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THE FIRST EIGENVALUE OF THE DIRAC OPERATOR ON
COMPACT OUTER SPIN SYMMETRIC SPACES

JEAN-LOUIS MILHORAT

ABSTRACT. In two previous papers, we started a study of the first eigenvalue
of the Dirac operator on compact spin symmetric spaces, providing, for sym-
metric spaces of “inner” type, a formula giving this first eigenvalue in terms
of the algebraic data of the groups involved. We conclude here that study by
giving the explicit expression of the first eigenvalue for “outer” compact spin
symmetric spaces.

1. INTRODUCTION

It is well-known that symmetric spaces provide examples where the spectrum of
Laplace or Dirac operators can be (theoretically) explicitly computed. However this
explicit computation is far from being simple in general and only a few examples
are known. On the other hand, several classical results in geometry involve the first
(nonzero) eigenvalue of those spectra, so it seems interesting to get this eigenvalue
without computing all the spectrum. In two previous papers (see [Mil05] and
[Mil06]), we stated a formula giving the square of the first eigenvalue of the Dirac
operator of a spin compact symmetric space in terms of the algebraic data of the
groups involved. However, this formula was based on a result of R. Parthasarathy,
[Par71], only valid for symmetric spaces of inner type. Recall that a symmetric
space G/ K is said to be of inner type if the involution characterizing it is given by
an inner conjugation in the group G, or alternatively, by the fact that the groups G
and K have same rank, i.e. own a common maximal torus. Otherwise, it is said to
be outer, (see for instance Sec. 8.6 in [Wol72] for details). The study of subgroups
K of maximal rank in a compact Lie group was initiated by A. Borel and J. De
Siebenthal in [BDS49], with an explicit description for compact simple groups. In
[Mur52] (see also [Mur65]), S. Murakami gave a general method to study outer
involutive automorphisms of compact simple Lie algebras. Using those results,
the following complete list of irreducible compact simply-connected Riemannian
symmetric spaces G/K of type I with rank X' < rankG, can be obtained (see
[Mur65] or Sec. 8.12 in J. A. Wolf’s book [Wol72]) :

SU(2m)/SO(2m) ; SU(2m + 1)/SO(2m + 1) ; SU(2m)/Sp(m) ;
SO(2p +2g+2)/SO(2p+1) x SO(2¢+ 1) ; Eg/F4 ; Eg/Sp(4).
It was proven by M. Cahen and S. Gutt in [CG88], that all symmetric spaces in
that list, except SU(2m 4 1)/SO(2m + 1), are spin.
In the present paper, the following explicit value for the square of the first eigen-

value of the Dirac operator is obtained for all those symmetric spaces G/ K, endowed
with the Riemannian metric induced by the Killing form of G sign-changed.
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Symmetric space Square of the first eigenvalue
of the Dirac operator

m even, 15 (m+1)(4m—1)+ 55

SU(2m)

SO(2m)
modd, & (m+1)(4m—1)+ & (1- )
m even, 1 (m—1)(4m+1)+ &

SU(2m)

Sp(m)

modd >3, & (m—1)dm+1)+ 5 (1- L)

SO(2p+2q+2 1
SOt sy | oy (BPe(2p+a+ 1) +4p(p+ 1) +4q (g +1) + 1)

p<gq

Eg 217
Fy 72
B 529
Spy 72

2. PRELIMINARIES FOR THE PROOF

2.1. Spectrum of the Dirac operator on spin compact irreducible sym-
metric spaces. From now on, we consider a spin compact simply connected ir-
reducible symmetric space G/K of “type I”, where G is a simple compact and
simply-connected Lie group and K is the connected subgroup formed by the fixed
elements of an involution ¢ of G. This involution induces the Cartan decomposition
of the Lie algebra g of G into

g=top,

where ¢ is the Lie algebra of K and p is the vector space {X € g; 0. - X = —X}.
The symmetric space G/K is endowed with the Riemannian metric induced by the
restriction to p of the Killing form Bg of G sign-changed.

The spin condition implies that the homomorphism

a:he K Adg(h)), € SO(p)

lifts to a homomorphism « : K — Spin(p) such that £ o @ = a where ¢ is the
two-fold covering Spin(p) — SO(p), [CG8S].
Then the group K inherits a spin representation given by

pic + K% Spin(p) 2 GLe(X),

where p is the spinor representation in the complex spinor space 3.
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The Dirac operator has a real discrete spectrum, symmetric with respect to the
origin. A real number A belongs to the spectrum if and only if there exists an irre-
ducible representation v : G — GL¢ (V) whose restriction Res% () to the subgroup
K, contains in its decomposition into irreducible parts, a representation equivalent
to some irreducible component of the decomposition of the spin representation px
of K. Then

(1) M =c,+n/16,

where ¢ is the Casimir eigenvalue of the irreducible representation ~ (which only
depends on the equivalence class of ) and where n = dim(G/K), n/16 being Scal/8
for the choice of the metric (cf. [HBM+15] or [Gin09] for details).

Hence the first eigenvalue of the Dirac operator is given by the lowest c,, among
the irreducible representations 7's of G such that Res% () contains an irreducible
component of the spin representation px of K. We will say for short that such an
irreducible representation v (or its highest weight) verifies the “spin condition”.

2.2. Outer symmetric spaces. Let T be a maximal torus of G. Then Tk :=
T N K is a maximal torus of K.

As it was already mentioned, the symmetric space G/K is said to be outer if the
involution ¢ : G — G is not a conjugation in the group, and this is equivalent to
the condition dim(7Tk) < dim(T).

Let t and tx be the Lie algebras of T and Tk, and let ty := t N p. Note that ty is
the orthogonal complement of tx in t for the scalar product —Bg.

Let gc and &¢ be the complexifications of the Lie algebras g and ¢, and ( , ) the C-
extension of —Bg to gc. The root decompositions of gc and £¢ under the respective
actions of T' and T are given by

N
(2) gc=tc® (_@1 9i9i> ;
where +6; are the G-roots, and
M
tc=txc® _Gjl tro ),

where 6] are the K-roots.
The set ® of G-roots decomposes into the disjoint union

B =0, UdyU Dy,
where
1 ={0€ P9 Ctc},
Py = {0 € P90 Cpc},
O3 = D\(P; UDy).

Note that if 6 € ®;, i =1,2,3, then —0 € ®;, since g_y = gs.

We use the same notation for the involution o, : g — g and its C-linear extension
to gc. As 0. (t) = t, by means of the scalar product —Bg, 0, induces an involution
o* 1 it* — i t*. The scalar product on i t* induced by —B¢ is denoted by ( ).

We consider for any G-root 6;, a basis Ejp, of the one-dimensional space gp,, and
set

1
Uy, = 3 (Eg, + 0+Fy,) and Vy, := = (Ep, — 0. Ep,) .

1
2 i
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Then Uy, € €, Vy, € p, Ep, = Uy, + Vp,, and
9i€<1>3<:>(U9i7é0andVbi 750)

In order to determine an expression of the weights of the spin representation py :
K — GL¢(X), we will have to use the following properties of G-roots. For any root
¢ € @, the restriction 6, is denoted ¢ for short.

Lemma 2.1. R1: Va € @3, 3X € tg such that a(X) # 0, hence & is a (non
zero) K -root.
R2: Va € &, a € &1 UPy < ap, = 0. Hence if a and 3 are two roots in
@1 such that f # *a, then o and B’ are two K -roots such that ' # +a/'.
R3: Ifa € &, and B € ®3, then o’ and B’ are two K -roots such that 8’ # +ao'.
R4: For all o € @, o*(x) is a root such that
(1) if « € @1 U Dy, then o*(a) = a,
(2) if a € @3, then o*(a) # *a,
R5: Foralla and B € @3, B =o' <= f=a or f = c*(a).
Proof. The proofs are given in Appendix. Some of those results appear in some
way in Chapter 3 of [BR90]. O
According to R4, we consider ®4 = {v1,...,7,} C ®3 such that @3 is the disjoint

union

3 ={y1,.. ., WHU{o"(n),-... 0" (W)}
Then

Lemma 2.2. The set @i of K-roots under the action of Tk is given by
P = {9|’tK; 0 dq U(I)/g}

Proof. By definition, the restriction to tx of a root in ®; is a K-root, and by R1,
the restriction to tx of a root in @4 is also a K-root. Conversely, let Eé € tc be a
root-vector for a K-root p. As for any a € @3, 0.(E,) is a root-vector for the root
o*(a) by (11) and (12), we may write, according to (2),

Ey=H+ > XBat > XaBEat Y XaEat Y Ap(a)os(Ea),
acdq acedy acdy acd)
where H € t and )\, € C,
=H+ Z Aa Eo + Z Aa Eo + Z (Aa+)\a*(a)) Ua

a€dy aEd; acdy
+ Z (/\a — )‘o*(a)) Vo .
acd)

Since 0. (E},) = E}, one gets H € tx, Vo € ®3, Ay = 0, and Va € D3, A\j- (o) = Aa,
hence
Ey=H+ Y XEa+2 Y AUa.

acd; acd)
Now, as for any X € tk, [X, E,] = o(X) E}, one gets

VX €tie, —o(X)H+ Y Ao (a(X) = p(X)) Ea
acd;

+2 > A (a(X) = p(X)) Us =0.

acd)
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Hence H = 0, and, as there exists at least one A\, # 0, o = o’. Note furthermore
that by R2, R3 and R5, there exists only one such a A, # 0. (|
By the results R1 and R2, the restriction to tx of any G-root is nonzero. As tx can
not be the finite union of the hyperplanes Ker(a’) for a € ®, there exists X € tx
such that for any o € ®, (X)) # 0. This implies that X is regular in t, and also
regular in tx, by the description of K-roots given in the above lemma. We define
the set ®* (resp. ®) of positive roots of G (resp. K) by the condition

0 € & (resp. @) <= 0(X) > 0.
Note that as X € tg, one has § € ®T <= ¢*(f) € ®*, and that by the above
considerations
(3) Of = {b),; 0 € DT UL}

Note furthermore that, by the description of positive G-roots, the half-sum d5 of
the positive roots verifies

o*(6c) = 6 .

2.3. Weights of the spin representation of K. The decomposition of the spin
representation depends on the parity of dim pc, so we begin by considering the even
dimensional case.

2.3.1. First case : dimpc even. As it will be seen below, this amounts to suppose
that dimty is even. Setting dimty = 2r(, we consider an orthonormal basis (7T}),
k=1,...2rg, of ty, and construct the Witt basis (Zx, Zy), k = 1,...rq, defined by

1 ) — 1 )
Jy = 5 (Tgk_l =+ zTgk) , and Zj:= 5 (Tgk_l — ZTgk).

For the C-linear extension ( , ) of the scalar product on g, one has
1
2
Let ®f = {a1,..., a0}, ®F = {B1,...,Bp} and @5 = {y1,...,7,}.

Lemma 2.3. Vectors Eg, E_g, 0 = B1,...,8p, Vo, Vg, 0 = 1 ..., may be

choosen such that, with Z;, Z;, i = 1,...,109, they define a Witt basis of pc, in the
sense that

<Zi7Zj> = <sz> =0, and <Zi77j> = 5ij'

and

(4) (Eay E_p) = .

1 1 —

5 YaB ay V— = 5 %3 ZZ;Z:_’L

Proof. Clearly, any such vectors span pc: any X € pc may be written as
H+ > XaBat D> XaBat Y (Aatre@) Ua

a€dy a€d; ac®y

+ Z ()\a - )\U*(a)) Vau

acd)
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with H € tc and A\, € C. The condition 0,(X) = —X implies H € to¢ and
Va € @1, Ay =0, and Ya € @3, Ay = —A,+(qa), hence

X=H+ Z )\aEa+ Z AfaE7a+2 Z Aava+2 Z Afavfa;

acdf acd} aedyt a€dy’

so X is a linear combination of the considered vectors.
On the other hand, it is well-known that, for any couple of roots («, 8) such that
a+ B #0, (g, 93) = 0. Hence
o if @ and B € @, are such that a« + 3 # 0, then (E,, Eg) = (E_,,E_g) = 0.
o if & € &y and S € Pg, then from (E,, Eg) = 0, one obtains as (E,, Ug) = 0,
(Eq,Vs) =0, and then (E_,,V_g) = 0.
o if & € @} and S € ®f are such that a + 8 # 0, then o + 5’ # 0 (otherwise
by R5, § = o*(—a), which is impossible), so (Uy,Ug) = 0, and then
(Va, V3) =0, (so (V_q, V_g) = 0 also).
Finally, as ( , ) is non-degenerate, (Fo,E_,) # 0, « € ®F, and (V,,V_,) # 0,
a € &3, and we may choose the basis (F,) such that (4) is verified. All of those

orthogonality relations imply that the considered vectors are linearly independent.
O

Since E_, belongs to g, we may suppose that E_s, = E—,g] and V_,, =V, .
In the Clifford algebra Cl(p), let

wi=TFp By Var Voo Za Ty

For any I = {i1,...,ia} C{1,...,p}, i1 <ia2 < -+ < 'igq, (resp. J ={j1,...,78} C

{15"'5q}7 jl <j2 < - <]b7 resp. K = {klv"'akC} C {17"'7T0}7 kl < kQ <

-+ < k), we introduce the notation
E]-VJ'ZKIZEBH"-EB - V.

ia Vi1

Vo ey T, s

setting Fy (resp. Vj, resp. Zk) = 1, if I (resp. J, resp. K) = (. As I (resp.
J, resp. K) runs through the set of subsets of {1,...,p}, (resp. {1,...,q}, resp.
{1,...,7r0}), the vectors E;-V;-Z w define a basis of the spinor space X := C{(p)-w
(cf. [HBM+15]).

Considering
X; :Eﬂj—"% F; :V%—"V_%;
(5) Y, =1 (Eﬁj - Eﬁj) , and Gj =i (V’Yj - V’Yj) )
I1<j<p, 1<j<gq,
one obtains an orthonormal basis (X;,Y;, F},Y;, Tk) 1<i<p, of p.
1S,

Then for any X € tg, one has

(X, X5l =—iB;(X)Y;, (X, Bl =—i(X)Gj, X,T)] = 0

XY =i8(0%, iG] =in(X)F, ad { S

1<j<p, 1<j5<q,
So

P q
VX € tx, a*(X)Z—i E ﬁj(X)Xj/\Y}—i E ’}/j(X)Fj/\Gj,
Jj=1 j

j=1
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hence

VX €tg, a.(X)=-—

N =

P q

. 1.

i) B(X) XY =50 > v (X) By Gy
j=1 j=1

Now it is easy to verify that

X, Y, - Er-Vy-Zig-w

— B V- Zg-w 1f/€¢],
1 Er-Vy-Zg-w ikaI,

Fy -Gy -Er-Vy-Zg-w

— B V- Zg-w 1f/€¢J,
1BV Zg-w ifkedJ.

Hence

VX €ti, pr.(X)(Er-Vy-Zg W)=

1 _
3 D UBX) =Y BX)+ D> (X)) =D (X)) | Br-Vi Zk .
i€l il jeJ jeJ
So the E; - Vy - Zi - w are weight-vectors, and a p € it} is a weight if and only if
it can be expressed as
1

(6) .

Note that as K runs through the set of subsets of {1,...,7r¢}, all of the E;-V;-Zx - w
for a given I and J, belong to same weight-space, hence the multiplicity of a weight
of the form (6) is 2™ times the number of ways in which it can be expressed in the
given form.

Considering the volume element

(£B £ £ B £ £ £ .

W:Zip+q+T°X1-Y1---Xp-Yp-F1-Gl---Fq-Gq-T1-Tz---Tzr0_1 Ty s
one has
w-Er-Vy-Zg w= (1) #H#E v, 2w
hence the spinor space > decomposes into two irreducible components
rT=Xto¥,

where X7 (resp. X7) is the linear span of the Fy - Vy - Zk - W ’s such that #I +
#J + #K is even (resp. odd).

2.3.2. Second case : dimpc odd. This corresponds to the case dimty odd. Setting
n = dimp, by the choice of an orthonormal basis such as (5), SO(p) is identified
with SO(n), which is itself embedded in SO(n + 1) in such a way that SO(n) acts
trivially on the last vector e, ;1 of the standard basis of R"*1.

Setting dim tg = 2rg—1, 9 > 1, the spinor space can be described (cf. [HBM+15)),
as the space of positive spinors introduced above in the even-dimensional case :
¥ =Span{E;-V;-Zk - W, #I1+ #J +#K even}. By the result above, the weights
may be expressed as (6), but now, the multiplicity of such a weight is 270! times
the number of ways in which it can be expressed in the given form.
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2.3.3. A remark on highest weights.

Lemma 2.4. Any highest weight of the spinor representation of K has necessarily
the form

1
(7) 3 (EPrt-EB 44

Proof. Let pu be a weight such that for a jo € {1,...,q}, 7} appears with a minus
sign in the expression of p. Then p + ”yj’-o is also a weight, hence p can not be
dominant, since v/ is a positive K-root. O

U(2m)
SO(2m)’
In the following, Ms,,(C) denotes the space of 2m x 2m matrices with complex
coefficients, and (E;;) its standard basis. Here

3. THE SYMMETRIC SPACE

G= SU(2m) = {A S Mgm((C), YAA = Igm} R
and
K ={A€eSU@2m); A= A} =S0(2m).

The symmetric space structure is given by the involution o : G = G, A — tA~1,
This involution induces the decomposition of the Lie algebra sus,, of SU(2m) into:
SUom, = §02:, D P,
where 509, is the Lie algebra {X € sus, ; X = —X} of SO(2m), and

p={X €suy,;'X=X}.

Elements of p are traceless symmetric 2m x 2m matrices with coefficients in iR,
hence dim(p) = 2m? +m — 1.
eiel

Let T = 10, eR, Ef;nl 0; = 0 3 be the standard maximal

ei92m
torus of SU(2m). We consider a conjugate T of T in G in such a way that TN K
is the standard maximal torus of K. For that, let Ag € SU(2m) be the 2 x 2 block
diagonal matrix defined by

O
V2 1o
= — c. D =
Ao 5 ) , Wwhere e
a
eiel Dl
Then for any H = e T, AOHAO_1 = , where
etf2m O,

1,

1 : 1
0. — 2 (921 1+921) COS —(923 1 — 92J Sin (_(02j*1 — 923))) '
7 (— sin g% 92] 1 — 92] ) COS (%(923‘_1 — 92]‘))
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!/
03
Hence AgHA,' € K <= AgHA, ' = , where

!/

Dm

o _ cos(fz;) —sin(f2;)

J sin(t?gj) COS(@QJ‘) ’

so AgH A, ! ¢ K if and only if it belongs to the standard maximal torus Tk of K.
The Lie algebra t of T is defined by

m

t= { Ziqu (E2j—12j—1 + E2j2) + 725 (E2j2j—1 — Eoj—12j) ;

j=1
i € Razﬁmjfl = O}a

j=1
and
m
tg = ij (E2joj—1— Eaj—125); 72 ER p
j=1
m m
to = Zi72j—1 (B2j—12j-1 + E2j25), 12j-1 €R, Z'Y?j—l =0
j=1 j=1
It is useful to consider the elements Z;, j = 1,...,2m of i t*, defined by considering

the restriction to t of the dual basis of the family of vectors i (Egj_12,-1 + E2;2;),
(E2joj—1 — E2j_125), j=1,...,m:

m
VH = Zi’YQj—l (E2j—l 25—1 + Egj Qj) -+ V25 (E2j2j—1 _ E2j—12j) c t,
j=1
./I\ijl(H) :7:'}/ij1 and ./I\QJ(H) :Z’YQJ
The scalar product on it* is given by the scalar product on suy,, defined by

(X,Y) = —% R(TE(XY)) = —SLB(X, Y), XY € st
m

Lemma 3.1. Each p € tt* may be uniquely written as

2m m
(8) p= pidi, where p; € R verify » pgi1 =0,
i=1 i=1

and, for any p= 37" wi % and p' = 37 @i B € it

2
< no__ - o
o)y =y pi g
1=1

Proof. As the Taj_1, j = 1,...,m — 1 and Zy;, 1,...,m define a basis of t*, any

1 € t* is uniquely written as pu = 221—11 [2i—1 Toi—1 + D ey pi2; Taj, p; € R. Now
. ~ m—1 ~ . 1 m—1

since Tom—1 = — D,y T2i1, setting pom 1 = —-- > ;1 " pi2j—1, one gets

m—1

_ m
= Z (H2i-1 + p2m—1) T2i—1 + Hom—1T2m—1 + Z H2i T2
i=1 i=1
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so pmay be written as (8). Now if u = 277 \; %, where \; € R verify 7" Aoy =
0, then p = Z?:ll()\%—l — Agm—1) Tai—1 + Yoy Aai Ta;, and so

ILLQZ',l:)\Qi,l—)\Qm,l,izl,...,m—l, and ‘LLQ»L':)\Qi,izl,...,m.
Then,Umel:_% Zznlluzz 1= A2m—1, hence pz; 1+ p2m—1 = pai—1+Aom—1 =

A2i—1, hence the unicity of the writting (8).

The last result follows from the fact that the vectors Foj_12;—1 4+ Faj25, Faj2-1—
Esj_125,j=1,...,m, define an orthonormal set for the scalar product (, ). [l
In the following, any p € i t*, of the form (8) will be denoted

p= (11, 3, - f2m—15 B2, a5 B2m] Zuzi—l =0.

Note that the z,;, 1 < i < m, define a basis of itj,. Any A € it} of the form
A=3""0 X Thy, Agi € R, will be denoted

A= (A2, Mg,y Aam) -

The involution o* of it* induced by o is defined by

*

[M17u37' <oy H2m—15 W2, 4, - "7”2777,] U—> [_M17_M37" <y TH2m—15 U2, K4, - - - 7/1'2"7,] .

3.1. Sets of roots. Since the root-vectors relative to the standard torus T are the
E;;, the root-vectors relative to the torus 1" are given by the AgE;; Ay ! Explicitly,
the roots are

(fb'\gi_l — /:E\Qj_]_ + S ) 75_] S m, root-space : (CAQEQi_]_ zj_le_l,

<1i,5<m, root-space: C AgF2;_1 szal,

)
(T2i—1 — T2j-1) —
(T2i—1 — T25-1)

)=

(Tai — T25), 1
(Tas — xgj) 1<i#j<m, root-space: (CAoEgingo_l,
(Tai +T25) , 1

(fb'\gi_l — /:E\Qj_]_ ( ) 1 S i,j < m, root-space : CAQEgigj_lAal

Note that the only roots that verify ¢*(0) = 6 are £279;, and, as they are not
K-roots, one may conclude from lemma 2.1 that

‘1)1:@, @2:{i2§2i,i:1,...7m}7

and all other roots belong to ®s.
We choose positive roots such that

O ={2%9;,i=1,...,m},

®'t — (T2i-1 — /x\zjq) + (&g — 52j), 1<i<j<m,
3 (Toi—1 — Taj1) + (Xo; +T25), 1<i<j<m, [’

wiarty | —(@2ic1 — Taj—1) + (o —Toy), 1<i<j<m,
o"(D57) = = = PO A .
—(Zoi—1 — Toj—1) + (Z2s + T25), 1<i<ji<m

It is easy to verify that a system of simple roots is given by
6 =2 /I\2m ’
Vi = =(T2i—1 — Tait1) + (T2i — 52(1'4-1)) , 1=1...,m—-1,

0" (i) = = (T2ic1 — T2ip1) + (T2i — To(igr)), i=1,...,m—1.
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Note that

<717FYZ> = <U*(VZ)7U*(71)> = <ﬂaﬂ> = 45 1= 15' s, = 17
(Vir Yit1) = (0" (i), 0" (yig1)) = =2, i=1,...,m =2,
</7m—176> = <U*(’7m—1)7ﬁ> = _27 s

all the other scalar products being zero. Hence

Lemma 3.2. A ’UECtOT:u = [,ula M35y H2m—15 U2, K4, - - - ,,UQm] € Zt*7 221 H2i—1 =
0, is a dominant weight if and only if

Hai — pagi+1) €N,

M2i—1 — p2iy1 € 4,
lp2i—1 — p2iv1| < poi — po@vy, 1<i<m—1,
Mom € N.

} both simultaneously odd or even,

Proof. Note just that the conditions 2 % eN, 2 W eN,i=1,...m-1,

are equivalent to

(p2i—1 — piv1) + (p2i — f2gi+1))

N
2 e
and
—(p2i—1 — p2ir1) + (H2i — poiv1)) €N,
2
which imply (and are equivalent to) the first three conditions of the lemma. ([

As it was remarked before, the positive K-roots are given by considering the re-
strictions to tx of the positive roots in @5, so

A set of simple roots is given by

G:n :/‘%'\/2(171—1) _§/2m'
Note that
0,0 =2, (0.,0,)=—-1, 1<i<m-2,
(02 0m) = =1, (07,1,0,,) =0,

hence the following “classical” characterization :

Lemma 3.3. A vector A = (A2, A1, ..., Aom) € i}, is a dominant weight if and
only if
)\2 > )\4 > 2> )\2(m71) > |)\2m|7

and the \g; are all simultaneously integers or half-integers.
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3.2. Highest weights of the spin representation of K.

Proposition 3.4. The spin representation of K has two highest weights:
(m,m—1,...,2,+1),

both with multiplicity 211,

Proof. One has % YoV = Nicicjom Tai = S — ) T5;. Hence by the
result of lemma 2.4, any highest weight A has necessarily the form

A=) (m—it1)F,.
=1

But the dominance condition of lemma 3.3 implies then
m—1
A=Y (m—i+ )&+ B, =(mm—1,...,2,%1).
i=1
Denote by A1 those two dominant weights. Let dx be the half-sum of the positive
K-roots. One has éx = (m —1,m —2,...,1,0), hence

<)\++6K,/\++5K>: <)\_+5K7)\_+5K>

Hence the two weights are both highest weights, since otherwise, one of the two
should be contained in the set of weights of an irreducible representation having
the other one as highest weight, and the above equality should be impossible (cf.
lemma C, 13.4 in [Hum72)).

With the help of the Weyl dimension formula, it may be checked that any irreducible
module with highest weight A+ has dimension 2™~ (m+1) = As we noticed it before,
the multiplicity of each one of those two weights is at least 275 if m is odd, and
257 if m is even. Since if m is odd,

2 x 25T x 2m-Dmt1) _g2mEmst g 5y

and if m is even,

9 5 9752  g(m=1)(m+1) _ gZmigm=2 _ dim(X)

ml]

one concludes that the multiplicity of each weight is exactly 2[ z (I

3.3. The first eigenvalue of the Dirac operator. Recall that the first eigen-
value of the Dirac operator is given by the lowest Casimir eigenvalue ¢, among the
irreducible representations y of G verifying the “spin condition” : Res% (7) contains
an irreducible component of the spin representation px of K. By the Freudenthal
formula, the Casimir eigenvalue of an irreducible representation with highest weight
i~ is given by

ey = Ky, by +26G) = ||y + sall* = l16c?.
Hence we look for G-dominant weights p., verifying the spin condition and such
that ||ty + 0¢|? is minimal.
We first determine the G-weights p (non necessarily dominant) for which ju¢,, = A+
and ||p + dg||? is minimal.
Note first that n = [,ul, M3y ooy H2m—15 U2 U4y - - - ,‘LLQm], Ezil H2i—1 = O, is a G-
weight if and only if po;—1 — poiy1 € Z, 1 =1,...m—1, ug; € Z, i =1,...,m, and
H2i—1 — H2i+1, H2i — H2(i41) are both simultaneously even or odd, i =1,...m — 1.
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Let p be such a G-weight. It verifies p,, = A1 if and only if it has the form
n= [/1'17/1'37"'7/1'2m—1;m7m_ 17"'72711]7

where Z;il woi—1 =0, and p9;—1 — poi4+1 are odd integers, i =1,...m — 1.
The half-sum of the positive G-roots dg is given by

g =2 Z §2k+zfzk—22<m—k+%> Top
k=1 k=1

1<k<I<m
=10,0,...,0;(2m —1),(2m — 3),...,1].

Hence || + d¢/||? is minimal if and only if >°;" | p2,_; is minimal.

Set po;—1 — poi41 =kiyi=1,...,m—1. Forany j=1,...,m — 1, one has
J j—1 j—1
pj = Z ki =+ Z,UQiJrl - Z,Lb2i+1 — M2j+1,
i=1 i=1 i=1
= H1 = 2541 -

Using Y"1 p12i—1 = 0, one then gets

m—1
> opi=(m—1)pm+pm=mu,
j=1
hence
1 m—1
= Z Di,
=1
and

1 m—1
H2j+1 = H1 = Pj = — (Z bi —mpj> .
i=1

The expression » .-, p3;_, is a polynomial F(p1,...,pm—1) of the variables pi,
P2, Pm—1. With the notation p = (p1,...,pm—1), one has

OF
= 2 g1
i (p) H2i4+1
With no surprise, F' as only one critical point at (0,...,0).
Now
0*F 2
0) = —— (1 —mdy).

Denote by H the Hessian matrix of F" at 0. It has for eigenvalues % with multiplicity
one and 2 with multiplicity m — 2, and the following vectors define an orthogonal
basis of eigenvectors.

vy =(1,1,...,1),
v; =(0,0,...,00m—14,—-1,—1,...,-1), 2<i<m-—1.
—

m—1t
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Considering the orthonormal basis (€; v;)1<i<m—1, € = 1/]|vi]|, and denoting by @
the orthogonal matrix of the change of basis, one gets
1

F(p)=§tpHp,
1 0 0 0
1, 0m 0 0,
=—"pQ . Qp,
m ..
00 0 m

1
= Eel ((m—l)k1+(m—2)k2++km,1)2

—|—€2 ((m—2)k2—|—(m—3)k3+km,1)2

+ €m—i (i ki + -+ K1)

+ €m—2 (2km72 + kmfl)z
+ €m—1 (km—1)2 .

The minimum is obtained if and only if all the squares are minimal. Hence, since
the k; have to be odd integers,

Lemma 3.5. The minimum is obtained only when
(k1,kay. o km—1)=(1,-1,1,—1,...) or(—1,1,-1,1,...).

Proof. Assume that all the squares are minimal. First, since k,,,_1 is an odd integer,
k2 _, is minimum only when k,,_; = £1. Now, let us show by induction that
km—i=(=1)"1ky_1,i=1,...,m—1. Assuming that this is true for 1 < i < 2j—1,
7 > 1, one gets

. . 2 . . 2
(2.7 km—2j + (2.7 - 1) kmf(ijl) + -+ km—l) = (2.7 km—2j + km—l) )
. 2
= jz (2 kmfzj + kmfl) .
Since 2 ky,—2; + km—1 is an odd integer, the above square is minimal if and only if
(2km—2j + km—1)° = 1, which implies
4km—2; (km—2j + km-1) =0,

hence kp—2j = —km41 = (—1)23“"1 km—1. Thus the result is also true for i = 2j,
and one gets

(25 +1) k24 1) +25 K (2j-1) + - +km71)2 = ((2/+1) km—(2j41)—J km71)2 :
If km—l = 1, then (2] + 1) kmf(2j+1) — jkm—l > ]+ 1 if kmf(2j+1) > 1 and
(25 + 1) by (2j41) = Jbm—1 < —(3j + 1) if kp,_(2541) < —1, thus the above square
is minimal if and only if kp,—(2j41) = 1 = km—1 = (=1)¥ 2 k1.

If kmfl = —1, then (2] + 1) km—(2j+l) — jkmfl Z 3] +1 if km—(?j-‘rl) Z 1 and
(27 + 1) kp—2j41) — Jkm—1 < —(j + 1) if kp_(2541) < —1, thus the above square
is minimal if and only if kp,—(2j41) = —1 = k-1 = (—1)% 2 kpy_1. O
Hence the G-weights j for which juy,, = A+ and ||+ d¢||* is minimal are given by

(1) If m is even m = 2p,
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(a) if (kl,kg,...,kmfl) = (1,—1,1,—1,...,—1,1), then since P2i—1 = 1,
i=1,...,p,and po; =0,2=1,...,p—1,
11 1 1 |
= |z, =T, -1,...,2,£1
/’[/:l: 27 27 727 27m7m ) Y ) )

(b) if (kl,kQ,.. .,kmfl) = (—1,1,—1,1,.. .,1,—1), then since P2i—1 = —1,
i=1,....,p,and po; =0,i=1,...,p—1,
11 11
T, Ty, T,y M
2727 ) 2727 )

m—1,...,2,+1

ply =

Note that py = o*(u4) and ||pue +d¢|1* = [|uls + dc .
(2) If misodd, m=2p+1,
(a) if (kl,kQ,...,kmfl) = (1,—1,1,—1,...,1,—1), then since P2i—1 = 1
and po; =0,i=1,...,p,

1 1 1 1 1 1 1 1
|+ttt ti 1 1,241
e [2 2m’ 2 2m U2 2m’2 2m T O }
(b) if (k1,k2y... km-1) =(—=1,1,—1,1,...,—1,1), then since pg;—1 = —1
and po; =0,2=1,...,p,
1 1 1 1 1 1 1 1
T B N B S S 1,241
e [2+2m72+2m’ 2 e T2 Ty T S }

Here also note that u/, = 0*(u+) and ||us + 6g||* = |1y + da ||
Note that, by lemma 3.2, the weights p4 and p/, are G-dominant, whereas j_
(resp. p’) belongs to the orbit of py (resp. g/ ) under the Weyl group, since
p— = op(py), (resp. p_ = op(p,)), where o4 is the reflexion across 8+, 8 being
the simple root 2 Zs,,.
In order to conclude, we first remark that the G-dominant weights p and p_ verify
the spin condition. That follows from the following general result.

Lemma 3.6. Let ;1 be the highest weight of an irreducible representation vy of
G. Then piy, is a K-dominant weight, and any irreducible representation of K

having piy|, as a highest weight is contained in the restriction Res?( (7) of v to K.

Proof. By the result of lemma 3.2, a dominant G-weight
m
n= [/1'17/1'37 ceey H2m—15 W2, U4y - - 7,u'2m] ) ZM?i—l = 07
i=1

restricts to tx as g, = o H2i Ta; = (M2, pas - - -, Hom), where the uo; are non-
negative integers verifying the condition uo > g > -+ > pom, hence, by the result
of lemma 3.3, p¢, is a K-dominant weight.

Now let v, be the! maximal vector of the representation 7. Since it is killed by
the action of root-vectors corresponding to positive roots, it is in particular killed
by the action of the F, and Ey«(,), @ € <I>’3+, hence by the action of the U, =

2(Ea +0.(Ey)), a € @4, Since the U, are root-vectors for the positive K-roots

o, a € 47T (see (3)), v, is a maximal vector of Res% () for the weight Poyltre- O
The conclusion now results from the following remark.

Lit is unique up to a scalar multiple.
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Lemma 3.7. Let u be a G-dominant weight. Let 11, be the set of weights of any
irreducible G-representation with highest weight fi.

If My is the restriction to tx of a weight X € IL, and if |u+ d¢||* is minimal, then
A belongs to the orbit of u under the Weyl group We.

Proof. The weight A lies in the orbit under the Weyl group W¢ of G of a dominant
weight o € II,. By the result of lemma B, 13.3 in [Hum72], |A+d¢||* < [0+ dc|%.
with equality only if A = g, and by lemma C, 13.4 in [Hum72], ||o+dc||? < ||u+dc||?,
with equality only if o = p. Now as g is a G-dominant weight which posses in its
orbit a weight A whose restriction to tx is A4, the minimality condition verified
by p on that sort of weights implies ||o + da||* = || + dc|?, hence o = p, and A
belongs to the orbit of u. O

Lemma 3.8. If ;1 is a G-dominant weight verifying the spin condition, then
1ty + 81 > [lps + 6c|*

Proof. As 1, verifies the spin condition, there exists a weight A € IL, such that
Altxe = A+. By the result of the above lemma, A belongs to the orbit of p, under
the Weyl group We, so [[A+ 8¢ < ||py +0¢|?, with equality if and only if A = p.,.
If X = pu, then, by the above considerations 1, = p4 or p/,, and the result follows
since ||puy + 0c|* = ||y + dcl|®>. If X # p,, then by replacing A by og(A) if
necessary, we may suppose that A, = Ay. But then, by the above considerations,
i+ + 06112 < IX+ b2, and so [y + 02 < [y + dall?. 0
Finally, we may conclude that the square of the first eigenvalue of the Dirac operator
is given by

2m2 4+ m —1

1
— 26,
</J’+7/J‘+ + G> + 16 ’

8m
hence the result.

4. THE SYMMETRIC SPACE

Let J be the matrix in SU(2m) defined by

J = (I?n ém> .
Note that J? = —Iy,, and J ! = —J = tJ.
The group Sp(m) is identified with the subgroup of SU(2m)
Sp(m) :={A € SU@2m); 'AJA=J}.
The symmetric space structure is given by the involution
0: GG, A—'JtA™ .
This involution induces the decomposition of the Lie algebra suty, into:
SUom = 5P, D P,
where sp,,,, is the Lie algebra
{X €5ty ; 'XJ=—JX} ={X €supp,; JXJ ="X},

of Sp(m), and

p={X €suyy; ' XJ=JX}={X €suyp; JXJ=-'X}.
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Elements of p are matrices X of the form X = (§1 %) where X7 and X, are
2 —X1
mx m matrices verifying *X; = —X; and X3 = —X5. hence dim(p) = 2m2 —m—1.

Denoting by T the maximal standard torus of SU(2m), T N K is the standard
maximal torus of Sp(m) :

etbr
etBm
Tk =TNK = .3 €R
efiﬁl
e_iﬂnl
The Lie algebra t of T is defined by
2m 2m
t= ZiﬁjEjj ; B eR, Zﬁj =0,
Jj=1 j=1
and
tc = > iBj (Ejj — Emijmis); B €Rp
=1

to =Y i (Bjj + Emijmis) i ER, > 7;,=0

Jj=1 Jj=1

Let y;, 1 < j < 2m, be the vectors of it* defined by considering the restriction to
t of the dual basis of the family of vectors ¢ E;;, 1 < j < 2m :

2m

VH =Y i Ejj et, §;(H)=5;.

Jj=1

Any element p € i t* may be uniquely written as

2m 2m
p=> pili. > pi=0,
= =

and is denoted
n= [/1'17"'7/1'2"7,]'

The scalar product on it* considered here is given by the scalar product on sug,,
defined by

(X,Y) = —R(Tr(XY)) = —ﬁB(X, Y), X,Y € su,.

For p = [p1, ..., pom] and p' = [py, ..., po,,] €0 t7,

2
no_ - 1
(o pt'y = s iy
=1
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The involution ¢* of it* induced by o is defined by

*

n= [/1417 B 7/1'2"7,] U—> [_Mm+17 —HmA42s - o TH2my —H1, T2, -, _Mm] .
Note that the vectors Tj = ¥} := Yjjix, J = 1,...,m, define a basis of it. Any
A € itje of the form A = 377" | A; Z; is denoted
A=A, ).

4.1. Sets of roots. The root-vectors of SU(2m) relative to the standard torus are
the F;;. Explicitly the roots are

U — U1, 1<k#1<m, withroot-vector Ej;,
Umak — Umat, 1<k#1<m, with root-vector Epnigmii,
+(Uk — Ymt1), 1<k,0<m, withroot-vector Fimti (resp. Emtik)-
Note that the only roots 0 that verify o*(0) = 6 are =(Jx — Um+x), and as Fg ik
and E,,4+x, belong to sp,,, ® C, those roots belong to ®;. Hence
Q1 ={EWr = Umsr), L <k<m}, O2=10,
and all other roots belong to ®3.
We choose positive roots such that
O = {Uk — Umr, 1L <k <m},
q>’3+={ Ye =G 1§k<l§m},
Yk — Ym+1
“Gh — 1) = s + T
o (DL = 0(% Ql) Ymtk T Ym! ,1<k<i<my .
(257) o (Yk — Ym+1) = —Ym+k + Ui - -
It is easy to verify that a system of simple roots is given by

~

Q= Ym — Yom
Vo =Yk —Yk+1, 1<k<m-—1,
" (W) = ~Um+k + Umth+1, 1<k<m-—1.
Note that
= Vs k) = (0" (W), 0" (W) =2, k=1,....m—1,
(Vs Yer1) = (0" (W), 0" (1)) = =1, k=1,...,m =2,
(Ym-1,0) = (0" (Ym-1), ) = -1,

all the other scalar products being zero. Hence

(o,

Lemma 4.1. A vector p = [p1, ..., tom] € i t, Zf;nl p; =0, is a dominant weight
if and only if
Mk — pe+1 € N, k=1, . . .m—1.
Hmtk+1 — pmtk €N,
Wm — Hom € N.
By (3), the positive K-roots are the restrictions to tx of the positive G-roots in ®;
and @5, hence, as Ypkjte = —Yh|tx >
Q/I\k ) 1 S k S m
q)-};: Tr—21, 1<k<l<m
Tr+7, 1<k<l<m
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A system of simple roots is given by

=Tk — Tk, k=1,....m—1, and 6, :=2T,,.
Note that, as z), = §(yk — Um+k),s
@0 =1, k=1,....m—1, (¢,.60.)=

(O Ohr1) =—1/27 k=1...m=2, (0, in>=—1,
all the other scalar products being zero. Hence
Lemma 4.2. A vector A = (A1,...\p) € i t), is a dominant weight if and only if
A2 A2 2 Ay 20,
and all the \; are integers.

4.2. Highest weights of the spin representation of K. Since ®3; = (), we may
conclude from lemma 2.4 :

Lemma 4.3. The spin representation of K has only one highest weight
=(m—-1,m-2,...,1,0),

with multiplicity 215

Proof. As we saw it before the multiplicity of A\ is at least 201, But it may be

checked, using the Weyl dimension formula, that any irreducible K-module with
highest weight A\¢ has dimension 2™~ and

2l x 9m(m=1) — qim(%),

hence the result. ]
4.3. The first eigenvalue of the Dirac operator. We apply the same method
as above, and begin by determining the G-weights p such that u,, = Ao and
|+ d¢|? is minimal.
First a vector u = [u1,. .., om] € it Zi:l wr = 0, is a G-weight if and only if
Wi — pk+1 €Z, k=1,...,2m — 1.
Such a vector p verifies pu¢,, = Ao if and only if

uk_um-‘rk:m_ka kZla"'um
The condition Zi:l i = 0 then implies that

$ - mimz)

The half-sum of the positive G—roots is given by

m

1y .
5G=Z(m—/€+§) Uk = Ymtr) -

k=1
(Note that o*(dg) = d¢). Hence

m 1 R
/L+5G—Z<uk+m k+ = >yk+2(k—2m k) — 2) Ym+k -
k=1

As Yot e = W, |l + d¢||? is minimal if and only if 7" (43 + kpx) is
minimal.
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Set i — piy1 =ki, it =1,....,m—1. Forany j=1,...,m — 1, one has

J
5 szi=ul—ug‘+1-
i=1

Using Y pry p = m("z_l), one then gets
m—1
m(m —1 m(m —1
pj=(m—1)p +p — (4 )—mm— (4 ),
j=1

hence

u1=—+—2p“

and
m-1 1 [
Pjtr = —Pj = —p— + — ('5—1 pi—mpg) :

The expression Y, (47 + k ux) is a polynomial F(p1,...,pm—1) of the variables
D1y P2 -, Pm—1. With the notation p = (p1,...,pm—1), one has

OF
Opi

(p) = —2pip1+m —(i+1).

The function F' has a unique critical point when p; = msz‘, i=1,...,m, which is
equivalent top; = %, or k; = 35,1 =1,. —1.
Letpo—(1 1,2,... ).As

0*F

2



THE FIRST EIGENVALUE OF THE DIRAC OPERATOR.../THE OUTER CASE 21

we may apply the result of the previous example. With the same notations,

F(p)_F(pO):%t(p—po)H(p—pO),
1 0 0 O
1, 0m 0 O .
== (p—1p0) @ Q- po),
0 0 0 m
2
:%61 <(m—1)k1+(m—2)k2+...+km1_@)
2
€2 <(m—2)k2+(m—3)k3~-~+km1_W>
iy 2
+ €m—i <ikmi+-~-+km1— @)

3 2
+ €m—2 (2km2 + kmfl - _>

2
2
1
+ €m—1 (km—l - 5) .

The minimum is obtained if and only if all the squares are minimal. Hence, since
the k; have to be integers,

Lemma 4.4. The minimum is obtained only when
(k1,k2y ... km—1)=1(1,0,1,0,...) or (0,1,0,1,...).
Proof. Note that

+ 362 (m — 2)(2ks — 1) + (m — 3)(2ks — 1)« + (2hi_1 — 1))°

L
- iem,i (i (ki — 1)+ -+ (2kpy — 1))
L

5 emos 22k~ 1) + 2kt — 1))

+ iem_l (21 —1)%.

Since the 2k; — 1 are odd integers, the result of lemma 3.5 shows that the minimum

is obtained if and only if (2ky — 1,2ke — 1,...,2kp,—1 — 1) = (1,-1,1,-1,...)

or (=1,1,-1,1,...), hence if and only if (ki,k2,...,kn-1) = (1,0,1,0,...) or

(0,1,0,1,...). 0

Hence the G-weights p for which g, = Ao and ||p + 6¢/||* is minimal are given by
(1) If m is even, m = 2p,
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(a) if (k1,ke,..., km—1) = (1,0,1,0,...,1), since pa; = i, and po;+1 = i+1,

zp:(er——Z) Y2i- 1+Z<p i Z> Yai

i=1
P 1 L 1
—; (p+ 1 —l> Ym+2i—1 —; (p-i— 1 —2) Ym+2i -
(b) if (k1,k2,...,km—1)=1(0,1,0,1,...,0), since pa; = p2;41 = i,

uB:—Z(er )y2z 1+Z( 2) D

=1
p p
3\ ~ 1\ .
—;:1 (IH—Z—Z) ym+2z—1—;:1 (p—z—l) Ym+2i -

Note that py = o™ (p0) and ||po + dc||* = |1 + da 1.
(2) If m is odd, m—2p+1

(a) if (k1, ko, ..., km—1) =(1,0,1,0,...,0), since py; =4, and pg; 1 = i+1,

= 1 r 1 1
MOIZZ(P'i‘——Z —m> 2i— 1+Z;(P+Z—Z—R> Y2i

=1

= 1 4 3 1
Z(IH-——Z—FR) ym+2i1_;(p+1_l+ﬁ> Ym+2i -

(b) if (k1,k2,...,km—1)=1(0,1,0,1,...,1), since pa; = p2;41 = i,

(A 3 1 r 3 1
! _ s - o — _
Ho-—;<p+4 z+4m>y Z<p+4 z+4 >y2z
i= i=1
P p 4 4m Ym+2i—1 v D 4 4m Ym+4-2i -
Note that gy = 0™ (po) and || + da|* = [lug + dc |-
Note that po and pf, are G-dominant, hence we may conclude exactly as in the
above case with the result of lemma 3.8 : the square of the first eigenvalue of the
Dirac operator is given by
2m? —m —1

— 26,
</1407/1'0+ G> + 16 )

4m
hence the result.

SO(2p +2q+2)
< > 1.
S0(2p+ 1) xS0+ 1)) P =0 PHa=

Let (e;)1<i<2pt2q+2 be the standard basis of R?P724+2, Let J be the diagonal
matrix

5. THE SYMMETRIC SPACE

I, 0 0 0
[ 0o K, o o
7=l 0 0 -1 0

0o 0 0 1
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We consider the involution o of the group SO(2p + 2¢ + 2) defined by
A— JAJ .

Note that J is orthogonal but det(J) = —1 hence o is not a conjugation in the
group. The connected component of the subgroup of fixed points is isomorphic to
SO(2p+1) x SO(2¢ + 1).

We choose to consider G = Spin(2p + 2q + 2) instead. We view Spin(2p + 1) and
Spin(2¢ + 1) as subgroups of G by considering

Spin(2p 4+ 1) = {v1 - - - vak ; v; € span{en, ..., eap, €2praq+1}; Vil = 1},
and
Spin(2q + 1) = {v1 - - vae; v; € span{eapy1, ..., Capy2q, Copragrat; |[vill = 1}.

Let K be the connected subgroup of GG defined by the image of the morphism
Spin(2p + 1) x Spin(2g + 1) — Spin(2p + 2¢ + 2) ; (¢, ) —> @ - Y.
This group K is the connected component of the subgroup of fixed elements of the
(outer) involution
7:G— G po-Y-gg
where
Y0 ‘= €2p+1 " €2p42 " " €2p42q " €2p42¢+2 -

The decomposition of the Lie algebra spiny, 5. 1o induced by the involution o is
given by

SPiny, L og 40 = (8Ping, 1 @ sping 1) B P,

where
p= E Bijei-€;; Bij €R
i€{1,...,2p,2p+2q+1}
J€{2p+1,...,2p+29,2p+2q+2}
Thus

dim(p) = 2p+1)(2¢+1).
Let T be the standard maximal torus of G :

ptq+1
T:{ H (cos Bi +sin By ear—1 - €ar) ;3 Br ER} )

k=1
Then
p+q+1
t= { Z Br e2r—1 - €2k 3 B GR} ;
k=1
and
P p+q
tk =4 Bresw 1 e+ ¥ Breaw 1-exn; frER Y,
k=1 k=p+1

to = span{ezpi2g41 - €2pr2g+2} -
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Let Ty, k=1,...,p+ g+ 1, be the basis of i t* defined by

p+g+1
/.’L'\k(H) =2i 8, for H = Z B €okp_1 - eap € t.
k=1
Any element p in ¢ t* of the form
p+g+1
p= Z Bk Tk ik € R,
k=1

is denoted

= (1, fptgr1) -

The scalar product on ¢ t* considered here is given by the scalar product on the Lie
algebra spiny, o .o defined by

1
Alp+a)
where ¢ is the covering Spin(2p + 2¢ + 2) — SO(2p + 2¢ + 2). For any p =
(15 -+ s fpygr1) and any p' = (7, .-+t gi1)

p+q+1

(o) = > b gt -
k=1

1
(X,Y) = =3 Tr (€(X)&(V)) = - BX,Y), X,Y € sping, g0

The involution ¢* of it* induced by o is defined by

*

n= (/1'17 s 7/’L;D+Q7/'L;D+q+1) U_> (/1'17 <oy Hptqs _Np-i-q-i-l) .
Note that the vectors T}, := Ty, & = 1,...,p + ¢, define a basis of itj.. Any
A € it of the form A = S P9\, 7 is denoted

A:(Alv'-';Ap+q)-

5.1. Sets of roots. Let
1 ) 1 .
uk:§(62k,1—zegk) and vk:§(62k,1+162k),k:l,...,p+q+1.

The G-roots are

Zi+%;, 1<i<j<p+4+gqg+1, withroot-vector space Cu; - uj,
—(Z+7;), 1<i<j<p+q+1, withroot-vector space Cuv;-vj,
Ti—7;, 1<i<j<p+qg+1, withroot-vector space Cu; - v,
—(Z;—7;), 1<i<j<p+gqg+1, withroot-vector space Cv; - uj;.

Note that
Py ={£@i+7;); 1<i<j<p,p+1<i<j<p+gq},
Dy ={+(Fi+7;); 1<i<p, p+1<j<p+q},
Py = {£(Ti £ Tpyg1); 1 <i<p+q}.
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We choose positive roots such that

‘1>f—{ ;:;J ;1§i<j§p,p+1§i<j§p+q},
i b

c_fmoT <j<
0, {Eﬁ@ p1<i<p,p+l1<j<p+qr,

0-*(@/3+):{Z[:\i+/x\p+q+l s 1<i<p+q}.

It is easy to see that a system of simple roots is given by

=Tk —Tpp1, k=1,...,p—1, k=p+1,...,p+q—1,(€ ),
Bi=Tp — Tpp1,(€ B3),
V= Tpig — Tprgt1 (€ B51),
of(y) == +q+1?p+q+1a(60 (@5)) .
Note that

(ak, ar) = (B, 8) = (v,7) = (07 (7). 0" (7)) = 2,
k=1,....p—1,p+1,....,p+q—1,

(ak, apt1) = (ap—1, B) = (apt1, B) = (0ptq—1,7) = (Qptq-1,0"7) = —1,
k=1,....p—2,p+1,....,p+q—2,

all the other scalar products being zero. Hence the following (classical) characteri-
zation.

Lemma 5.1. A vector p = (1, .., tptqt+1) € i t* is G-dominant if and only if

M1 > M2 > 2> Hp+q > |/14p+q+1|7

the p; being all simultaneously integers or half-integers.

By (3), the positive K-roots are the restrictions to tx of the positive G-roots in ®;
and @}, hence,

/I\/I_I' 1<i<j<p '
(I)+: J s '—.7 i~ 1<i< .
K { 1+$J— }p+1§z<]§p+q7 17, 1<i<p+q
A system of simple roots is given by

0, =7, — Ty, k=1,...,p—Lp+1,...p+q—1, T, and I

p ptq-
Note that
<;cu€;c>:27k:177p_17p+17p+q_17 <§;7§;>_<Ap+qaff;)+q> 17
1,....,p—2,

' 9 0 .7 0. .7 =1, k=

<k k+1> <p1 p> <p+q1 p+q> {p+1,p+q_2

Hence

Lemma 5.2. A vector A = (Ai1,..., pyq) € it is K-dominant if and only if
AMZ2Ag > 2 A 20, and App1 2 App2 > 2 Apyg 20,

the \; for i = 1,...,p (resp. fori =p+1,...,p+ q) being all simultaneously
integers or half-integers.
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5.2. A characterization of the highest weights of the spin representation
of K. The explicit determination of the highest weights is far from being simple.
Some results on the decomposition of the spin representation for oriented grass-
mannians may be found in [K1i07].

By the result of lemma 2.4, any highest weight of the spin representation of K has
the form

1 p+q
APIEED
peds i=1

Now, remark that the o’s in ®; and the #’'s in @5 are respectively compact and
non-compact roots relative to the maximal common torus Tk of the groups G; =
SO(2p+2q) and K7 = SO(2p) x SO(2q). Since G1/K; is an inner symmetric space,
the results of R. Parthasarathy in [Par71] may be applied here.

First the weights of the spin representation of K; are

1 /
AR
gedS
see Remark 2.1 in [Par71].
Now from lemma 2.2 in [Par71] we may conclude

Lemma 5.3. Any highest weight of the spin representation of K has necessarily

the form
Ptq

w0y —5K1+%Z§7\;, we Wy,
=1
where
e 8¢, is the half-sum of the positive G1-roots, that are the o's in ®] and the
B's in @3‘, and whose set is denoted @El,
e Sk, is the half-sum of the positive roots of K1, that are the s in ®, and

whose set is denoted <I>}L<1,
o Wy is the subset of the Weyl group Wa, of G1 defined by

Wy ={weWg,;w- 0% D }.

Proof. Let A = 3 (Zﬁedﬁ exg B+ f;), exg = £1, be a highest weight of the

spin representation of K.

For any a € 9,4,
1 1
/ / !/
o tg Y ewhEG Y £
pedy peaos

since otherwise A+ o’ is a weight of the spin representation of K, contradicting the
fact that A is a highest weight.

So %Zﬁedﬁ exg 0 is a highest weight of the spin representation of Ky, hence of

the form w - dg, — 0k, , w € Wi, by the result of Parthasarathy. O
Now let A be a highest weight of that sort. One has
p+q

a, = (p+q—1),

=1
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and

14 p+q

Sk, =) (P=)Ti+Y (p+a—i)T.

i=1 i=1
On the other hand, the Weyl group Wg, acts on it} as
()\1, e )\p+q) — (51 )\0(1)762 )\0(2)7 <oy €ptg )‘U(;DJrQ)) )

where 0 € 6,14, €, = £1, €1 -+ - €pyq = 1, see for instance [HBM+15]. So, for any
w e ng,

P
w - 5G1 - 5K1 = Z (ea(i) (p +q- U(Z)) - (p - Z)) z;
i=1
ptaq
+ ) (o) (0+a— () = (p+q—1)) 3,
1=p+1
where 0 € 6,14 But the dominance conditions verified by A implies ¢; = 1,
t=1,...,p—1,p+1,...,p+¢q— 1, and this is also true for ¢, and €,4 since
€p = €prq = —1 implies o(p) = p+ ¢ = o(p + ¢). Now the dominance conditions

also imply that any highest weight A of the spin representation of K has necessarily
the form

p

(9) A=Z(q+i—o(i)+%)@+1§ (i—o(i)—i—%)@,

=1 i=p+1

where 0 € G4 verifies 0(i) < o(i+1)—-1,1<i<p—-1,p+1<i<p+g—1
Note that this implies 0(i) > ¢, 1 <i<p,and (i) <i,p+1<i<p+gq.

5.3. The first eigenvalue of the Dirac operator. We begin by determining

necessary conditions for a G-weight p = (u1,..., lpyqr1) in order that p,, =
(M1 - - - fptq) is a highest weight of the spin representation and || + d¢||? is min-
imal.

Note first that a vector gt = (p1,. .., tptq+1) € it*, is a G-weight if and only if all
the u; are all simultaneously integers or half-integers.

So, by (9), for such a G-weight, ¢, = (u1,..., fiprq) is a highest weight of the
spin representation only if ;4441 is a half-integer. Furthermore, since

5G:(p+Q7p+q_177170)7
1

the condition that ||u + dg||* is minimal implies then ji,44 = % (with the same
value in both cases).
So let p be such a weight. We first consider the case where p is dominant.

5.3.1. First case: p is G-dominant. By (9), one has
p 3 ptq 3
p+d = ; <p+2(J+ B —U(i)> 5i+i§1 <p+(J+§ —U(i)> T,

where 0 € G4 q verifies 0(i) < o(i+1)—-1,1<i<p—-1,p+1<i<p+g-—1,
and also, as p is G-dominant o(p) < o(p+1)+¢q— 1.
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So
14 3 2 p+q 3 2
2 . .
I+ 6l —Z(p+2q+§—o<z>) £ Y (prard-ot) .
=1 i=p+1
p+q 3 p+q P
_Z <p+q+2> ;J(z)—m];a(z)
P 3 2 p+q 3 2
+Z(p+2q+§) +}Z (p+q+§) ,
i=1 i=p+1
p+q 3 p+q P
-2
= i —2(p+q—|—2> ;z—Zq;a(z)
P 3 2 p+q 2
+Z(p+2q+2) +}Z (p+q+§)
1=1 i=p+1
Hence
i+ dg|? is minimal <= Z ) is maximal .

=1

Note that the conditions o(i) < o(i+1)—1,1<i<p—1imply that >.%_; o(i) is
maximal if and only if o(p) is maximal and O'(p 1)=o0(p)—1,...,0(1) = o(p)—p+1.
But o(p) can not be > ¢ in that case. Indeed, if o(p) > ¢, then, as we suppose
p<gq,0(l)>1. Soo(p+1),...0(p+ q) belong to the set {1,...,0(1) —1,0(p) +
1,...,p+ q}, and then the conditions o(i) < o(i+1)—1,p+1<i<p+qg—1,
imply o(p+ 1) = 1. But that contradicts the condition o(p) < o(p+1) 4+ ¢ — 1.
Hence || + 6¢||? is minimal if and only if

U(p) - q7
op+1) = 1,
olp+2) = 2,

olq) = q-p,
olg+1) = q+1,
olp+q) = p+aq,

So we may conclude

Lemma 5.4. If ji is a G-dominant weight such that . is a highest weight A of
the spin representation and ||p+ d¢||? is minimal, then necessarily,

o ] L1
_p 27"'7p 2727"'727 27
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and

1
A= —_—
@+2,

5.3.2. Second case: p is not G-dominant. In that case, one obtains also that

P
|+ 6¢||? is minimal <= Z o (i) is maximal
i=1
but now o € &, has only to verify the conditions o(i) < o(i+1)—1,1 <4 < p-1,
p+1<i<p+q—1. In that case o(p) is maximal if and only if o(p) = p + ¢,
hence ||p + d¢||? is minimal if and only if

0(1) - Q+17
o2) = q+2,
olp) = p+q,
olp+1) = 1,
op+2) = 2,
olp+q = q,
hence 1 1 1 . .
=(=,...,= S ~ o4
/'L (27 727p+27 7p+27 2)7
—_— ——

p q

Now, as u is conjugate under W to one and only one G-dominant weight, one sees
that since the Weyl group W¢ acts on i t* as
(/Lla s a,uerqul) = (61 Ho(1)s €2 Ho(2)s - -+ 5 Ep+g+1 ,UJO'(p-l—q-i-l)) )

where 0 € Spygy1, € = £1, €1+ €pyrgr1 = 1, it is conjugate under the Weyl group
to the G-dominant weight met in the above case

1 11 1 1
— . — =, =, E—)
(p+ 27 7P+ 2727 727 2)
—_————
q p

Finally, we may conclude that

Lemma 5.5. If a G-dominant weight u verifies the spin condition and is such that
| + 6c||? is minimal, then necessarily,

1 11 1 1
M—(p+§,,p+§,§,,§,:t§)
—_———— ——
q P
In order to conclude, we only have to verify that
Lemma 5.6. The vector A € it} defined by
1 11 1
A= - ... P
(Pt 5 pt o5 g)
—_——— ——

q P
is a highest weight of the spin representation of K.
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Proof. As p is odd-dimensional, we have to use the description of spinors given in
§ 2.3.2. By the choice of an orthonormal basis of p such as (5), the group SO(p)
is identified with SO(4pg + 2(p + ¢) + 1), which is itself embedded in the group
SO(4pq + 2(p + q) + 2) in such a way that it acts trivially on the last vector of the
standard basis of R*a+2(p+a)+2,

Let (Z, Z) be the Witt basis defined by the two orthonormal vectors on which SO(p)
acts trivially. Using the notations of § 2.3, a basis of spinors is given by considering
the vectors

E;r-Vy-w, if #I+ #J is even,
Ep-Vy-Z-w, if #1+ #J is odd.

Denoting for short Fj; = Fz,13,, Ej; = E3, 2, 1 <i<p,p+1<j<p+gq,and
Vi=FEz, _3,,,41, 1 <J<p+q, one gets from (6), that the spinor

vy = H E;;- H B Vi Vg -, if (p+1)(p+ q) is even,
1<i<p 1<i<p
pF+1<j<p+q q+1<j<p+q
= ] Ey;- I E; Vi Vi Z-®,if (p+1)(p+q)isodd,
1<i<p 1<i<p
pF+1<j<p+q q+1<j<p+q

is a weight-vector for the weight A.
Now, it may be checked that the root-vector uy - viy1, associated to the simple root

-~

Ly . . S
0}, = T), — T}, 1, acts on spinors by a linear combination of

p+q ptaq
> FErp1s-Exj, Y, By Epy, and Vi Vi, if1<k<p-1,
Jj=p+1 Jj=p+1

p P
> Fwi1-Ei, Y EL-Ejyr, and Vigr-Vi, ifp+1<k<p+qg-1
i=1

=1

So vy is killed by the action of uy, - viy41 since all the E;;’s and all the V;’s occur in
the expression of vy, and either Ej; (resp. Ej, ) occur in that expression or both
E,’cj and E,’Hlj, (resp. Ej; ., and Ej;) do not occur in the expression.

In the same way, vy is killed by the action of the root-vector u,-eapy24+1, associated
to the simple root E;, since that root-vector acts on spinors by a linear combinations
of

p+q p+q

7 /
Y By Vi Y Epi-Vin oand V- (ezpragin - €2pr2qt2) -
j=p+1 j=p+1

Finally, vy is also killed by the action of the root-vector up4q+1 - €2p424+2, asso-
ciated to the simple root 7’ since that root-vector acts on spinors by a linear

combinations of

p+q’

P P

X7 !
> Eiprq- Vi Y Bl Vi, and Voig- (eapyagi - €2pragra)-
i=1 =1

Thus vy is a maximal vector, and so A is a highest weight of the spin representation.
O
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1
,:l:§) are two G-dominant weights verifying

N —

gee ey

N —
N~

So pt = (p+%,~..,p+ :
—_——— —
q P
the spin condition and such that ||+ d¢||? is minimal among all the G-dominant
weights p verifying the spin condition.
Hence the square of the first eigenvalue A of the Dirac operator is given by
32 1 2p+1)(2¢g+1)

= 7 N 9 + 25 + 9
Ap+q) (B4, it a) 16

= m(8PQ(2]9+Q+1)+4p(p+1)+4q(q+1)+1)'

Note that for p = 0, we retrieve? the value of the square of the first eigenvalue of
the Dirac operator on the standard sphere S2¢+! :

oL (2+1 2
g 2 ’

cf. [Sul79)].

E
6. THE SYMMETRIC SPACE F_6
4

We use here the results of Murakami [Mur65] (for an outline, see for instance the
section “non-inner involutions” in chapter 3 of [BR90)).

Explicit computations can be made (and are obtained) with the help of the pro-
grams GAP3, [S+97], and LiE, [vLCL92].

First, the existence of non-inner involutions corresponds with the existence of non-
trivial symmetries of the Dynkin diagram.

The Dynkin diagram of Eg is

02

o L L ]
61 05 04 05 b6

There is only one non-trivial symmetry s given by

5(91) :96; 5(92) :92, 8(93) :95,

5(94) = 94 5 5(95) = 93 5 8(96) = 91 .
The symmetry s is extended by linearity to an involution ¢* of it*, which itself
induces an involution o, of t, by means of the scalar product (re-normalized here
in such a way that all simple roots 0 verify [|0]|? = 2).
Now, choosing a root-vector Fy for each simple root 8, o, is extended to the span
of these vectors by

(10) U*(Eg) = EU*(Q) .

2in that case, P2 = (), so the spin representation of K has only one highest weight.
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Finally o, can be uniquely extended to a non-inner involution of g (cf. § 14.2 in
[Hum?72]).
A first outer symmetric space structure is obtained by considering the connected
subgroup K of Eg whose Lie algebra is the set {X € g; 0.(X) = X}. It is a simple
group, and a system of simple roots (relatively to the maximal torus Tx = K NT)
is obtained by considering the restriction to tx of the simple roots 6;, 1 < i < 6,
(cf. Proposition 3.20 in [BR90]).
The group Eg has 36 positive roots. The positive roots 6 such that o*(8) = 0§ all
belong to ® by (10). The partition of the set of positive roots is given by
(I)Ir = {6‘2,94,92 404,05+ 04+ 605,00+ 03+ 04 + 05,01 + 03 + 04 + 05 + bg,
O+ 63 +204+05,00+02+ 03+ 04+ 05+ 06,
01 +05+03+204+ 05+ 06,00 +605+203+204,+ 205+ 6,
01 +65+203+304+ 205+ 66,0, +292+26‘3+394+26‘5+96},
o =10,
OLF = {01,05,01 + 03,05 + 04,01 + 03 + 04,05 + 03 + 04,01 + 02 + 05 + 04,
01 + 03+ 04+ 05,61 + 02 + 03 + 04 + 05,01 + 02 + 03 + 204 + 05,
01+ 0:+2603+20,+ 05,0, +6‘2+26‘3+294+95+6‘6},
0*(@/3+) = {6‘6,95,95 + 06,04 + 05,04 + 05 + Og,05 + 04 + 05,05 + 04 + 05 + 5,
Os + 04+ 05+ 05,00+ 03+ 04+ 05 4+ 05,05 + 03 + 204 + 05 + g,
Oy + 03 + 204 + 205+ 06,01 + 0 + 03+ 204 + 205 + 65} .

The set of positive K-roots is
Dl = {0, 0 € 2T UL},
and a system of simple K-roots is given by
1 1
0= Oy = (00, O 0 =05 = (0540, 0

Note that
dimg=78, dimt=52, dimp=26,
dimt=6, dimtxg =4, dimt,=2.
One has
10307 = 116517 =1, 650> = 10411* = 2,

1

all the other scalar products being zero. Hence the Dynkin diagram of K is

o 0 0 0

Setting
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this is the “classical” Dynkin diagram of the group F4. In that basis, the Cartan
matrix is

2 -1 0 0

-1 2 -1 0

0o -2 2 -1

0 0o -1 2
In the following, w1, w2, ws,w, are the fundamental weights associated with a;, s,
a3, 4.

6.1. Highest weights of the spin representation of K. Since ®; = (), and
dim tg = 2, we may conclude from lemma 2.4,

Lemma 6.1. The spin representation of K has only one highest weight A with
multiplicity 2,
A=5601+305+9654+60,.

Proof. By the result of lemma 2.4,

1
A= > A =500 +30,+9065+60],
yedyt
:30114-60424—90[34-5044:&)34—&)4.

Any irreducible module with highest weight ws + ws has dimension 2'2. Since
dimtg = 2, one knows from § 2.3 that the multiplicity of the weight is at least 2.
Now 2 x 212 = 213 = 2dim(p)/2 — dj;m ¥, hence the result. O

6.2. The first eigenvalue of the Dirac operator. As we did before, we first
determine G-weights 1 (non necessarily dominant) such that i, = X and ||u~+d¢||*
is minimal.

Let =30 | p; 0; € it*. First

p1+pe =5,
H2 =3,
Ll = A <=
e M3+ s =9,
Ha =6.

As [|6;]]? = 2,1 < i <6, pis a G-weight (resp. dominant G-weight) if and only
if (u,0;) € Z, (vesp. N), hence p,, = X and p is a G-weight (resp. dominant
G-weight) if and only if

H1+ pe =5, 21 — ps
:3 — —
H2 " and 125 =0 € Z (resp. N).
ps+pus =9, pr—2p3+7
m =6, 2 +pz+1

Setting

k::2:u1_,u37 H1 = 2k2l+65
— kt2l412
li=—m+2p3—6, M2 = —F5—,

the last condition is equivalent to

kandl€Z (resp. k=0or1land!=0or1).
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Viewing then ||u + d¢||? as a polynomial f(k,1) of the variables k and [, one gets
of _ of _
%(k, [)=2(2u —5) and o (k, 1) =2(2us —9),
Thus f(k,1) has only one critical point (3, 3). Now
0% f 8 0*f 4 0% f 8
— (k1) =< k)= = d —(k1)=<2
ak2(5) 35 6kal(7) 3 an 812(5) 35
So
11 2 1 1
k) — (= =) =2 (k=224 (0-=2+(k+1-1)2).
ro0 -1 (35) = 5 (G- g7+ =37+ (et - 17?)

Hence among the G-weights p such that j,, = A, the minimum of || + dg? is
obtained if and only if

00 = 0.1, (= ) = (3.5) )

(0 = (1,00, (= o) = (5.7))

By the above remarks, the corresponding two weights

7 14 13 8
=_0 0 — 0 0 — 0 — 0,
M1 314-3 2+3 3+ 6 4+3 5+36,

or

and

8 13 14 7
=—-0 30 —03+60 — 0 -0
U2 3 1+ 2+3 3+ 4+3 5+367

are G-dominant. Hence we may conclude exactly as we did it in the first example
with the result of lemma 3.8. We have first to note that, for the scalar product (, )k
induced by the Killing form sign-changed, the “strange formula” of Freudenthal and
de Vries, [FAV69)], gives

Sall2 — dim(g) 13

663 = S = =
whereas for our choice of scalar product ||d¢||* = 78, hence (, )k = 57 (. )-
So, finally, the square of the first eigenvalue of the Dirac operator is given by

dim(p) 20 13 277

1
— (1 + 206, 1) +

24 16 9 "8 T2°
Eg
7. THE SYMMETRIC SPACE —.
SP4

By the result of Murakami, there also exists a complementary non-inner invo-
lution on the Lie algebra of Eg, which is not conjugate to the above non-inner
involution ¢ and is defined on the Lie algebra by

O'; —= 0% O Adexp(ﬂig) 5

where & € t is defined by 0;(£2) = i dj2, cf. Theorem 3.25 in [BRIO].

A new outer symmetric space structure is obtained by considering the connected
subgroup K’ of Eg whose Lie algebra is the set {X € g; 0/ (X) = X }.

Note that as & € t, o' = o*.
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The partition of the set of positive roots is now given by

O = {04,054+ 04 + 05,01 + 03 + 04 + 05 + 65,
01 +20o+203+30,+205+ 06},

OF = {02,00 + 04,02 + 03+ 04 + 05,00 + 03 + 20, + 05,
01 + 0y + 03 + 04 4 05 + 06,01 + 02 + 03 +204 + 05 + b5, ,
01+ 0y +203+20,+205+ 05,0, + 0o +205+30, 4205+ 66},

O = {01,05,01 + 03,05 + 04,01 + 03 + 04,00 + 03 + 04,01 + 02 + 03 + 0, ,
01+ 603 +04+ 05,00 +02+035+64+ 05,00 +60s+05+204+ 05,
01 +02+205+20,+ 05,01 +02+2035+20,+ 05+ 0},

" (®57) = {06, 05,05 + 05,04 + 05,04 + 05 + 06,02 + 04 + 05,02 + 04 + 05 + 0,

03 + 604+ 05 + 06,00 + 03 + 04 + 05 + 0,02 + 05 + 204 + 05 + 6,
02+ 03 +20,+205+ 06,01 + 02+ 05 +20,+205+ 06} .

The set of positive K'-roots is
(I)/I}L = {H‘tlk; RS (I)Ir U(I)gr},
and a system of simple K’-roots is given by
/ / / 1 / / / 1 / / / 1 / / / /
oy =0y + 05+ 5(93 +05), o = 5(91 +05), o= 5(93 +05), ay =04,

(cf. Theorem 3.25 in [BR90]).
Note that here

dimg =178, dim# =36, dimp =42,
dimt=6, dimtg =4, dimty=2.

One has
lerll® = lleal® = s> =1, [lag)* =2,
1
<O/170‘I2> = <a/27a/3> = _57 <O‘£’>7aﬁl> =-1,

so the Dynkin diagram of K’ is

[ ® | —— )

! Vi A !
251 Qg Qg Qy

This is the Dynkin diagram of Sp,.

35
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7.1. Highest weights of the spin representation of K’. By the result of
lemma 2.4, any highest weight of the spin representation of K has the form

% S+ D A

BedT yeEDLT

Lemma 7.1. The spin representation of K' has three highest weights both of mul-
tiplicity 2 :

A =T7a) +9ah +1004 + 50,
Ao =6a) +9ah+11a4 + 60,
Az =5a) +9ah+12a5+ 6.

Proof. Note first that

Z v =5a] +3ah+6a4 +3al.
yEDLT

Now, denoting by i, ..., 8s the roots occurring in that order in the expression of
<I>§L above, it is easily checked that

1 1
M= (B + By + B+ B+ B+ B+ B+ B + 5 D

ye®LT
7]‘ / / / !/ !/ !/ / / 1 /
)\2—5(_51+ﬂ2+ﬂ3+ﬂ4+ﬂ5+ﬂ6+ﬁ7+ﬁ8)+5 Z 7
yedyt
1 1
Ao =5 (=B =Byt By + B+ B+ B+ B+ B +5 D
ye®LT

S0 A1, A2 and A3 are actually weights of the spin representation of K’.

It is also easily checked that they are also G-dominant. Indeed, considering the

basis of fundamental weights w], w}, wjs, wj associated with of, of, of, o), one
3

gets

A1 = 5w + wh +ws,
Ao = 3w +wh + wh + wy,

A3 = wi + wh + 3wj.

Note now that, for any 4,5 = 1,2, 3, ¢ # j, any relation of the form X\; < \;, where
“<” is the standard order on weights, is impossible, so A\; can not be an element
of the set of weights of an irreducible module with highest weight A;. This implies
that A1, A2 and A3 are actually highest weights of the spin representation of K.

3multiplying for instance the transpose of the Cartan matrix with the vector representing the
weight in the basis (o}, of, af, o).
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Since dim tg = 2, one knows from § 2.3 that the multiplicity of each such highest
weight is at least 2. Now, denoting by n; the dimension of any irreducible module
with highest weight \;, ¢ = 1,2, 3, one gets with the help of the LiE program
ny = 180224, no = 524288 and n3 = 344064.

Now

2xni+2xng+2xng =22 =21m®)/2 = qim ¥,
hence the result. (]
Remark 7.2. Actually, the determination of the three possible highest weights was
obtained by using the same argument as in § 5.2. Indeed the a’s in ®1 and the 8’s in
Dy appear to be respectively compact and non-compact roots for the inner symmetric
space SO(8)/(SO(4) x SO(4)), relatively to the standard torus of SO(8). Using
the results of R. Parthasarathy in [ParTl], we obtain, with the help of the GAP3
program, the twelve highest weights of the spin representation for the symmetric
space SO(8)/(SO(4) x SO(4)), providing a list of twelve candidates for the possible
highest weights of the spin representation of K'. Finally, the dominance condition
(for K') reduces that list to the three weights A1, A2 and A3.

7.2. The first eigenvalue of the Dirac operator. We determine G-weights u
(non necessarily dominant) such that p,, = A1, Az or A3, and ||u+0d¢]|? is minimal.

Let =30, p; 0; € it*. First
e = H2 04 + (i + pe) o + (3 + pis — p2) oy + (pa — pi2)
SO fhjge = iy @ =1,2,3 if and only if
pitpe =9, pe=7, pz+ps=17, pa =12,
prt+pe =9, pe=6, pzt+ps =17, p4 =12,
prt+pe =9, p2=5, p3t+ps =17, p4=11.
Let p be such a weight. We first examine the case where it is G-dominant.
7.2.1. First case: u is G-dominant. The weight p is G-dominant if and only if
2:“1 — M3 € N7
pe =Tand pg =12, or o =6 and pyg = 12,
_N1+2M3_12€N7
pw—2pu3+13 €N,
—2p1 +p3+1eN.

{k1=2ul—u3, <(:){M1=Wa )

= —p1+2pu3—12, pg = 22
k=0orl,

w is G-dominant <= ¢l =0or 1,

Thus setting

pe =Tand pug =12, or puo =6 and pyg = 12.
The term involving po in the expression of ||u + dg||? is
2((p2 +11)% = (pg + 11)(pg + 21))
hence the minimum of ||z + d¢||? is obtained only when po = 6 (and then py = 12).
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Viewing then ||u + d¢||? as a polynomial f(k,1) of the variables k and [, one gets
of 2 of 2
—(k, 1) =-(6p1 —27 d —(k,1)=<-(6us—>51).
8]{3( ) ) 3( H1 ) ehtl 81( ) ) 3( H3 )
Thus f(k,1) has only one critical point (3, 3). Now
0% f 8 0*f 4 0% f 8
L y=2 kD) == and ZL(k)=2
akQ( ’ ) 35 6kal( ? ) 3 an 812( ’ ) 35

So
11 2 1 1
k) — (= =) =2 (k=224 (0-=2+(k+1-1)2).
1001 (53) =5 (k= 3+ = P+ ri-1)
Hence among the dominant G-weights p such that e, = A, i = 1,2,3, the
minimum of || + é¢||? is obtained if and only if

k0= 00, (& G = (2. 2)).

or

k0= 0.0, (@ G = (3. 2)).

hence for the two weights

13 26 25 14
=_—90 0 —0 126 —0 — 0
p= 1+6 2+3 3+ 4+3 5+3 6 5
or
14 25 26 13
=—0,+60 — 0 126 — 0 — 0
U2 3 1+ 2+3 3+ 4+3 5+3 6 5

and in that case p¢, = As.
It is easily verified that

340

(1 +20G, p1) = (2 + 20a, p2) = 3

7.2.2. Second case: p is not G-dominant. In that case, k and [ are arbitrary in-
tegers, and, considering the term involving po in the expression of ||u + ég||?, the
minimum of || + dg||? is obtained only when pus = 5 (and then py = 11). Up to
a constant term, ||u + 6g|? is then the same polynomial f(k,[) as above, so the
minimum is obtained for k = 0 and [ = 1, or £k = 1 and [ = 0, hence we may
concude that among the G-weights p such that i, = s, ¢ = 1,2, 3, the minimum
of ||+ d¢c||? is obtained for the two weights

13 26 25 14
=224 56 — 0 116 — 0 — 0
% 3 1+ 2+3 3+ 4+3 5+3 6 5
or
14 25 26 13
=" 0 — 0 116 — 0 — 0
H2 =3 1+5 2+3 3+ 4+3 5+3 6 s

and in that case p¢, = As.

Now each weight is conjugate under the action of the Weyl group Wg to one and
only one dominant G-weight. Using the function “W_orbit” of the LiE program, it
may be checked that p} is conjugate to p1, and uh to us. Hence we may conclude
that
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Lemma 7.3. Among the G-dominant weights p verifying the spin condition,
I+ 0c||? is minimal if and only if jp = py or g = po.
Hence the square of the first eigenvalue of the Dirac operator is

dim(p) _ 85 2L _ 529
16 18 8 727

1
— 26
24<H1+ Gy ) +

8. APPENDIX

8.1. Proof of lemma 2.1.
R1: For any 6 € ®3, one has

(11)
VX €tie, [X,0.(Ep)] = [0+(X), 04(Ep)] = 0 ([X, Ey]) = 0(X) 0. (Ep) ,

and

(12) VY €ty, [Y,0.(Ep)] = —[0+(Y),0.(Eg)] = —0. ([Y, Eg]) = —0(Y) 0+(Ep) .
Hence
(13) VX €t [X,Up) = 0(X)Up and [X,Vs] =6(X)Vs.

Now, suppose that for any X € tx, 6(X) = 0. Then there exists Y € ¢,
such that 6(Y") #£ 0. Set Uy = Ag + i By, where Ay and By € g. By (13),
for any X € tk, one has [X,Up] = 0, which implies that both Ay and By
belong to the centralizer of tx in £ which is equal to tx, as tx is maximal.
Hence Uy € tx ¢, so [Y,Up] = 0. But using (12), [Y,Us] = 6(Y") Vi, which
can not be 0 as (V) # 0 and Vy # 0. Hence, there exists X € tx such that
6(X) # 0, and so by (13), 8" is a K-root. O

R2: Let 6 € &1UP,. As 0,.(Ep) = £Ey, one has for any Y € to, [V, 0.(Eyg)] =
0(Y) 0.(Ep). But (12) implies [Y, 0. (Ep)] = —0(Y) 0.(Ey), hence 8(Y) = 0.
Conversely, if 6], = 0, then by (11), for any X € t,

(X, 0.(Ep)] = 0(X) 0. (Ep)

so 0+(Eg) € go. Hence there exists A € C such that o.(Ep) = AEy. As
o, is an involution, one has A2 = 1, hence o, (Ey) belongs to £ or pc, so
0 PUDs.

R3: By R1, g is a K-root, and by R2, there exists Y € ty such that (V) #
0. Suppose 8’ = +a’. Then by (13)

VX €tx, [X,Ed=a(X)E, and [X,Us] =+a(X)Us.

Hence Ug € t1,/, so there exists A € C, such that Ug = A E4,. Now by
R2, on has [Y, E1,] = 0, so [Y,Ug] = 0. But by (12), [Y,Ug] = B(Y) V3,
which is nonzero. (]

R4: Let § € ®,UP,. Forany X € tx, one has o*(a)(X) = a0 (X)) =
and for any Y € to, by R2, 0*(a)(Y) = a(0.(Y)) = a(-Y) =0 =
hence o* () = av.
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Now let 6 € ®3. By R2, there exists Y € ty such that 6(Y) # 0. Note that
VX €tg, [X,0.(Ep)] =[0+X,0.(Eg)] = 0. (X, Eg))
= 0(X) 0. (Ep) = 0" (0)(X) 0. (Ep) ,
VX €ty, [X,0.(Ep)] =—[0+X,0.(Ep)] = —0. ([X, Fy))
= —0(X)o.(Ep) =" (0)(X) ox(Ep) .
Hence ¢*(0) is a root. As o*(0)(Y) = —0(Y) # 0, 0*(f) € @3 by R2.
Furthermore, as for any X € tx, 0*(0)(X) = 0(X), 0*(0) # —6, and as
o*(0)(Y) = —0(Y) £ 0(Y), *(0) £ 0.

R5: As o* is an involution, any root 6 may be decomposed into § = 6, +6_,

with 0*(01) = 64 and 0*(0_) = —6_. Note that 0, =0 and 6_,, =0
since

VX €, 04(X) = 0" (0:)(X) = 04 (0.(X)) = —04(X),
and
VX €tg, 0_(X)=—-0"0-)(X)=—-0_(0.(X))=—-0_(X).

This implies in particular that the decomposition is orthogonal, and 6, =
e‘tK - 9/.
Now let @ and 8 € ®3 such that 8/ = o/, with 8 # « and 8 # oc*(a). We
first claim that o + 3 is not a root. Otherwise

[Eav Eﬁ] = [Uav Uﬁ] + [Vaa Vﬁ] + [Uav Vﬁ] + [Vaa Uﬁ] )

S €pc

is a nonzero element in go4g. If [Us, Ugl+[Va, V3] = 0, then [Eq, E3] € pc,
so a + 3 € @y, hence (a + B), = 0, by R2, so B, = —ayy,, but this is
impossible since § # o*(a).

Hence [Uy, Ug] + [Va, V] # 0. But then 2¢/ is a K-root since, as ' = o/,

VX €tie,  [X,[Ua, Usl + [Va, Vsl = 20(X) ([Ua, Up] + [Var, V3]) -

But o is a K-root (R1) and it is well known that o and 2o’ can not be
both K-roots.

Thus « 4 8 is not a root, and so («, 8) > 0, since otherwise « + 8 should
be a root (see for instance 9.4. in [Hum72]).

One the other hand, o — 8 can not be a root by R1 since (a — )¢, = 0.
Thus (a, 8) < 0, since otherwise o — 8 should be a root.

Finally, (o, ) = 0. Note that, as 0* ()¢, = ¢, , the same arguments hold
for o* () instead of a. Hence (c*(a),8) = 0, and so {a + o*(«), 8) = 0.
Now as o + 0*(«) = 2 vy, this implies (a4, 84) =0. But ay =/ = ' =
B4+, hence ||o/||? = 0, which is impossible. O
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