Numerical Results
We demonstrate the proposed framework for learning a Gaussian process from a finite
set of domain deformations. We first represent these deformations by strictly non-
decreasing distributions and then consider them as element of a Riemannian manifold
using properties detailed in section 2.1. Next, we illustrate the performance of the
learned model in terms of classification accuracy using synthetic data and two different
real datasets: Berkeley growth study and a medical dataset from a population with
arthritis.

Figure 1: Examples of Fi from [0, 1] to [0, 1]. The identity is given by the diagonal, an increase
appears above the diagonal whereas a decrease appears below the diagonal.

Synthetic datasets. As a sanity test, we simulate two datasets. Some samples are
displayed in Figure 2: class 1 (a) and class 2 (b) from example I and (c & d) these two
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(a) Dataset I, class 1 (b) Dataset I, class 2 (c) Dataset II, class 1 (d) Dataset II, class 2

Figure 2: Synthetic data: two different synthetic datasets (a &b and c &d), each with two classes.

classes from example II. Each class contains 300 samples for both examples and have
been randomly generated from a finite basis of F , see Figure 1 for few examples of
simulated Fi. As a common pattern I∗ defined for t ∈ [0, 1], we used:{

I∗1 (t) = 1
2 + sin(4πt) cos(7t)

I∗2 (t) = 2(1 + cos(8t))) exp(−2t2)

to provide flexible enough deformations.
Real datasets. We use two different datasets. First, we use Berkeley growth study
that records the heights of children at 31 stages from 1 to 18 years (see [20]). It is a
typical example of biological dynamics observed over a period of time. The dataset has
been widely used as a motivating example to analyze functional data. In our context, all
growth curves were represented by their first derivative functions. The common pattern
I∗ was given as the Fréchet mean of all derivatives. See Figure 3 top row for examples.
The second dataset consists of hand force signals from a population of 80 healthy and
100 patients subject with arthritis. The medical protocol saved the hand force during a
continuous period of time where the goal is to study the endurance during test. Thus,
members of the healthy group are expected to hold more (less variability in Fi) than
patients with pain. See Figure 4 bottom row for examples of Fi.

• Hyper-parameter Tuning. The parameters that require tuning are θ = (α, ν, σ).
We used the gradient descent and a Newton-based optimization to search for op-
timal values of (α, σ) and a cross-validation on ν to find the maximum likelihood
as defined in equation (2).

• Evaluation Method. The classification accuracy is evaluated using the mean
squared prediction error (MSE).

• Performance Comparison Results. The accuracy rate is given for Gaussian
Process on the space of (Ii) and using the proposed method on the corresponding
(Fi).

First, we test the efficiency of the proposed method: We learn the model parameters
from 75% of the dataset as training and use the rest for test. To compute the classifi-
cation error, we first compute the estimator and its parameters from the training set.
Then, given a new observation F ∗ for test, we apply the regression model to determine
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(a) Growth: trajectories (b) Growth: representation (c) Growth: registration (d) Growth: Fi functions

Figure 3: Real data: analyzing trajectories from Berkeley growth study. The goal is to character-
ize the growth rate for boys and girls.

(a) Arthritis: original data (b) Arthritis: registration (c) Arthritis: Fréchet mean (d) Arthritis: Fi functions

Figure 4: Real data: functional signals from adults with and without arthritis. The goal is to
learn a regression model for aided diagnostics.

its class logit(y∗), where y∗ is the Gaussian process prediction. The subdivision has
been performed randomly 20 times and the classification rates are given as a mean.
As mentioned above, we evaluate the classification quality using MSE. All scores are
summarized in Table 1 for simulated data and 2 and 3 for real data. We note that the re-
gression using a Gaussian process on distribution functions outperforms the Gaussian
process on original functions. For a fair comparison, we used the same properties of
the Gaussian process such as the Matérn covariance and both gradient and Newton for
parameters tuning.

Table 1: Mean squared error with two different hyper-parameters tuning methods on simulated
data

Method Gradient Newton
Simulation I (Fi) 3.47e− 9 3.47e− 9
Simulation II (Fi) 3.23e− 2 2.01e− 2
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Table 2: Mean squared error with two different hyper-parameters tuning methods on Berkley
growth data

Method Gradient Newton
Growth (Ii) 2.23e− 1 1.31e− 1
Growth (Fi) 1.10e− 1 7.15e− 2

Table 3: Mean squared error with two different hyper-parameters tuning methods on arthritis
data

Method Gradient Newton
Arthritis (Ii) 1.14e− 1 1.01e− 1
Arthritis (Fi) 7.97e− 2 5.29e− 2

5 Conclusion
This paper presents a novel framework for learning Gaussian process model on strictly
nondecreasing distributions. With a Matérn kernel specified as the covariance function
in the Gaussian process prior, we have provided the microergodicity of the covariance
parameters. The proposed method was successfully tested on both synthetic and real
medical data. We showed that the regression model is capable of producing highly
meaningful differences on different classes of objects when using their domains’ de-
formations only. A future direction of interest is to build theoretical extension for more
complex domains where the distributions could be bivariate or even multivariate for
new aspects of manifold learning.

A Proofs
Proof of Proposition 1. Let F1, . . . , Fn in F . For i = 1, . . . , n, let gi = log1(φi).
Consider the matrix C̃ = (< gi, gj >){i,j}. This matrix is a Grammian matrix in
Rn×n hence there exists a non negative diagonal matrix D and an orthogonal matrix P
such that

C̃ = PDP
′

= PD1/2D1/2P
′
.

Let e1, . . . , en be the canonical basis of Rn. Then etiC̃ej = utiuj where uti = etiPD
1/2.

Note that the ui’s are vectors in Rn that depend on the f1, . . . , fn. We get that

< gi, gj >= utiuj ,

and for any F1, . . . , Fn in F there are u1, . . . , un in Rn such that

‖ log1(φi)− log1(φj)‖ = ‖ui − uj‖.

So any covariance matrix that can be written as [K(‖ log1(φi)− log1(φj)‖)]i,j can be
seen as a covariance matrix [K(‖ui − uj‖)]i,j on Rn and inherits its properties. The
invertibility and non-negativity of this covariance matrix entail the invertibility and
non-negativity of the first one, which proves the result.
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Proof of Theorem 1. Let θ1, θ2 ∈ Θ, with θ1 6= θ2. Then, there exists t∗ ∈ [0, π/4] so
that Kθ1(0)−Kθ1(2t∗) 6= Kθ2(0)−Kθ2(2t∗).

For i ∈ N, let ci : [0, 1] → R be defined by ci(t) = t∗ cos(2πit). Then, ci ∈
T1(H). Let ẽi = exp1(ci). Then, for t ∈ [0, 1]

ẽi(t) = cos(t∗) +
sin(t∗)

t∗
t∗ cos(2πit) ≥ cos(t∗)− sin(t∗) ≥ 0.

It follows that ẽi ∈ H and we can let F̃i(t) =
∫ t

0
ẽi(s)

2ds. Letting ēi = exp1(−ci),
we obtain similarly that ēi ∈ H and we let F̄i(t) =

∫ t
0
ēi(s)

2ds

Consider the 2n elements (F1, ..., F2n) composed by the pairs (F̃i, F̄i) for i =
1, . . . , n. Consider a Gaussian process Z on F with mean function zero and covariance
function Kθ1 . Then, the Gaussian vector W = (Z(Fi))i=1,...,2n has covariance matrix
C given by

Ci,j =


Kθ1(0) if i = j

Kθ1(2t∗) if i odd and j = i+ 1

Kθ1(2t∗) if i even and j = i− 1

Kθ1(
√

2t∗) else.

Hence, we have C = D + M where M is the matrix with all components equal to
Kθ1(

√
2t∗) and where D is block diagonal, composed of n blocks of size 2 × 2, with

each block B2,2 equal to(
Kθ1(0)−Kθ1(

√
2t∗) Kθ1(2t∗)−Kθ1(

√
2t∗)

Kθ1(2t∗)−Kθ1(
√

2t∗) Kθ1(0)−Kθ1(
√

2t∗)

)
.

Hence, in distribution, W = M + E, with M and E independent, M = (z, ...., z)
where z ∼ N (0,Kθ1(

√
2t∗)) and where the n pairs (E2k+1, E2k+2), k = 0, ..., n− 1

are independent, with distributionN (0, B2,2). Hence, with W̄1 = (1/n)
∑n−1
k=0 W2k+1,

W̄2 = (1/n)
∑n−1
k=0 W2k+2 and Ē = (1/n)

∑n−1
k=0(E2k+1, E2k+2)t, we have

B̂ :=
1

n

n−1∑
i=0

(
W2i+1 − W̄1

W2i+2 − W̄2

)(
W2i+1 − W̄1

W2i+2 − W̄2

)t

=
1

n

n−1∑
i=0

(
E2i+1

E2i+2

)(
E2i+1

E2i+2

)t
− ĒĒt

→p
n→∞ B2,2.

Hence, there exists a subsequence n′ → ∞ so that, almost surely B̂ → B2,2 as n′ →
∞. Hence, almost surely B̂1,1 − B̂1,2 → Kθ1(0) − Kθ1(2t∗) as n′ → ∞. Hence,
the event {B̂2,2 →n′→∞ Kθ1(0)−Kθ1(2t∗)} has probability one under Pθ1 . With the
same arguments, we can show that the event {B̂2,2 →n′′→∞ Kθ2(0)−Kθ2(2t∗)} has
probability one under Pθ2 , where n′′ is a subsequence extracted from n′. Since these
two events have zero intersection, it follows that Pθ1 and Pθ2 are orthogonal. Hence, θ
is microergodic.
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