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Optimal transportation and

stationary measures for iterated

function systems

Benoît R. Kloeckner ∗

September 10, 2020

In this article we show how ideas, methods and results from optimal trans-
portation can be used to study various aspects of the stationary measures
of Iterated Function Systems equipped with a probability distribution. We
recover a classical existence and uniqueness result under a contraction-on-
average assumption, prove generalized moment bounds from which tail es-
timates can be deduced, consider the convergence of the empirical measure
of an associated Markov chain, and prove in many cases the Lipschitz con-
tinuity of the stationary measure when the system is perturbed, with as a
consequence a “linear response formula” at almost every parameter of the
perturbation.
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1 Introduction

Let (X, d) be a complete separable metric space (endowed with its Borel σ-algebra for
all measurability purposes) and Φ = {φi : i ∈ I} be an Iterated Functions System (IFS),
i.e. a family of continuous maps φi : X → X indexed by a set I, either countable or
endowed with a standard σ-algebra. The set of probability measures on X is denoted
by P(X).

Hutchinson [Hut81] introduced such IFS to produce fractals: under a contraction
hypothesis, there is a unique compact subset KΦ of X such that

KΦ =
⋃

i∈I

φi(KΦ).

The proof is very simple: one shows that the map K 7→ ∪iφi(K) is a contraction in the
Hausdorff metric, and applies the Banach fixed point theorem. Given additionally η ∈
P(I), one is interested in existence, uniqueness and properties of a measure µ ∈ P(X)
such that

µ =
∫

(φi)∗µ dη(i) (1)

i.e.
∫

f(x) dµ(x) =
∫∫

f ◦ φi(x) dµ(x) dη(i) for all f ∈ Cb(X), the set of bounded
continuous functions X → R. Such a measure is called a stationary measure for the
pair (Φ, η), which is sometimes called an Iterated Functions System with probabilities
but that we will call an IFS for simplicity, since we will only consider this case. When
the φi are contractions, again existence and uniqueness mostly follow from the Banach
fixed point theorem; Hutchinson used the now-called Wasserstein distance of exponent 1
(in its dual formulation, restricted to compactly supported measures). As we shall see,
using general Wasserstein distances one can use the fixed point theorem approach and
get moment estimates at the same time.

We shall also be concerned with the attractivity of the stationary measure µ. Assume
(ik)k∈N are independent, identically distributed random variables of law η and x0 is a
random variable independent from them. Then one constructs a Markov chain, named
the “chaos game” by Barnsley [BDM+88], by setting xk+1 = φik

(xk). Two sequences
of measures are then to be studied: the laws of the xk, and the “empirical measures”
1
k

∑k
j=1 δxj

.
The goal of the present article is to apply tools and ideas from optimal transporta-

tion in this context, to show the variety of information they provide with simple (while
not always elementary) proofs; we shall also get inspiration from the “thermodynamical
formalism”; more precisely we use the transfer operator (also known as the Markov oper-
ator in the present context) in a crucial way. Results are stated and proved throughout
the article, but to give a motivation we give at the end of this introduction the most
striking application, in the well-known example of Bernoulli convolutions.

1.1 Brief comparison of the literature with the present results

The stationary measures of IFS have been investigated in a huge number of articles,
and this overview is necessary partial. In [BE88], one of the early works popularizing
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the field, the existence and uniqueness of the stationary measure was proven under a
hypothesis of contraction on average, and moment estimates where given. As a warm-
up, we will reprove their main results using the point of view of optimal transport in
Section 3. In Section 4, using the transfer operator we obtain new generalized moment
estimate, see e.g. Corollary 4.2.

Ergodicity, i.e. weak convergence of the empirical measures toward the stationary
measure, is an important property as it enables a Monte Carlo Markov Chain approach
to approximate the stationary measure. Ergodicity was proved in [Elt87, Elt90], see
also [FM98, Sza03]. In Section 5, we give almost optimal bounds for convergence of
the empirical measure in the L1 Wasserstein distance and other related metrics, thus
providing a “quantitative ergodicity” statement (Theorem 5.1). This result is new,
but follows immediately from a general result on Markov chains obtained previously in
[Klo18a]; it is mentioned as an illustration of the wealth of tools available.

Tail estimates for the stationary measure have been largely investigated, notably for
affine IFS in [Kes73, Gol91] and more recently [Kev16]. These works use assumptions
that induce a polynomial tail; in Section 4 we will be interested in quite general and
easy to obtain, but less precise, tail estimates. We will in particular consider a case with
exponential tail, which (obviously) does not fit Kesten’s assumptions (Corollary 4.3).

In the case of two affine transformations of the line, one contracting and one expanding,
[BMS06] studied more general invariant measures, where the random choice of indices
need not be independent but is defined by a shift-invariant measure on IN. In Section
7, we use a modified Wasserstein distance to generalize further this setting to skew
product; under a uniform contraction assumption, we get explicit convergence rates
toward the stationary measure. For such generalizations, ergodicity have been studied
in [Elt90, SS98].

In addition to the aforementioned [MS10], let us cite two other works studying IFS
and Wasserstein distances. First [GMN16] focus on the computation of the stationary
measure, with certified bounds on the Wasserstein distance from the approximation.
Second, [Fra15] computes the exact value of the Wasserstein distance between the sta-
tionary measures of different affine IFS on the line. In section 6 we study how much the
stationary measure depends on the underlying IFS; this is less precise but more general
than the previous cited article. Our interest in such bounds is that they enable us to use
a sophisticated Rademacher theorem for measures to obtain a linear response formula
(see Corollary 1.1). While linear response has become a classical subject in dynamical
system, to my knowledge this result is the first of this kind in the context of IFS; it has
one weakness and one strength: it is only proven for almost all parameters, but we get
a derivative in quite a strong sense.

Let us conclude with some directions we do not pursue in this work. A prominent
topic in the study of IFS on Rd is to determine the dimension of their stationary measure
and whether it is absolutely continuous with respect to Lebesgue measure —this includes
open questions even for some of the simplest IFS. Citing all relevant works would be
daunting, and while we will use Solomyak’s theorem [Sol95], we will not be primarily
concerned with such questions here. We thus refer the reader to the recent survey [Var18]
and references therein.
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More general conditions ensuring existence, uniqueness and attractivity of the sta-
tionary measure have been sought for, a notable example being the local contraction
condition introduced by [Ste99], where the focus is on the behavior of the backward
iteration. For IFS satisfying this local contraction assumption, exponential convergence
of the law in the Wasserstein distance to the stationary measure was proven in [MS10].
In a very general setting, without contraction assumption, [BV11] manages to prove
that the attractor of an IFS is obtained as the limit of a random orbit. The case of
place-dependent probabilities is for example considered in [BDEG88, Sza03].

Inspired by the thermodynamical formalism for expanding dynamical systems, sta-
tistical properties (e.g. Central Limit Theorem, Invariance Principle) where studied in
[Pei93, Pol01, Wal07, SW13]. Our strong reliance on transfer operators is quite similar
in spirit, with the same inspiration from expanding dynamical systems, but the present
paper focuses on different results.

1.2 Linear response for Bernoulli convolutions

The Bernoulli convolution µβ (where β ∈ (0, 1)) is defined as the stationary measure of
the following classical IFS (Φλ, η):

I = {0, 1}, η({0}) = η({1}) =
1
2

φλ
0(x) = λx, φλ

1(x) = λx+ (1 − λ) ∀x ∈ R.

(The precise value 1 − λ of the translation part in φλ
1 has no particular relevance —as

soon as it is not zero— with this value the attractor is [0, 1] for all λ > 1
2
, but it bears

no consequence on the result below.)
We shall prove in Section 6 that the map λ 7→ µλ is Lipschitz in the Wasserstein

distances Wq of all exponents q; for q > 1, thanks to the differentiation theorem of
Ambrosio, Gigli and Savaré [AGS08] this implies an almost-everywhere linear response
formula1: the map λ 7→ µλ can be differentiated in some precise sense at almost-all λ,
and while we do not get an explicit expression for the differential we show that it takes
a specific form. We state here the result with q = 2, see Corollary 6.6 for a more general
result. Let Id denote the identity map of R, so that for a function w and number x, ε
we have (Id +εw)(x) = x+ εw(x). Let ϕ∗µ denote the push-forward of a measure µ by
a map ϕ.

Corollary 1.1. The family of Bernoulli convolutions (µλ)λ∈(0,1) is differentiable al-
most everywhere in the quadratic Wasserstein space, meaning that there exist a family
(vλ)λ∈(0,1) of L2(µλ) functions such that for Lebesgue-almost all λ ∈ (1

2
, 1):

W2

(

µλ+ε, (Id +εvλ)∗µλ

)

= o(ε) as ε → 0 (2)

As a consequence, there exist a family (wλ)λ∈( 1

2
,1) of measurable functions and a Lebesgue-

negligible set E such that for all λ ∈ (1
2
, 1) \ E and for all smooth compactly supported

1This terminology has been coined in dynamical systems, see e.g. [Rue98, Rue09, BS12].
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f : R → R,
d
dt

∣

∣

∣

∣

t=λ

∫

f dµt =
∫ 1

0
f ′(x)wλ(x) dx.

Moreover, for Lebesgue-almost all λ > 1/
√

2 we have wλ ∈ Lq([0, 1]) for all q > 1.

2 Notation and definition of Wasserstein distances

Let us now introduce briefly the Wasserstein distances originating in optimal trans-
portation theory. We only mention here statements that will be used several times or
are relevant to several parts of the text. On several occasions below we will use results
from the literature in a crucial way without giving their full statements; we shall only
do so when we can give a precise reference, use the result as it is stated without mod-
ification, and when restating it would be somewhat redundant with the corollary we
get from it. This makes the present article not as self-contained as it could be, but is
consistent with the purpose of showing what optimal transportation can bring to the
subject and encourage the reader to learn more about it. For details and proofs of the
claims made in this section, see for example [Vil09].

Let us fix a reference point x0 ∈ X. This choice can be arbitrary and has no conceptual
bearing, but can be subject to optimization in some cases. For each q ∈ (0,+∞), the
q-th moment of µ ∈ P(X) is

mq
x0

(µ) :=
∫

d(x, x0)q dµ(x) ∈ [0,+∞].

The set of probability measures µ of finite q-th moment is denoted by Pq(X) and does
not depend on x0.

Given measures µ0, µ1 ∈ P(X), the set of transport plans or couplings is the set
Γ(µ0, µ1) of measures γ ∈ P(X×X) such that γ(A×X) = µ0(A) and γ(X×B) = µ1(B)
for all measurable A,B ⊂ X. The number γ(A × B) can be interpreted as the amount
of mass moved from A to B under the plan γ.

One defines the total cost and Wasserstein distance of exponent q between two prob-
ability measures by:

Cq(ν0, ν1) = inf
γ∈Γ(ν0,ν1)

∫

d(x, y)q dγ(x, y)

Wq(ν0, ν1) = Cq(ν0, ν1)
min(1, 1

q
).

Observe that the Wassertein distance of exponent q < 1 is actually the Wassertein
distance of exponent 1 of (X, dq). The cost and the Wasserstein distance are finite as
soon as µ0, µ1 ∈ Pq(X), and (Pq(X),Wq) is a complete metric space. Convergence in
the Wasserstein distance is stronger than weak-∗ convergence when X is not compact;
if X is compact, then Wq metrizes the weak-∗ topology.

Note that when µ0 = δx is a Dirac mass, there is only one possible coupling: Γ(δx, µ1) =
{δx ⊗ µ1}; therefore the q-th moment of µ can be expressed as mq

x0
(µ) = Cq(δx0

, µ).
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We denote Lip(φ) the Lipschitz constant of a map φ : X → R, i.e.

Lip(φ) = inf
{

C ≥ 0: |φ(x) − φ(y)| ≤ Cd(x, y) ∀x, y ∈ X
}

∈ [0,+∞].

The Kantorovich duality expresses that W1 coincides with the value of a “dual” opti-
mization problem:

W1(µ0, µ1) = sup
Lip(f)≤1

∣

∣

∣

∫

f dµ0 −
∫

f dµ1

∣

∣

∣.

Similarly, for all q < 1 the Wasserstein distance Wq can be expressed as the maximal
differences between the integrals of q-Hölder functions with Hölder constant 1, since
q-Hölder functions are precisely the Lipschitz function of the metric dq.

3 Wasserstein contraction and its consequences

Under suitable assumptions, one can prove that the dual transfer operator associated to
an IFS is contracting in some Wasserstein distance. The completeness of the Wasserstein
spaces thus makes it easy to prove existence and uniqueness of a stationary measure
in Pq(X) (some technicalities are needed to prove uniqueness on the whole of P(X);
Huntchinson restricts to compactly supported stationary measures). Later we shall also
use this contraction property to get Lipschitz continuity of the stationary measure under
perturbation of the IFS.

3.1 Contracting dual operator

We consider the “dual transfer operator” L∗ defined on P(X) by

L∗ µ =
∫

(φi)∗µ dη(i),

i.e. L∗ µ is the law of xn+1 if (xn)n is a Markov chain jumping from x to φi(x) with
probability dη(i) and xn ∼ µ. A stationary measure is precisely a µ ∈ P(X) such that
L∗ µ = µ.

The “transfer operator” (also known as the Markov operator), acting for example on
the space of bounded measurable functions X → R, is defined by

L f(x) =
∫

f ◦ φi(x) dη(i).

It is a positive operator fixing each constant function, so that when a ≤ f ≤ b with
a, b ∈ R, then also a ≤ L f ≤ b. The duality relation between L and L∗ is

∫

f d(L∗ µ) =
∫

L f dµ

and is a direct consequence of Fubini’s theorem.
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The dual transfer operator has a natural extension to couplings, which we denote in
the same way: given γ ∈ Γ(µ0, µ1), we define

L∗ γ =
∫

(φi × φi)∗γ dη(i) ∈ Γ(L∗ µ0,L
∗ µ1).

We first recover the following slight extension of the main results of [BE88], the dif-
ference being that only finite index sets where considered there. The first hypothesis
requires the IFS to be contracting on Lq average, while the second ensures that the maps
do not shift some point too much (this was automatically granted in the finite index case,
see Section 3.3 for examples showing the importance of this second hypothesis).

Theorem 3.1 (variant of Barnsley, Elton 1988). Let (Φ, η) be a IFS on a complete
metric space (X, d) and fix any x0 ∈ X. Assume that for some q > 0, A > 0, ρ ∈ (0, 1)
it holds

∫

d(φi(x), φi(y))q dη(i) ≤ ρ d(x, y)q ∀x, y ∈ X (3)
∫

d(x0, φi(x0))q dη(i) ≤ A. (4)

Then (Φ, η) has a unique stationary measure µ ∈ P(X); moreover µ has finite q-th
moment:

mq
x0

(µ) ≤



























A

1 − ρ
when q ≤ 1

A
(

1 − ρ
1

q

)q when q ≥ 1.

The proof is split into several lemmas. It has some similarity with the original proof
of Barnsley and Elton, our point here being to show that the Wasserstein distances are
quite convenient, and enable us to use the dual transfer operator throughout the proof
without introducing backward iterations; see also [Ios09] where a slightly different metric
is used.

Lemma 3.2. The dual transfer operator preserves Pq(X) and is a contraction of ratio

no more than ρ̄ := ρmin(1, 1

q ).

Proof. Let µ0, µ1 ∈ Pq(X) and choose an optimal coupling γ ∈ Γ(µ0, µ1) for Wq. Then
∫

d(x, y)q d(L∗ γ)(x, y) =
∫∫

d(φi(x), φi(y))q dη(i) dγ(x, y)

≤ ρ
∫

d(x, y)q dγ(x, y)

so that Wq(L
∗ µ0,L

∗ µ1) ≤ ρ̄Wq(µ0, µ1).
In particular, all elements of Pq(X) are sent a finite Wq distance from L∗ δx0

and we
only have left to prove that L∗ δx0

∈ Pq(X), which follows from (4):

Cq(δx0
,L∗ δx0

) =
∫

d(x, y)q d(δx0
⊗ L∗ δx0

)(x, y) =
∫

d(x0, φi(x0)) dη(i) ≤ A.
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Lemma 3.3. There is a unique stationary measure in Pq(X). Moreover for all ν ∈
Pq(X), we have L∗k ν → µ in the distance Wq, exponentially fast.

Proof. Follows from Lemma 3.2 and the Banach fixed point theorem.

Lemma 3.4. Lk f(x) → ∫

f dµ for all continuous bounded functions f : X → R and for
all x ∈ X.

Proof. Since δx ∈ Pq(X),

Lk f(x) =
∫

Lk f dδx =
∫

f d(L∗k δx) →
∫

f dµ.

Lemma 3.5. Every stationary measure has finite q-th moment, therefore there is a
unique stationary measure in P(X).

Proof. For each n ∈ N, define a continuous bounded function by

fn(x) = min(d(x0, x)q, n).

Let µ′ ∈ P(X) be a stationary measure, the q-th moment of which we do not assume to
be finite. For all n, k ∈ N,

∫

fn dµ′ =
∫

fn d(L∗k µ′) =
∫

Lk fn dµ′.

Since Lk fn is bounded between 0 and n for all k, we can apply the dominated convergence
theorem as k → ∞, so that by Lemma 3.4

∫

fn dµ′ =
∫

lim
k→∞

Lk fn dµ′ =
∫
(
∫

fn dµ
)

dµ′ =
∫

fn dµ ≤
∫

d(x0, x)q dµ < ∞.

The monotone convergence theorem applied to fn as n → ∞ then shows that
∫

d(x0, x)q dµ′ ≤
∫

d(x0, x)q dµ < ∞,

so that µ′ ∈ Pq(X). Since both µ and µ′ are stationary measures of finite q-th moment,
Lemma 3.3 shows that µ′ = µ.

Lemma 3.6. The unique stationary measure µ satisfies mq
x0

(µ) ≤ A/(1 − ρ̄)max(1,q).

Proof. Setting Ā = Amin(1, 1

q ) and using L∗ µ = µ we get:

Wq(δx0
, µ) ≤ Wq(δx0

,L∗ δx0
) + Wq(L

∗ δx0
,L∗ µ)

≤ Ā+ ρ̄Wq(δx0
, µ)

(1 − ρ̄) Wq(δx0
, µ) ≤ Ā.

If q ≤ 1, Ā = A and ρ̄ = ρ; we get
∫

d(x0, x)q dµ ≤ A/(1 − ρ). If q ≥ 1; Ā = A
1

q and

ρ̄ = ρ
1

q and we get
(

∫

d(x0, x)q dµ
)

1

q ≤ A
1

q /(1 − ρ
1

q ).
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Theorem 3.1 follows at once from Lemmas 3.3, 3.5 and 3.6.
As an illustration, let us consider a simple case studied for example in [BMS06, AH16].

For each ω = (i1, . . . , in) ∈ {0, 1}n we set φω = φi1
◦ φi2

◦ · · ·φin
(here the order of

composition, forward or backward, has no particular relevance).

Corollary 3.7. Let a ∈ (0, 1) and b ∈ (1, 1
a
). The IFS on the line given by

I = {0, 1}, ηp({0}) =
1

2
ηp({1}) =

1

2
φ0(x) = ax φ1(x) = bx+ 1 ∀x ∈ R

(5)

has a unique stationary measure µ, which has finite moments of all orders q ∈ (0, q0)
where q0 is the unique solution in (0,+∞) of aq0 + bq0 = 2. More precisely

mq
0(µ) ≤ 2

2 − (aq + bq)
.

Moreover, for all q ∈ (0,min(1, q0)), all q-Hölder-continuous function f : R+ → R and
all x0,

∣

∣

∣

∣

1

2n

∑

ω∈{0,1}n

f(φω(x0)) −
∫

f dµ

∣

∣

∣

∣

≤ Cρn (6)

where ρ = 1
2
(aq + bq) < 1 and C = Holq(f)/(1 − ρ).

We write Holq(f) for the least possible Hölder constant of f ; note that we ask f to
be globally q-Hölder, implying it has a growth at infinity of the order of xq at most. Of
course, unbalanced versions of this example (i.e. with η({0}) 6= η({1})) can be studied
in the same way.

Proof. First note that the function q 7→ aq + bq is convex, and the assumptions ensure
that it is decreasing on some interval (0, q1) and goes to +∞ when q → +∞, so that
this function takes the value 2 at exactly two points, 0 and q0.

For all q > 0, we have (4) with A = 1 and
∫

|φi(x) − φi(y)|q dη(i) =
1

2
(aq + bq)|x− y|q

so that when q < q0, (3) is satisfied with ρ = 1
2
(aq + bq). The claim on existence,

uniqueness and moments of µ thus follows from Theorem 3.1.
The convergence of empirical averages of f toward its integral with respect to µ follows

from Lemma 3.2, observing
1

2n

∑

ω∈{0,1}n

f(φω(x0)) = Ln f(x0).

Indeed as in the proof of Lemma 3.4 we have
∣

∣

∣Ln f(x0) −
∫

f dµ
∣

∣

∣ =
∣

∣

∣

∫

f d(L∗n δx0
) −

∫

f dµ
∣

∣

∣

≤ Holq(f) Wq(L
∗n δx0

, µ)

≤ Holq(f)ρn Wq(δx0
, µ).

and Wq(δx0
, µ) = mq

x0
(µ) ≤ 1

1−ρ
.
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3.2 Some simple tools

We present here a few statements that prove convenient to apply Theorem 3.1.

Lemma 3.8. If (Φ, η) satisfies (3) and (4), then for all q′ ∈ (0, q) it also satisfies them
with constants q′, ρ′ := ρq′/q and A′ := Aq′/q.

Proof. Follows from the Jensen inequality applied to the concave function r 7→ rq′/q.

The next two complementary results enable us to reduce to other “contracting on
average” hypotheses, including the one used for example in [DF99]. Similar lemmas can
be found in [BE88] in the case of finite index set.

Lemma 3.9. If (Φ, η) satisfies
∫

log Lip(φi) dη(i) < 0 and ∃p > 0,
∫

Lip(φi)
p dη(i) < +∞,

then there exists q > 0, ρ ∈ (0, 1) such that (3) holds.

Proof. The idea is simply to differentiate
∫

Lip(φi)
t dη(i) with respect to t at t = 0; we

shall use truncation to differentiate under the integral sign.
For all n ∈ N, consider the functions fn : I → R and Fn : (0, p] → R defined by

fn(i) = max(Lip(φi), 1/n) and Fn(t) =
∫

fn(i)t dη(i).

Since − logn ≤ log fn(i) ≤ 1
p

Lip(φi)
p for all i, n, the functions log fn are η-integrable.

The monotone convergence theorem implies that
∫

log fn(i) dη(i) →
∫

log Lip(φi) dη(i) ∈ [−∞, 0)

so that for some n ∈ N we have
∫

log fn(i) dη(i) ∈ (−∞, 0). Now Fn(0) = 1 and for all
t ∈ [0, p

2
]:

− log(n) max
(

1, fn(i)
p

2

)

≤ d

dt
fn(i)t = log fn(i) · fn(i)t ≤ 2

p
fn(i)t+ p

2

so that d
dt
fn(i)t is η-integrable, uniformly in t (n being fixed above). The function Fn is

thus differentiable on [0, p
2
], with F ′

n(0) =
∫

log fn(i) dη(i) < 0. We conclude that there
is some q ∈ (0, p

2
) such that Fn(q) ∈ (0, 1). Now

∫

Lip(φi)
q dη(i) ≤

∫

fn(i)q dη(i) = Fn(q) < 1

which readily implies (3).

Lemma 3.10. Assume that there exist L ≥ 1 and r ∈ (0, 1) such that Lip(φi) ≤ L for
all i ∈ I and

exp
(
∫

log d(φi(x), φi(y)) dη(i)
)

≤ rd(x, y)

for all x, y ∈ X. Then there exists q > 0, ρ ∈ (0, 1) such that (3) holds.
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Proof. Applying the second order Taylor formula with Lagrange remainder to q 7→ aq

ensures that
aq ≤ 1 + q log(a) + Cq2

for all a ∈ (0, L) and all q ∈ (0, 1], where C = sup{a
2
(log a)2 : x ∈ (0, L]}. Fix x 6= y ∈ X

and for all i ∈ I apply this to a = d(φi(x), φi(y))/d(x, y) and integrate with respect to
η to get:

∫
(

d(φi(x), φi(y))

d(x, y)

)q

dη(i) ≤ 1 + q
∫

log
(

d(φi(x), φi(y))

d(x, y)

)

dη(i) + Cq2

≤ 1 + q log(r) + Cq2

where C is independent of x, y. Since log(r) < 0, we can find q such that 1 + q log(r) +
Cq2 < 1 and we are done.

3.3 A heavy tail of translations

To illustrate the role of assumption (4) in Theorem 3.1 let us consider the following
example on [0,+∞):

I = N, η({n}) = pn,

∀n > 0, ∀x ∈ R : φn(x) = x+ n, φ0(x) = ax;
(7)

where p0 > 0 and, of course, pn ≥ 0 and
∑

n≥0 pn = 1.
We have good contraction properties: assumption (3) is satisfied for any q > 0 with

ρ = 1 − (1 −aq)p0. As in the previous example, ρ decreases from 1 when q → 0 to 1 −p0

when q → ∞; however the translation part influences the moments of the stationary
measure. By a direct application of Theorem 3.1, we get:

Proposition 3.11. Let q > 0; if
∑

nqpn < +∞ then (7) has a unique stationary measure
µ, and µ has finite q-th moment; if

∑

nqpn = +∞, then any stationary measure of (7)
has infinite q-th moment.

Giving (pn)n a heavy tail and taking a ≪ 1 we get examples with very quick conver-
gence in low-exponent Wasserstein distances but only few finite moments. This begs the
question: what happens when

∑

nqpn = ∞ for all q > 0, e.g. when pn ∼ c/n(log n)2?
Does there exist a stationary measure?

4 Generalized moment estimates

In some cases, the stationary measure of an IFS will not be compactly supported, but
will have finite moments of all order; it then makes sense to develop tools to estimate
exponential, sub-exponential or super-exponential moments. In practice, the following
simple result will be quite efficient.
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Proposition 4.1. Let (Φ, η) be an IFS on X and ϕ, ψ : X → [0,+∞) two functions that
are bounded on every bounded subset of X (usually, they will be of the form h(d(x0, ·))
for some function h). Denote by L the transfer operator, i.e. L f(x) =

∫

f(φi(x)) dη(i).
Assume µ is a stationary measure for (Φ, η) and

∫

ψ dµ < +∞.
If there exist θ ∈ (0, 1) and B ≥ 0 such that for all x ∈ X, Lϕ(x) ≤ θϕ(x) + Bψ,

then
∫

ϕ dµ < +∞ and more precisely
∫

ϕ dµ ≤ B

1 − θ

∫

ψ dµ.

Proof. For all m ∈ [0,+∞), set ϕm(x) = min(ϕ(x), m). Since µ is stationary, L∗ µ = µ
and by positivity

Lϕm ≤ min(Lϕ,m) ≤ min(θϕ+Bψ,m) ≤ min(θϕ,m) +Bψ = θϕm
θ

+Bψ.

Applying duality we get:
∫

ϕm dµ =
∫

ϕm d L∗ µ =
∫

Lϕm dµ ≤
∫

(

θϕm
θ

+Bψ
)

dµ

from which we deduce ∫

(

ϕm − θϕm
θ

)

dµ ≤ B
∫

ψ dµ.

For each x ∈ X, the function m 7→ ϕm(x) − θϕm
θ

(x) is non-decreasing and converges to
(1 − θ)ϕ(x). The monotone convergence theorem ensures that we can pass to the limit
in the above inequality, leading precisely to the claimed inequality.

Let us now treat a specific example for which to my knowledge no precise tail estimate
has been derived yet. For p, a ∈ (0, 1), consider the IFS given by

I = {0, 1}, η({0}) = p η({1}) = 1 − p

φ0(x) = ax φ1(x) = x+ 1 ∀x ∈ R.
(8)

When φ0 and φ1 are seen as Möbius transformations (i.e. extended as homography of the
real projective line, with ∞ as a fixed point) or as hyperbolic isometries (i.e. extended
to the Poincaré upper half plane of C with its hyperbolic metric), φ0 is hyperbolic (one
attractive and one repulsive fixed points on the projective line) while φ1 is parabolic (a
single fixed point on the projective line, which is repulsive on one side and attractive
on the other side). This example is interesting in particular because it is not uniformly
contracting, and cannot be made so in any set of coordinates because of the parabolic
fixed point at infinity. Moreover it does not fit into Kesten and Goldie’s framework for
polynomial tail, the parabolic map sits at the frontier between contraction (then the
support would be bounded) and dilation (then only some moments would be finite, and
polynomial tail would be a possibility).

Let µa,p denote the unique stationary measure of this IFS; it is concentrated on
[0,+∞). Its local structure have for example been studied in [NSB02, AH16]. The-
orem 3.1 shows that µa,p has finite moment of all orders. Indeed (3) and (4) are satisfied
for all q ≥ 1 with x0 = 0, ρ = 1 − p+ paq (which is less than 1 since a < 1), A = 1 − p.
Since the maps of the IFS are affine, the transfer operator will behave very nicely with
exponentials, and we get an explicit formula for the exponential moments.
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Corollary 4.2. For all p, a ∈ (0, 1) and all b < log 1
1−p

,

∫

ebx dµa,p(x) =
∞
∏

k=0

p

1 − (1 − p)eakb
< ∞.

In particular there is a constant C(a, p) independent of b such that

∫

ebx dµa,p(x) ≤ C(a, p)

1 − (1 − p)eb
.

Proof. Let L be the dual transfer operator and ϕb(x) = ebx; then

Lϕb(x) = p(ϕb(x))a + (1 − p)ebϕb(x). (9)

Pick any θ strictly between (1 − p)eb and 1: for some C > 0 (which could be computed
explicitly), Lϕb(x) ≤ θϕb(x) whenever x ≥ C. Since ϕb is increasing, Lϕb ≤ θϕb + ebC

and we can thus apply Proposition 4.1 with ψ ≡ 1, obtaining

∫

ebx dµa,p ≤ ebC

1 − θ
< ∞.

This shows that ϕb and ϕab are integrable with respect to µa,p; using
∫

ϕb dµa,p =
∫

ϕb d L∗ µa,p =
∫

Lϕb dµa,p

and (9) we get
∫

ϕb dµa,p = p
∫

ϕab dµa,p + (1 − p)eb
∫

ϕb dµa,p

∫

ϕb dµa,p =
p

1 − (1 − p)eb

∫

ϕab dµa,p

Applying this equality to ϕakb, an induction yields

∫

ϕb dµa,p =

(

K−1
∏

k=0

p

1 − (1 − p)eakb

)

∫

ϕaKb dµa,p

for all K ∈ N. We only have left to let K → ∞: indeed ϕaKb → 1 and the monotone
convergence theorem gives the desired formula.

The upper bound is then obtain by using akb ≤ ak log 1
1−p

and setting

C(a, p) = p
∞
∏

k=1

p

1 − (1 − p)1−ak ;

observe for the convergence that the logarithm of the k-th factor is asymptotic to
1−p

p
(log 1

1−p
)ak.

We obtain from this an exponential tail estimate for µa,p, sharp up to a linear factor.
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Corollary 4.3. For all p, a ∈ (0, 1), there exist c, C > 0 such that for all t ≥ 1:

c(1 − p)t ≤ µa,p

(

[t,+∞)
)

≤ Ct(1 − p)t.

Proof of Corollary 4.3. The lower bound follows from the simple observation that for
all n ∈ N we have µa,p([n + 1, n + 2]) ≥ (1 − p)µa,p([n, n + 1]), thus µa,p([n, n + 1]) ≥
(1 − p)nµa,p([0, 1]). Since µa,p is a probability measure, there is some n ∈ N such that
µa,p([0, a−n]) > 0, and µa,p([0, 1]) ≥ pnµa,p([0, a−n]) > 0.

The upper bound follows from Corollary 4.2 and Chebyshev’s inequality: for all t > 0
and all b < log 1

1−p
,

µa,p([t,+∞)) ≤ C(a, p)
e−bt

1 − (1 − p)eb
.

Given t, we can choose b in order to optimize the above inequality. An elementary
computation leads to take

eb =
1

1 − p
· t

1 + t
,

yielding the bound µa,p([t,+∞)) ≤ C(a, p)p(1 + 1
t
)t(1 + t)(1 − p)t = O

(

t(1 − p)t
)

.

Problem 4.4. Find an asymptotic for the tail of µa,p, in the spirit of [Kes73] and [Gol91].
Note these works give (in a different context) a precise asymptotic µ([t,+∞)) = f(t) +
o(f(t)) with f a polynomial function; this can thus be written µ([t,+∞)) = f(t+ o(t)).
While Corollary 4.3 already gives an estimation of the form µa,p([t,+∞)) = g(t+ o(t)),
it might be difficult to get µa,p([t,+∞)) = g(t) + o(g(t)) since g is exponential and the
sensitivity on t is thus strong.

5 Convergence rate for the empirical measure

We now turn to the “chaos game” [BDM+88]: (xk)k∈N is a Markov chain obtained by
choosing randomly independently indices (ik)k≥1 with law η, and setting xk = φik

(xk−1);
we shall say that (xk)k∈N is driven by (Φ, η). Quantitative results on the convergence
of the laws of the xk are abundant; formula (6) and Theorem 7.2 are examples, see also
[MS10] for IFS satisfying a weak, local contraction assumption. We are interested here
in the behavior of the empirical averages (also known as Birkhoff sums in the field of
dynamical systems)

1

n

n
∑

k=1

f(xk) =: µ̂n(f)

for a given suitable ‘observable” f , and of the empirical measure µ̂n. The ergodic theo-
rem of Elton [Elt90] states that, under hypotheses similar to those of Theorem 3.1, µ̂n

converges almost surely to the stationary measure µ in the weak-∗ topology. We shall
be interested in quantitative ergodicity, i.e. in giving explicit estimates on the rate of
convergence. For this, we will have to restrict to observables f with some regularity,
and slower rates are expected for the convergence of µ̂n in the Wasserstein metric than
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for the empirical average of a single function. Indeed, the former gives a simultaneous
control for all function in a certain class, and it is quite likely that the empirical averages
of some of these deviate from the standard long-term behavior. However, by asking for
enough regularity we will be able to get a uniform rate close to 1/

√
n, which in general

cannot be surpassed even for a single f because of the Central Limit Theorem.
Before turning to this, let us mention that while µ̂n(f) cannot in general converge to

µ(f) at a faster rate than 1/
√
n, one can get strong concentration results, i.e. prove

that µ̂n(f) is very likely to be very close to its expectation. Indeed, in a very general
setting Ollivier introduced in [Oll09] Markov chains of positive Ricci curvature. The
inspiration comes from Riemannian geometry, where positive Ricci curvature can roughly
be translated to the following property: given two points x, y, the uniform measures on
the balls B(x, r), B(y, r) are closer one to another (in Wasserstein distance) than x to y,
by a factor ρ < 1. On such a manifold, the Markov chain that jumps from x to a uniform
random point in B(x, r) will thus have a unique stationary measure with exponential
convergence. Ollivier’s definition simply generalizes this to arbitrary Markov chains
on metric spaces. That the dual transfer operator is a contraction in the Wasserstein
distance Wq for some q ∈ (0, 1] is a property equivalent to (xk)k∈N having positive Ricci
curvature in the sense of Ollivier on the space (X, dq), and implies strong concentration
properties of the empirical averages µ̂n(f) whenever f : X → R is a q-Hölder function;
see [JO10] for effective and completely explicit results (that depends on many specific
quantities that may vary between examples).

Let us consider the following metrics between measures defined on Rd:

‖ν0 − ν1‖Cs
1
= sup

f∈Cs
1

∣

∣

∣

∫

f dν0 −
∫

f dν1

∣

∣

∣

where s is any positive integer and Cs
1 is the set of Cs−1 functions Rd → R with all

derivatives not greater than 1, and with their derivatives of order (s − 1) 1-Lipschitz.
In particular, ‖·‖C1

1
= W1. The following result shows that we can control the empirical

averages of all observables of Cs
1 simultaneously, with very good bounds when s is large

enough compared to the dimension.

Theorem 5.1. Let (Φ, η) be an IFS on Rd satisfying (3) and (4) with q = 1 and
preserving a compact domain D of Rd.

Let (xk)k∈N be a Markov chain driven by (Φ, η), with x0 ∈ D, and consider the em-
pirical measures

µ̂n :=
1

n

n
∑

k=1

δxk
.
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Then there exists a constant C > 0 such that for all n ∈ N,

E

[

‖µ̂n − µ‖Cs
1

]

≤ C



















































(logn)
d

2s+1

√
n

when 2s > d

log n√
n

when 2s = d

(logn)d−2s+ s
d

n
s
d

when 2s < d.

(10)

Proof. Formula (10) is the conclusion of Theorem A in [Klo18a], whose hypotheses are
compactness of the domain and exponential contraction of the Markov chain in the
metric W1, which follows from Lemma 3.2 with q = 1.

Remark 5.2. These rates cannot be improved, except possibly for the logarithm factors
(see [Klo18a] for this and other considerations, including concentration bounds P[‖µ̂n −
µ‖Cs

1
> Mn] ≤ εn for appropriate rates Mn, εn).

Remark 5.3. If for some ρ ∈ (0, 1) every map φi of Φ is ρ-Lipschitz and {‖φi(0)‖ : i ∈ I}
is bounded, then there is a compact domain preserved by Φ, so that the hypotheses of
Theorem 5.1 are satisfied. Indeed let ∆ = sup{‖φi(0)‖ : i ∈ I} and let B be the ball B
of center 0 and radius R = ∆/(1 − ρ). Whenever ‖x‖ ≤ R,

‖φi(x)‖ ≤ ‖φi(x) − φi(0)‖ + ‖φi(0)‖ ≤ ρ‖x‖ + ∆ ≤ R

so that φi(B) ⊂ B for all i.

Remark 5.4. Relaxing the assumption to any number q ∈ (0, 1] is possible, but needs
some adaptation from [Klo18a]. Theorem A from there asks contraction of L∗ in the W1

metric, but the proof actually first reduces to contraction in the Wα for some α ∈ (0, 1).
Later α is optimized, but the optimal values goes to zero when n → ∞, so only the
value of the constant C would affected.

Dispensing from the compactness assumption is also certainly possible, but the rates
would necessarily be altered given the stationary measure might not have finite moments
of all orders (without some moment condition, one cannot expect even an optimal ap-
proximation by a discrete measure supported on n point to achieve the rate 1/n

1

d in
W1 when d > 2; see [FG15] and [DM19] for rates of convergence of empirical measures
under various moment assumptions).

6 Dependence of the stationary measure on the IFS and

linear response

In this section we seek to quantify how close the stationary measures of two slightly
different IFS must be. To this end, we need to introduce a way to quantify the distance
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between IFS; it is both natural and effective to use an adaptation of Wasserstein dis-
tances. There are two points to consider in this adaptation: first, which metric to use
for maps; second, how to take into account that we might consider IFS with different
index sets. The second point is easily dealt with, by considering couplings γ ∈ P(I0 ×I1)
of measures η0 ∈ P(I0) and η1 ∈ P(I1). There is much flexibility to address the first
point; taking the uniform distance d∞(φ, ψ) = supx∈X d(φ(x), ψ(x)) is ill suited to the
non-compact case, as for example the map x 7→ ax + b acting on R would not depend
continuously on the parameters a, b: changing a the slightest bit would yield a map
infinitely far from the original one. We therefore consider a pointed Lipschitz distance,
notably suitable for Lipschitz IFS:

dx0
(φ, ψ) := min

{

ε ≥ 0
∣

∣

∣∀x ∈ X : d(φ(x), ψ(x)) ≤ ε+ εd(x, x0)}

= sup
x∈X

d(φ(x), ψ(x))

1 + d(x, x0)
.

This defines a metric on the space of Lipschitz maps X → X, and we construct from it
the Wasserstein-like distance Wx0,q (possibly taking the value ∞) between IFS:

Cx0,q

(

(Φ0, η0), (Φ1, η1)
)

:= inf
γ∈Γ(η0,η1)

∫

dx0
(φi, ψj)

q dγ(i, j)

Wx0,q

(

(Φ0, η0), (Φ1, η1)
)

:= Cx0,q

(

(Φ0, η0), (Φ1, η1)
)min(1, 1

q
)
.

6.1 Lipschitz regularity of the stationary measure

Theorem 6.1. Consider two IFS (Φ0, η0) and (Φ1, η1) such that the first one satisfies
(3) and (4) for some q, ρ0, A0 (and thus has a unique stationary measure µ0), and
such that the second one has at least one stationary measure µ1 with finite q-th moment
mq

x0
(µ1). Then

Wq(µ0, µ1) ≤ C Wx0,q

(

(Φ0, η0), (Φ1, η1)
)

where C =































1 +mq
x0

(µ1)

1 − ρ0
when q ≤ 1

21− 1

q
(1 +mq

x0
(µ1))

1

q

1 − ρ
1

q

0

when q > 1.

In particular, if we fix Φ = Φ0 = Φ1 and restrict to measures η satisfying (3) and (4)
the map η 7→ µ (which is well-defined by Theorem 3.1) is locally Lipschitz.

Remark 6.2. When the second IFS satisfies (3) and (4) with constants q, ρ1, A1, we can
choose to apply the result after exchanging them to optimize; however using only the
moment estimate of Theorem 3.1 this is expected to only provide small improvements,
since both spectral gaps (i.e. 1 − ρ0 and 1 − ρ1) are then involved in denominators.
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Remark 6.3. When the second ISF has several stationary measures with finite q-th
moment, Theorem 6.1 shows that they all lie within small distance of µ0.

Remark 6.4. For a fixed family of contractions Φ and varying probabilities ηt, Theorem
6.1 gives a Lipschitz regularity that is stronger than what can be obtained in a similar
case, for the thermodynamical formalism of expanding dynamical systems (see Section
6 of [GKLM18]). When considering probabilities ηt(i, x) that depend on the point x and
a time parameter t, the family (µt) of stationary measures should thus not be expected
to be more than Hölder-continuous with respect to t.

Let us now turn to the proof of Theorem 6.1. We denote by Lk the transfer operator
of the IFS (Φk, ηk) (k ∈ {0, 1}).

Lemma 6.5. For all IFS (Φ0, η0), (Φ1, η1) and all ν ∈ Pq(X)

Wq(L
∗
0 ν,L

∗
1 ν) ≤ DWx0,q

(

(Φ0, η0), (Φ1, η1)
)

where D =











1 +mq
x0

(ν) when q ≤ 1

21− 1

q (1 +mq
x0

(ν))
1

q when q > 1.

Proof. If Cx0,q

(

(Φ0, η0), (Φ1, η1)
)

= ∞, the statement is emptily true. Assume otherwise,
and let γ ∈ Γ(η0, η1) be an optimal coupling. Let ν̄ = (Id, Id)∗ν ∈ P(X × X) be the
trivial coupling of ν with itself. Then γ̄ :=

∫

(φi, ψj)∗ν̄ dγ(i, j) is a coupling of L∗
0 ν and

L∗
1 ν, so that

Cq(L
∗
0 ν,L

∗
1 ν) ≤

∫

d(x, y)q dγ̄(x, y)

=
∫∫

d(φi(x), ψj(y))q dν̄(x, y) dγ(i, j)

=
∫∫

d(φi(x), ψj(x))q dν(x) dγ(i, j)

≤
∫∫

(

dx0
(φi, ψj)(1 + d(x, x0))

)q
dν(x) dγ(i, j)

≤
∫

dx0
(φi, ψj)

q dγ(i, j)
∫

(1 + d(x, x0))
q dν(x).

When q ≤ 1, using (1 + r)q ≤ 1 + rq we obtain

Wq(L
∗
0 ν,L

∗
1 ν) ≤ Wx0,q

(

(Φ0, η0), (Φ1, η1)
)

∫

(1 + d(x, x0)q) dν(x)

≤ Wx0,q

(

(Φ0, η0), (Φ1, η1)
)(

1 +mq
x0

(ν)
)

while when q ≥ 1, using (1 + r)q ≤ 2q−1(1 + rq) we get

Wq(L
∗
0 ν,L

∗
1 ν) ≤ Wx0,q

(

(Φ0, η0), (Φ1, η1)
)

(

2q−1
∫

(1 + d(x, x0)q) dν(x)
)

1

q

≤ Wx0,q

(

(Φ0, η0), (Φ1, η1)
)

· 21− 1

q (1 +mq
x0

(ν))
1

q .
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Proof of Theorem 6.1. Apply Lemma 6.5 to ν = µ1 and use that L∗
0 is a contraction

(Lemma 3.2, recall ρ̄0 = ρ
min(1, 1

q
)

0 ):

Wq(µ0, µ1) ≤ Wq(µ0,L
∗
0 µ1) + Wq(L

∗
0 µ1, µ1)

= Wq(L
∗
0 µ0,L

∗
0 µ1) + Wq(L

∗
0 µ1,L

∗
1 µ1)

≤ ρ̄0 Wq(µ0, µ1) +DWx0,q

(

(Φ0, η0), (Φ1, η1)
)

Wq(µ0, µ1) ≤ D

1 − ρ̄0

Wx0,q

(

(Φ0, η0), (Φ1, η1)
)

.

6.2 Linear response

The Rademacher theorem ensures that Lipschitz functions [a, b] → R are differentiable
Lebesgue almost-everywhere; a similar result has been proven by Ambrosio, Gigli and
Savaré [AGS08] for maps [a, b] → Pq(R

n) for q > 1, where one has of course to make
precise what “differentiable” means. Together with Theorem 6.1, this provides a “linear
response formula” in many cases. We use u · w to denote the scalar product of two
vectors u, w ∈ Rn.

Corollary 6.6 (Linear Response). Let (Φt, ηt)t∈[a,b] be a curve of IFS on R
n (endowed

with the Euclidean metric, the origin O serving as reference point), assume that for some
q > 1,

(i). t 7→ (Φt, ηt)t is Lipschitz in WO,q,

(ii). there exist ρ+ ∈ (0, 1) and A+ > 0 such that for all t ∈ [a, b] the IFS (Φt, ηt)
satisfies hypotheses (3) and (4) with parameters q, ρt ≤ ρ+ and At ≤ A+

and let µt denote the unique stationary measure of (Φt, ηt). Then there exist a family
(vt)t∈[a,b] of measurable vector fields on Rn such that:

(iii). for Lebesgue almost all t, ‖vt‖ ∈ Lq(µt), and |vt|q−2vt can be approximated by
gradients of smooth functions Rn → R in the Lq′

(µt) norm where q′ = q/(q − 1),

(iv). d
dt
µt + ∇·(vtµt) = 0 weakly on R × R

n, i.e. for all smooth compactly supported
F : R × Rn:

∫

R

∫

Rn

(

d

dt
F (t, x) + ∇x F (t, x) · vt(x)

)

dµt dt = 0,

(v). for Lebesgue almost all t0,

Wq

(

µt+ε, (Id +εvt)∗µt

)

= o(ε).
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As a consequence of (v), at almost every t0 ∈ [a, b], for all compactly supported smooth
functions f : Rn → R:

d

dt

∣

∣

∣

∣

t=t0

∫

f dµt =
∫

∇ f · vt0
dµt0

.

Note that here q > 1 is needed to ensure strict convexity in the optimal transport
problem. Property (iii) may seem rather exotic; it is more easily explained when q = 2:
the approximation of vt by gradient of smooth functions is a way to formulate that the
“curl with respect to µt” of this vector field vanishes, which relates to optimality in
an “infinitesimal” transport problem. On R it is vacuous but in higher dimension it is
important as it ensures uniqueness of vt.

The proof is only an application of some results in [AGS08], but we detail some clas-
sical arguments to better show how optimal transportation is related to linear response
formulas.

Proof. By Theorem 6.1, the family of stationary measures (µt)t∈[a,b] is Lipschitz, in
particular absolutely continuous. Thus Theorem 8.3.1 of [AGS08] applies, giving (iii)
and (iv) (note the formulation (8.1.4) for the interpretation of the continuity equation,
and see above Definition 5.1.11 that Cyl(Rn) is the space of smooth compactly supported
functions). Proposition 8.4.6 of [AGS08] gives (v) and we are left with proving the
differentiation formula for

∫

f dµt.
If we fix f , the weak derivative given in (iv) is sufficient to obtain the derivative

of t 7→ µt(f) almost everywhere; but it could be that the negligible set for which the
formula fails turns out to depend on f . We therefore use (v): fix any t at which it holds
and f a smooth compactly supported function. By Jensen’s inequality, since q > 1 we
have W1(µt+ε, (Id +εvt)∗µt) = o(ε), and since f is Lipschitz the dual formulation of the
Wasserstein distance yields

∫

f dµt+ε =
∫

f(x+ εvt(x)) dµt + o(ε)

The second order Taylor formula ensures that f(x+ εvt(x)) = f(x) + εvt(x) · ∇ f(x) +
O(ε2vt(x)2) where the implied constant is uniform in x. When q ≥ 2, we thus get

∫

f dµt+ε =
∫

f dµt + ε
∫

∇ f · vt dµt +O
(

ε2
∫

v2
t dµt

)

+ o(ε).

with vt ∈ L2(µt), giving the desired derivative at t. When q ∈ (1, 2), we argue as follows.
Let α ∈ (1, 3 − 2

q
) and set Bε = {x ∈ Rn | ε2vt(x)2 > εαvt(x)q} and Gε = Rn \Bε. By

Chebyshev’s inequality,

µt(Bε) = µt({vq > ε−(2−α) q

2−q }) ≤ ε(2−α) q

2−q

∫

vq
t dµt = O(εβ) = o(ε)
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where β = (2 − α) q
2−q

> 1. It follows:

∫

f dµt+ε =
∫

Bε

f(x+ εvt(x)) dµt +
∫

Gε

f(x+ εvt(x)) dµt + o(ε)

= O(µt(Bε)) +
∫

Gε

f dµt + ε
∫

Gε

∇ f · vt dµt + εα
∫

Gε

vq
y dµt + o(ε)

=
∫

f dµt + ε
∫

∇ f · vt dµt +O(µt(Bε)) + o(ε)

=
∫

f dµt + ε
∫

∇ f · vt dµt + o(ε)

as desired.

6.3 The case of Bernoulli convolutions

Corollary 1.1 will follow from Corollary 6.6. We take as reference point x0 = O = 0 ∈ R;
recall that the family (Φλ, η) of IFS defining Bernoulli convolutions is given in Section
1.2.

We start by the following explicit Lipschitz estimate.

Proposition 6.7. For all q ≥ 1 and all λ, λ′ ∈ (0, 1):

Wq(µλ, µλ′) ≤ 2

1 − λ
|λ− λ′|.

In particular, λ 7→ µλ is Lipschitz in the metrics Wq on each interval of the form [0, 1−ε]
where ε > 0.

Proof. Given any q ≥ 1 and λ, λ′ ∈ (0, 1),

dx0
(φλ

0 , φ
λ′

0 ) = dx0
(φλ

1 , φ
λ′

1 ) = |λ− λ′|.

Considering the identity coupling of η with itself, defined by γ({(0, 0)}) = γ({(1, 1)}) = 1
2

and γ({(0, 1)}) = γ({(1, 0)}) = 0, we get W0,q

(

(Φλ, η), (Φλ′

, η)
)

≤ |λ − λ′|; moreover

(Φλ, η) satisfies (3) and (4) with constants ρ = λq and A = 1; and mq
x0

(µλ′) ≤ 1.
Theorem 6.1 then ensures that

Wq(µλ, µλ′) ≤ 21− 1

q 2
1

q

1 − λ
|λ− λ′|.

Proof of Corollary 1.1. Fix any q > 1; as seen above, W0,q

(

(Φλ, η), (Φλ′

, η)
)

≤ |λ − λ′|
and in restriction to any interval [ 1

2
, 1 − ε] with ε > 0 we have (3) and (4) with uniform

bounds ρ+ = (1 − ε)q and A+ = 1.
Corollary 6.6 provides us with a family (vλ)λ∈(0,1) of vector fields on R, which can be

identified with ‖vλ‖ ∈ Lq(µλ) functions, such that for Lebesgue-almost all λ ∈ (0, 1),
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Wq(µλ+ε, (Id +εvλ)∗µλ) = o(ε). When λ > 1
2
, up to further restricting to a subset of full

Lebesgue measure for the parameter λ, Solomyak’s theorem [Sol95] ensures that µλ is
absolutely continuous with respect to the Lebesgue measure; let us denote its density
by gλ. For almost all λ ∈ (1

2
, 1) and all smooth compactly supported test function

f : R → R we get
d

dt

∣

∣

∣

∣

t=λ

∫

f dµt =
∫ 1

0
f ′(x)vλ(x)gλ(x) dx,

which is the desired formula with wλ = vλgλ. Moreover, for almost-all λ > 1/
√

2, gλ is
bounded (Corollary 1 in [Sol95]), implying wλ ∈ Lq(µλ) and then wλ ∈ Lq([0, 1]).

Now, wλ seems to depend on the choice of q. But if w̃λ is another suitable choice for
the same λ (and possibly different q), extending both of them by 0 outside [0, 1], we
have

∫

R
f ′wλ =

∫

R
f ′w̃λ for all test functions f . As a consequence the extensions of wλ

and w̃λ must differ by a constant, and we thus must have wλ = w̃λ. It follows that there
is a single wλ, belonging to all Lq([0, 1]) simultaneously.

7 Stationary measures beyond products

While the case of IFS as defined above, where the randomness is materialized by a
sequence of independent random variables of law η ∈ P(I), is the most commonly
studied, there has been great interest to generalize this setting. A first generalization is
to replace the i.i.d. sequence by a stationary Markov chain; a further generalization is to
draw the infinite word ω = ω0 . . . ωk . . . randomly with law an arbitrary shift-invariant
measure ν ∈ P(IN) – the case of IFS corresponding to the independent Bernoulli product
ν = η⊗N; then one can consider a yet further generalization where the shift is replaced
by an arbitrary measure-preserving dynamical system.

7.1 Skew-products

We still consider (X, d) a complete metric space, and we additionally fix a standard
measure space (Y,A) (i.e. it is isomorphic to [0, 1] with its Borel σ-algebra) equipped
with a probability measure ν, and a ν-preserving map S : Y → Y . A skew-product map
over S with fiber X is a map

Ψ : X × Y → X × Y

(x, y) 7→ (ψy(x), S(y))

where (x, y) 7→ ψy(x) is a measurable map. While, as we have seen above, an IFS can
be studied dynamically by looking at a random orbit x0, xn+1 = φin

(xn) where (in)n≥1

are i.i.d. random variables of law η, in the present setting the corresponding random
sequence of points is given by xn+1 = ψSn(y)(xn) where y is a random element of Y with
law ν, taking the place of the whole sequence (i1, i2, . . . ). In other words, IFS correspond
to the particular case when Y = IN, ν = η⊗N, S is the shift y = (y0, y1, . . . ) 7→ S(y) =
(y1, y2, . . . ) and ψy(x) = φy0

(x). Note that Ψ carries the information of what are X, Y
and S; when we refer to this setting, we shall therefore call (Ψ, ν) a skew product.
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We denote by πX , πY the projection maps from X × Y to each factor; a measure
µ ∈ P(X) is said to be a stationary measure of the skew product (Ψ, ν) when there
exists a measure ν̂ ∈ P(X × Y ) such that:

ν̂ is Ψ-invariant, πY
∗ ν̂ = ν, and πX

∗ ν̂ = µ.

In the case of an IFS, this coincides with the previous definition of stationary measure.
The measure ν̂ as above will be called a lift of ν. The basic question we want to address
under specific assumptions is whether there exist a unique stationary measure; a positive
answer will follow from the uniqueness of the lift of ν.

Definition 7.1. We say that Ψ contracts the fibers whenever there exist ρ ∈ (0, 1) such
that for all y ∈ Y , the map ψy is ρ-Lipschitz.

We say that Ψ has bounded displacement if for some x0 ∈ X, there exist an A > 0
such that the set d(x0, ψy(x0)) ≤ A for all y ∈ Y .

Observe that when (ψy)y∈Y is an equicontinuous family, e.g. when Ψ contracts the
fibers, in the definition of bounded displacement “for some x0” could be equivalently
replaced by “for all x0” (up to changing the value of A).

The main result of this section is the following.

Theorem 7.2. Let Ψ be a skew-product map on X×Y that contracts the fibers and has
bounded displacement. Each S-invariant ν ∈ P(Y ) has a unique lift, and in particular
the skew product (Ψ, ν) has a unique stationary measure µ, which moreover has bounded
support.

Let (xk)k∈N be a stochastic process associated to (Ψ, ν) as above, with x0 independent
from y and of arbitrary law µ̃0 ∈ Pq(X) for some q > 0, and let µ̃k ∈ P(X) be the law
of xk. Then for all k ∈ N,

Wq(µ̃k, µ) ≤ Dρ̃k

where

ρ̃ = ρmin(q,1) ∈ (0, 1), D = mq
x0

(µ̃0)
min(1, 1

q
) +

( A

1 − ρ

)min(1,q)
,

and A, ρ are the constants in the bounded displacement and fiber contraction hypotheses.

7.2 Fiber-wise Wasserstein distance

The main tool to prove Theorem 7.2 is a variation of Wasserstein distance that is adapted
to a projection map and the inverse images of a given measure on its target space. This
notion was at the heart of [Klo18b], from which we adapt the relevant definitions and
properties. Theorem A from [Klo18b] is not immediately applicable here since X need
not be compact, diam(Ψn(X × {y})) might be infinite for all n, and Y is not even a
topological space; but the adaptation is relatively straightforward.

Fix any ν ∈ P(Y ) and let Pν := (πY
∗ )−1(ν) ⊂ P(X × Y ) be the fiber of ν, i.e, the set

of measures on X × Y with second marginal equal to ν. Recalling that we fixed a point
x0 ∈ X, given any σ ∈ Pν and q > 0 we define its q-th moment by

mq
x0

(σ) =
∫

d(x, x0)q dσ(x, y)
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where the integral is over the whole product X × Y but distances are recorded only
“along the fibers”, i.e. over the X factor. We let Pν

q be the subset of Pν consisting of
measures of finite q-th moment (this set does not depend on x0).

The product X2 × Y identifies with what was noted ∆π in [Klo18b] (pairs of point in
the total space that project to the same point on the base Y ); we consider the maps

π02 : (x, x′, y) 7→ (x, y) π12 : (x, x′, y) 7→ (x′, y) π2 : (x, x′, y) 7→ y.

For all σ0, σ1 ∈ Pν let Γν(σ0, σ1) := {γ ∈ P(X2 × Y ) | (π02∗)γ = σ0 and (π12∗)γ = σ1}
(playing the role of Γπ in [Klo18b], where we had chosen to emphasize the projection
map rather than the image measure) and define

Cν
q (σ0, σ1) = inf

γ∈Γν(σ0,σ1)

∫

d(x, x′)q dγ(x, x′, y)

Wν
q (σ0, σ1) =

(

Cν
q (σ0, σ1)

)min(1, 1

q
)
.

The following basic result is proven in the same way as in [Klo18b].

Proposition 7.3. For all σ0, σ1 ∈ Pν, the set Γν(σ0, σ1) is non-empty. If the moments
mq

x0
(σi) are finite for i ∈ {0, 1}, then Wν(σ0, σ1) < ∞. Moreover, if (ξy)y∈Y and (ζy)y∈Y

are the disintegrations of σ0 and σ1 with respect to πY , then

Wν
q (σ0, σ1) =























(
∫

Wq(ξy, ζy)q dν(y)
)

1

q

when q ≥ 1

∫

Wq(ξy, ζy) dν(y) when q ≤ 1.

(11)

Finally, Wν
q is a complete metric on the set Pν

q .

Proof. Let (ξy)y∈Y and (ζy)y∈Y be the disintegrations of σ0 and σ1 with respect to πY

(identifying X with the fibers of πY , (ξy)y∈Y is thus a family of measures on X character-
ized by

∫

f(x, y) dξy(x) dν(y) =
∫

f(x, y) dσ0(x, y) for all continuous bounded functions
f : X × Y → R.)

From any measurable choice of y 7→ γy ∈ Γ(ξy, ζy) (e.g. γy = ξy ⊗ ζy) we can build an
element γ of Γν(σ0, σ1) by setting

∫

f(x, x′, y)dγ(x, x′, y) =
∫∫

f(x, x′, y)dγy(x, x′)dν(y).
In particular Γν(σ0, σ1) is non-empty.

Conversely, given any γ ∈ Γν(σ0, σ1) its disintegration with respect to π2 is a family
(γy)y∈Y of measures on X×X, and by testing γ against integrands of the form f(x)g(y)
and f(x′)g(y) one sees that γy ∈ Γ(ξy, ζy) for ν-almost all y.

Since
∫

d(x, x′)q dγ(x, x′, y) =
∫∫

d(x, x′)q dγy(x, x′) dν(y) ≥ ∫

Cq(ξy, ζy) dµ̌(y), taking
an infimum we get Cν

q (µ0, µ1) ≥ ∫

Cq(ξy, ζy) dµ̌.
For each y, the set of optimal transport plans from ξy to ζy is compact (see e.g. the

proof of Theorem 4.1 in [Vil09]), thus by the measurable selection theorem there is a
measurable family (γy)y∈Y such that for ν-almost all y ∈ Y ,

∫

d(x, x′)q dγy(x, x′) =
Cq(ξy, ζy). It follows Cν

q (σ0, σ1) ≤ ∫

Cq(ξy, ζy) dν and (11) is proven.
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To complete the proof, it remains to be seen that Cν
q (σ0, σ1) < ∞ and that Wν

q is a
metric making Pν

q a complete space. The triangular inequality follows from (11), and
then finiteness is obtained by observing

Wν
q (σ0, σ1) ≤ Wν

q (σ0, δx0
⊗ ν) + Wν

q (δx0
⊗ ν, σ1) = mq

x0
(σ0) +mq

x0
(σ1).

Finally, The Riesz-Fischer Theorem for metric-space valued functions ensures that
Wν

q is a complete metric on Pν
q , seen via disintegration as a closed subset of the space

of maps Y → Pq(X).

7.3 Proof of Theorem 7.2

Let ν be any S-invariant probability measure on Y . We first observe that the fiber
contraction and bounded displacement properties ensure that Ψ∗ preserves Pν

q for all
q. These uniform assumptions also ensure that for some bounded set B ⊂ X, the set
B × Y is an absorbing invariant set, i.e. Ψ(B × Y ) ⊂ B × Y and for all (x, y) ∈ X × Y
there is some k ∈ N such that Ψk(x, y) ∈ B × Y . Let indeed A > 0 be such that for all
y, d(x0, ψy(x0)) ≤ A, fix any ε > 0, set R = (1 + ε)A/(1 − ρ) and let B = B(x0, R) be
the ball of center x0 and radius R in X; then for all x, y ∈ X × Y

d(x0, ψy(x)) ≤ d(x0, ψy(x0)) + d(ψy(x0), ψy(x))

≤ A+ ρd(x0, x).

When x ∈ B, the right-hand side is at most A+ ρR = 1+ερ
1−ρ

A < R, proving the B× Y is
Ψ-invariant. When x /∈ B, we have A < 1−ρ

1+ε
d(x0, x) and the right-hand side is at most

(1 − ρ

1 + ε
+ ρ

)

d(x0, x) =
1 + ερ

1 + ε
d(x0, x)

where 1+ερ
1+ε

< 1, proving the absorbing property with k ≃ log d(x0, x).
Let σ0, σ1 ∈ Pν

q . We consider the map X2 × Y → X2 × Y defined by

Ψ2(x, x′, y) = (ψy(x), ψy(x′), S(y)).

For i ∈ {0, 1} we have πi2 ◦ Ψ2 = Ψ ◦ πi2; as a consequence, for any γ ∈ Γν(σ0, σ1) we
have Ψ2∗γ ∈ Γν(Ψ∗σ0,Ψ∗σ1). Observing

∫

d(x, x′)q dΨ2∗γ(x, x′, y) =
∫

d(ψy(x), ψy(x′))q dγ(x, x′, y)

≤ ρq
∫

d(x, x′)q dγ(x, x′, y)

and taking an infimum, we see that

Wν
q (Ψ∗σ0,Ψ∗σ1) ≤ ρmin(1,q) Wν

q (σ0, σ1),

in particular Ψ∗ induces a contraction on the complete metric space (Pν
q ,W

ν
q ). Therefore,

there exists a unique Ψ-invariant lift ν̂ of ν having finite q-th moment. By considering
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different q, we already see that the measure ν̂ has finite moments of all orders but, since
B × Y is absorbing, any Ψ-invariant measure is concentrated on B × Y . This proves
that ν̂ is the unique Ψ-invariant lift of ν on the whole of Pν , and that its first marginal
µ is supported on a bounded set. Explicitly, by letting ε above go to 0, we obtain that
µ is concentrated on B(x0, A/(1 − ρ)).

Consider now the stochastic process (xk)k∈N. Let σ0 := µ̃0 ⊗ ν be the law of (x0,y);
then the law of (xk, S

k(y)) = Ψk(x0,y) is σk = Ψk
∗(σ0), by definition has first marginal

µ̃k, and by invariance has second marginal ν. Since Ψ∗ is a contraction in Pν
q ∋ σ0, we

obtain that
Wν

q (σk, ν̂) ≤ ρk min(1,q) Wν
q (σ0, ν̂). (12)

On the first hand, using the transport plan obtained by projecting an optimal γ ∈
Γν(σk, ν̂) on the first two variables, we get Wq(µ̃k, µ) ≤ Wν

q (σk, ν̂). On the other hand,

Wν
q (σ0, ν̂) ≤ Wν

q (µ̃0 ⊗ ν, δx0
⊗ ν) + Wν

q (δx0
⊗ ν, ν̂)

≤ mq
x0

(µ̃0)
min(1, 1

q
) +

(

A/(1 − ρ)
)min(1,q)

since ν̂ is concentrated on B(x0, A/(1 − ρ)) × Y . Together with (12), this concludes the
proof of Theorem 7.2.
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