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aUniversité Côte d’Azur, Inria, Epione Project-Team, Sophia Antipolis, France
bInria, Aramis project-team, Paris, France
cInstitut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, F-75013, Paris, France
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A B S T R A C T

Multiple sclerosis (MS) is the most common demyelinating disease. In MS, demyeli-
nation occurs in the white matter of the brain and in the spinal cord. It is thus essential
to measure the tissue myelin content to understand the physiopathology of MS, track
progression and assess treatment efficacy. Positron emission tomography (PET) with
[11C]PIB is a reliable method to measure myelin content in vivo. However, the avail-
ability of PET in clinical centers is limited. Moreover, it is expensive to acquire and
invasive due to the injection of a radioactive tracer. By contrast, MR imaging is non-
invasive, less expensive and widely available, but conventional MRI sequences cannot
provide a direct and reliable measure of myelin. In this work, we therefore propose,
to the best of our knowledge for the first time, a method to predict the PET-derived
myelin content map from multimodal MRI. To that purpose, we introduce a new ap-
proach called Sketcher-Refiner generative adversarial networks (GANs) with specifi-
cally designed adversarial loss functions. The first network (Sketcher) generates global
anatomical and physiological information. The second network (Refiner) refines and
generates the tissue myelin content. A visual attention saliency map is also proposed
to interpret the attention of neural networks. Our approach is shown to outperform the
state-of-the-art methods in terms of image quality and myelin content prediction. Par-
ticularly, our prediction results show similar results to the PET-derived gold standard
at both global and voxel-wise levels indicating the potential for clinical management of
patients with MS.

1. Introduction

Multiple Sclerosis (MS) is the most common cause of
chronic neurological disability in young adults, with a clini-
cal onset typically occurring between 20 and 40 years of age
(Compston and Coles, 2008). In the central nervous system
(CNS), myelin is a biological membrane that enwraps the axon
of neurons. Myelin acts as an insulator, enhancing the neural
signal conduction velocity as well as balancing the system en-
ergy. MS pathophysiology predominately involves autoimmune
aggression of central nervous system myelin sheaths. The de-
myelinating lesions in CNS can cause various symptoms de-
pending on their localizations, such as motor or sensory dys-
function, visual disturbance and cognitive deficit (Compston
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and Coles, 2008). Therefore, a reliable measure of the tissue
myelin content is essential as it would allow to understand key
physiopathological mechanisms, such as myelin damage and
repair, to track disease progression and to provide an endpoint
for clinical trials, for instance assessing neuroprotective and
pro-myelinating therapies.

Positron emission tomography (PET) is a nuclear medicine
imaging technology based on the injection of a specific radio-
tracer which will bind to the biological targets within brain
tissues. Thus, the imaging procedure offers the potential to
investigate neurological diseases at the cellular level. More-
over, another advantage of PET is the absolute quantification
of the tracer binding that directly reflects the concentration of
the biological target in the tissue of the interest, with excellent
sensitivity to changes. [11C]PIB is used as a myelin tracer in
MS clinical settings because of its ability to selectively bind to
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myelinated white matter regions (Stankoff et al., 2011). This
tracer was initially developed as a marker of beta-amyloid de-
position found in the gray matter of patients with Alzheimer’s
disease (AD) (Rabinovici et al., 2007). Nevertheless, note that
the signal in myelin is more subtle than for amyloid plaques.
However, using PET to quantify myelin content in MS lesions
is limited by several drawbacks. First, PET imaging is expen-
sive and not offered in the majority of medical centers in the
world. Moreover, it is invasive due to the injection of a radioac-
tive tracer. In addition, the spatial resolution of PET is limited
(around 4-5 mm for most cases). As the myelin content used
for MS clinical studies is measured in MS lesions, the quantita-
tive measurements taken from PET images will suffer from the
partial volume effect.

On the contrary, MR imaging is a widely available and non-
invasive technique. During the past decades, many efforts have
been devoted to understand how macroscopic MS lesions vi-
sualized on MRI could drive neurological disability over the
course of the disease. Even though conventional MRI se-
quences have a great sensitivity to detect the white matter (WM)
lesions in MS, they do not provide a direct and reliable measure
of myelin. Specially, they cannot distinguish, within MS le-
sions, demyelinated voxels from non-demyelinated or remyeli-
nated voxels. Therefore, it would be of considerable interest to
be able to predict the PET-derived myelin content map from
multimodal MRI. Figure 1 illustrates some examples of the
ground truth ([11C]PIB PET data) and input multimodal MR
images. It can be found that the imaging mechanisms between
PET and MRI are very different making our prediction task
more difficult.

1.1. Related Work
To the best of our knowledge, there is currently no method

for predicting PET-derived myelin content from MRI. On the
other hand, various methods focusing on estimating one modal-
ity image from another modality have been proposed over the
last decade. These methods can be mainly classified into the
following categories.

(A) Atlas Registration. These methods (Hofmann et al.,
2008; Burgos et al., 2014) usually need an atlas dataset
including the pairs of the source and the target modalities.
For example, Burgos et al. (2014) proposed to predict a
pseudo-CT image from a given MR image. All the MR im-
ages in the atlas database are registered to the given MRI.
The resulted deformation fields are then applied to regis-
ter each CT in the atlas database to the given MRI space.
The target CT can thus be synthesized through the fusion
of the aligned atlas CT images. However, the performance
of the atlas-based methods highly depends on the registra-
tion accuracy and the quality of the synthesized image may
also rely on the priori knowledge for tuning large amounts
of parameters in registration step. Moreover, while they
seem well adapted to synthesize the overall anatomy (as is
typically required in the case of CT synthesis for attenua-
tion correction), they may not be able to accurately predict
subtle lesional features, whose location can be highly vari-
able between patients.

(B) Searching-based methods. Given a database containing
N exemplar pairs of the source image and the target image
{S n,Tn}, n ∈ N, the basic idea behind these methods (Ye
et al., 2013; Roy et al., 2010) is that the local similarity
between the new subject source image S new and database
source images S n should indicate the same similarity be-
tween the database target images Tn and the image to be
synthesized Tnew. Roy et al. (2010) applied this idea to pre-
dict FLAIR from T1-w and T2-w. Equally, Ye et al. (2013)
proposed to generate T2 and DTI-FA from T1 MRI. How-
ever, the result heavily depends on the similarity between
the source image and the images in the database. This may
make the method fail in the presence of abnormal tissue
anatomy since the images in the atlas do not have the same
pathological features as the patient to predict. Moreover,
these methods need to break the image into patches in ad-
vance. During inference process, the extracted patch is
then used to find the most similar patch in the database.
But this process is often computationally expensive.

(C) Learning-based methods. Learning-based methods aim
to find a non-linear function which maps the source modal-
ity to the corresponding target modality. Vemulapalli et al.
(2015) proposed an unsupervised approach to generate T1-
MRI from T2-MRI and vice versa. The authors aimed to
maximize a global mutual information and a local spatial
consistency for target image synthesis. In the work of Jog
et al. (2014), the authors presented an approach to predict
FLAIR given T1-w, T2-w, and PD using random forest.
In this approach, a patch at position m is extracted from
each of these three input pulse sequences. All these three
patches are then rearranged and concatenated to form a
column vector Xm. The vector Xm and the corresponding
intensity ym in FLAIR at position of m are used to train
the model. Similarly, Huynh et al. (2016) used the struc-
tured random forest and auto-context model to predict CT
image from MR images. Although these methods have
been successful, it appears that the extraction and the fu-
sion of the patches are usually computational expensive.
Moreover, the source images are often represented by the
extracted features which will influence the final image syn-
thesis quality.

Meanwhile, deep learning techniques (Sevetlidis et al.,
2016; Xiang et al., 2018; Wang et al., 2018) have emerged
as a powerful alternative and alleviate the above draw-
backs for medical image synthesis. For instance, Sevet-
lidis et al. (2016) generate FLAIR from T1-w MRI using a
deep encoder-decoder network which works on the whole
image instead of the image patches. There are also many
works trying to generate CT images from MR images us-
ing deep learning methods, such as for dose calculation
(Han, 2017; Wolterink et al., 2017; Maspero et al., 2018)
and attenuation correction (Leynes et al., 2018; Liu et al.,
2018). In the work of Choi and Lee (2018), the authors
used GANs to generate the MRI from the PET for the
quantification of cortical amyloid load. Bi et al. (2017)
used multi-channel GANs to synthesis PET images from
CT images. Regarding PET synthesis from MRI, several
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Fig. 1. Some examples of the ground truth ([11C]PIB PET data) and input MR images including magnetization transfer ratio (MTR) and three measures
derived from diffusion tensor imaging (DTI): fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD). The relationship between the
MR images and the PET data is complex and highly non-linear.

works have already been proposed (Sikka et al., 2018; Li
et al., 2014; Pan et al., 2018). A 3D convolutional neu-
ral network (CNN) based on U-Net architecture (Sikka
et al., 2018) and a two-layer CNN (Li et al., 2014) have
been proposed to predict FDG PET from T1-w MRI for
AD classification. In recent years, generative adversarial
networks (GANs) have been vigorously studied in vari-
ous image generation tasks, such as conditional GANs for
image-to-image translation (Isola et al., 2016). The work
of Denton et al. (2015) also proposed a LAPGAN using a
sequence of conditional GANs into the laplacian pyramid
framework for the image generation. Regarding the medi-
cal image synthesis, Pan et al. (2018) proposed a 3D cycle
consistent generative adversarial network (3D-cGAN) to
generate PET images for AD diagnosis. Note that all these
PET synthesis works were devoted to the prediction of the
radiotracer FDG. Predicting myelin content (as defined by
PIB PET) is a more difficult task because the signal is more
subtle and with weaker relationship to anatomical informa-
tion that could be found in MR images. Moreover, only a
single MRI pulse sequence is used for PET synthesis in
these works. However, as suggested in Chartsias et al.
(2018), using multimodal MRI can improve the synthesis
performance.

1.2. Contributions
In this work, we therefore propose a learning-based method

to predict PET-derived demyelination from multiparametric
MRI. Consisting of two conditional GANs, our proposed
Sketcher-Refiner GANs can better learn the complex relation-
ship between myelin content and multimodal MRI data by de-
composing the problem into two steps: 1) sketching anatomy

and physiology information and 2) refining and generating im-
ages reflecting the myelin content in the human brain. As MS
lesions are the areas where demyelination can occur, we thus
design an adaptive loss to force the network to pay more atten-
tion to MS lesions during the prediction process. Besides, in or-
der to interpret the neural networks, a visual attention saliency
map has also been proposed.

A preliminary version of this work was published in the pro-
ceedings of the MICCAI 2018 conference (Wei et al., 2018).
The present paper extends the previous work by: 1) quanti-
tatively comparing our approach to other state-of-the-art tech-
niques; 2) using visual attention saliency maps to better inter-
pret the neural networks; 3) comparing different combinations
of MRI modalities and features to assess which is the opti-
mal input; 4) describing the methodology with more details; 5)
providing a more extensive account of background and related
works.

2. Method

2.1. Sketcher-Refiner Generative Adversarial Networks

We propose Sketcher-Refiner Generative Adversarial Net-
works (GANs) with specifically designed adversarial loss func-
tions to generate the [11C]PIB PET distribution volume ratio
(DVR) parametric map, which can be used to quantify the
demyelination, using multimodal MRI as input. Our method
is based on the adversarial learning strategy because of its
outstanding performance for generating a perceptually high-
quality image. We introduce a sketch-refinement process in
which the Sketcher generates the preliminary anatomical and
physiological information and the Refiner refines and generates
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images reflecting the tissue myelin content in the human brain.
We describe the details in the following.

2.1.1. 3D Conditional GANs
Generative adversarial networks (GANs) (Goodfellow et al.,

2014) are generative models which consist of two components:
a generator G and a discriminator D. Given a database y, the
generator G defined with parameters θg aims to learn the map-
ping from a random noise vector z to data space denoted as
G(z; θg). The discriminator D(y; θd) defined with parameters
θd represents the probability that y comes from the dataset y
rather than G(z; θg). On the whole, the generator G is trained
to generate samples which are as realistic as possible, while the
discriminator D is trained to maximize the probability of as-
signing the correct label both to training examples from y and
samples from G. In order to constrain the outputs of the gener-
ator G, conditional GAN (cGAN) (Mirza and Osindero, 2014)
was proposed in which the generator and the discriminator both
receive a conditional variable x. More precisely, D and G play
the two-player conditional minimax game with the following
cross-entropy loss function:

min
G

max
D
L(D,G) = Ex,y∼pdata(x,y)[log D(x, y)]−

Ex∼pdata(x),z∼pz(z)[log(1 − D(x,G(x, z)))]
(1)

where pdata and pz are the distributions of real data and the input
noise. Both the generator G and the discriminator D are trained
simultaneously, with G trying to generate an image as realistic
as possible, and D trying to distinguish the generated image
from real images.

2.1.2. Sketcher-Refiner GANs
Using multimodal MRI denoted as IM, our goal is to pre-

dict the [11C]PIB PET distribution volume ratio (DVR) para-
metric map IP which can be used to quantify the demyelination.
The multiple input modalities IM are arranged as channels with
a dimension of l × h × w × c , where l, h,w indicate the size
of each input modality and c is the number of the modalities.
As the signal of the myelin is very subtle, we thus propose a
sketch-refinement process. Figure 2 shows the architecture of
our method consisting of two cGANs named Sketcher and Re-
finer with 4 MRI modalities as inputs. Working on the whole
images, we decompose the prediction problem into two steps:

1. Sketcher: it receives a set of MR image pulse sequences
IM. Based on these MR images, it sketches the preliminary
anatomy and physiology information.

2. Refiner: it receives both the MR image pulse sequences
IM and the image generated from previous step IS. Then
it refines and generates quantitative images reflecting the
tissue myelin content in the human brain. To that purpose,
the Refiner pays more attention to lesional areas (where
demyelination may occur), using a loss that treats sepa-
rately lesion, normal appearing white matter (NAWM) de-
fined as the white matter outside visible lesions, and other
regions.

Therefore, the Sketcher and the Refiner have the following
cross-entropy losses:

min
GS

max
DS
L(DS,GS) = EIM,IP∼pdata(IM,IP)[log DS(IM, IP)]−

EIM∼pdata(IM),z∼pz(z)[log(1 − DS(IM,GS(IM, z)))]
(2)

min
GR

max
DR
L(DR,GR) = EIM,IP∼pdata(IM,IP)[log DR(IM, IP)]−

EIM∼pdata(IM),Is∼GS(IM,z)[log(1 − DR(IM,GR(IM, Is)))]
(3)

where DS, DR and GS, GR represent the discriminators and the
generators in the Sketcher and the Refiner respectively. The un-
derlying network architectures for the Sketcher and the Refiner
are described in Section 2.4.

2.2. Adversarial Loss with Adaptive Regularization

Here, we propose specific adversarial losses that produce the
desired behaviors for the Sketcher and the Refiner. Previous
work of Isola et al. (2016) has shown that it can be useful to
combine the GAN objective function with a traditional con-
straint, such as L1 and L2 loss. They further suggested using L1
loss rather than L2 loss to encourage less blurring. We hence
mixed the GANs’ loss function with the following L1 loss for
the Sketcher:

LL1(GS) =
1
N

N∑
i=1

|Ii
P −GS(Ii

M, z
i)| (4)

where N is the number of subjects and i denotes the index of a
subject.

In CNS, myelin constitutes most of the white matter (WM).
Knowing that the demyelinated voxels are mainly found within
the MS lesions, we thus want the Refiner network to pay more
attention to MS lesions than to the other regions during the pre-
diction process. Most other methods (Roy et al., 2010; Burgos
et al., 2014; Ye et al., 2013; Xiang et al., 2018) tried to syn-
thesize the whole image without any specific focus on some
regions of interest. Unlike these methods, to focus the Re-
finer generator on MS lesions where demyelination happens,
the whole image is divided into three regions of interest (ROIs):
lesions, NAWM and “other”. We thus defined for the Refiner a
weighted L1 loss in which the weights are adapted to the num-
ber of voxels in each ROI indicated as NLes, NNAWM and Nother.
Given the masks of the three ROIs: RLes, RNAWM and Rother, the
weighted L1 loss for the Refiner is defined as follows:

LL1(GR) =
1

N × M

N∑
i=1

( 1
NLes

∑
j∈RLes

|Ii, j
P − Îi, j

P |+

1
NNAWM

∑
j∈RNAWM

|Ii, j
P − Îi, j

P | +
1

Nother

∑
j∈Rother

|Ii, j
P − Îi, j

P |
) (5)

where ÎP is the prediction output from the Refiner, M is the
number of voxels in a PET image, and i, j is the index of a
subject and a voxel respectively.
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Fig. 2. The proposed Sketcher-Refiner GANs. The Sketcher receives MR images and generates the preliminary anatomy and physiology information. The
Refiner receives MR images and the output of the Sketcher. Then it refines and generates the synthetic PET images.

To sum up, our overall objective functions are defined as fol-
lows:

G∗S = arg min
GS

max
DS
L(DS,GS) + λSLL1(GS)

G∗R = arg min
GR

max
DR
L(DR,GR) + λRLL1(GR)

(6)

where λS and λR are hyper-parameters which balance the con-
tributions of two terms in the Sketcher and the Refiner respec-
tively.

2.3. Visual Attention Saliency Map

Convolutional neural networks and other deep neural net-
works have achieved breakthrough results in various tasks.
However, the lack of interpretability limits the use in clinical
applications, because the black-box character of a neural net-
work makes it hard to decompose into understandable compo-
nents. Broadly speaking, it is necessary to build transparent
models which can explain their predictions.

We propose a visual attention saliency map to generate the
visual explanations showing the concentration regions of the
neural networks for the prediction. Inspired by the work of Si-
monyan et al. (2013), our visual attention saliency map is the
absolute partial derivative of the prediction loss with respect to
the input images IM defined as follows:

M =

∣∣∣∣∣∂Loss
∂IM

∣∣∣∣∣ (7)

Given the input images IM, the attention saliency map M is cal-
culated by standard backpropagation. In fact, the saliency maps
derived from the generators and the discriminators are different.
In GAN, the discriminator is used as a classifier to distinguish
if the input is in class “True” or “Fake” . Therefore, the saliency
map derived from the discriminator should intuitively highlight

salient image regions that most contribute the category classifi-
cation. In our work, the goal is to interpret the attention of the
neural networks for the image synthesis. Therefore, our pro-
posed saliency map is that of the generator.

2.4. Network architectures
Both the Sketcher and the Refiner in our method have the

same architectures for their generators (respectively for their
discriminators). For the generators, we use the 3D U-Net archi-
tecture which is widely used and has achieved competitive per-
formance in both computer vision (Ma et al., 2018; Zhang et al.,
2018) and medical imaging fields (Rohé et al., 2017; Zheng
et al., 2018). The advantage of U-Net (Ronneberger et al., 2015)
is the introduction of skip connections. They help feed the in-
formation between the end and the start of the network, allow-
ing a more direct way for the gradient to flow uninterruptedly.
In addition, these skip connections also allow the network to
retrieve the spatial information lost during the down-sampling
operations. In addition, the spatial information between adja-
cent slices can be well preserved by the 3D architecture. As
shown in Fig. 3 (A), the U-Net architecture is symmetric and
built with fully convolutional networks with skip connections.
It has an Encoder which extracts the spatial features from the in-
put image, and a Decoder which constructs the final output from
the encoded features. The Encoder follows the typical architec-
ture of a convolutional network. It includes a sequence of two
convolution layers and a convolution with stride 2 for down-
sampling. This sequence is repeated 3 times and the number
of feature maps doubles after each sequence. A progression of
two convolutional layers is used to connect the Encoder and the
Decoder which inversely involves the 3 repeated sequences of
a deconvolution layer with stride 2 and two convolution layers.
In all three levels, the output of the convolutional layer (prior
to the downsampling operation) in the Encoder is transferred to
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the output of the upsampling operation in the Decoder by using
skip connections. Our 3D U-Net starts with 32 feature maps for
the first block (see details in Fig. 3 (A)). LeakyReLU is used to
allow a stable training of GANs with 0.2 as slope coefficient.
The convolution kernel size is 3 × 3 × 3. Batch normalization
(Ioffe and Szegedy, 2015) and dropout are applied after each
LeakyReLU layer. The rate for dropout layer is 50%.

For the discriminator, a traditional approach in GANs is to
use a global discriminator: the discriminator is trained to glob-
ally distinguish if the input comes from the true dataset or
from the generator. However, the generator may try to over-
emphasize certain image features in some regions so that it can
make the global discriminator fail to differentiate a real or fake
image. In our problem, each region in the PET image has its
own myelin content. A key observation is that any local region
in a generated image should have a myelin content that is sim-
ilar to that of the homologous region in the real image. There-
fore, instead of using a traditional global network, we define a
3D patch discriminator trained by local patches from input im-
ages. As shown in Fig. 3 (B), the input image is firstly divided
into patches with size l×w×h and then the 3D patch discrimina-
tor classifies all the patches separately. The final loss of the 3D
patch discriminator is the sum of the cross-entropy losses from
all the local patches. The PatchGAN was first used in Isola et al.
(2016) which took the overlapped 2D patches as inputs. Unlike
their work, our inputs are 3D patches which need more com-
putational resource. In addition, if we use overlapping patches,
the number of patches would be 1.2 million comparing to only
35 thousand in their work. Therefore, considering the compu-
tational cost and the GPU memory consumption, we chose to
use non-overlapping patches. Its architecture is a traditional
CNN including a series of 3 × 3 × 3 stride 1 convolution layers
followed by batch normalization, LeakyReLU and Downsam-
pling. At the end, a fully-connected layer with two nodes and a
softmax layer are used to produce the final decision.

3. Experiments and Evaluations

3.1. Overview

- Dataset: Our dataset includes 18 MS patients (12 women,
mean age 31.4 years, sd 5.6) and 10 age-matched healthy
volunteers (8 women, mean age 29.4, sd 6.3). The clinical
and demographic information is detailed in Bodini et al.
(2016). For each participant, we used the following data:

a) MR IMAGES: MR images were collected using a 3
Tesla Siemens TRIO 32-channel TIM system includ-
ing Magnetisation Transfer Ratio map (MTR) (1×1×
1.1mm3), and three measures derived from Diffusion
Tensor Imaging (DTI): Fractional Anisotropy (FA),
Radial Diffusivity (RD) and Axial Diffusivity (AD)
(2 × 2 × 2mm3). The three ROIs (lesions, NAWM
and “other”) used in Eq. 5 were delineated as fol-
lows. The hyperintense lesions of MS patients were
manually contoured by an expert rater on T2-w scans
with reference to FLAIR images. The correspond-
ing lesion masks were generated and aligned to the

individual T1-w scan using FLIRT algorithm in the
FSL package (Jenkinson et al., 2012). After perform-
ing a “lesion-filling” procedure in patients only, T1-
w scans were segmented using FreeSurfer (Fischl,
2012) to obtain a WM mask. The NAWM is then
defined as the WM outside visible lesions on T2-w
scans.

b) PET IMAGES: PET examinations were performed
on a high-resolution research tomograph (HRRT;
CPS Innovations, Knoxville, TN) which achieves an
intraslice spatial resolution of 2.5mm, with 25-cm
axial and 31.2-cm transaxial fields of view. The 90-
minute emission scan was initiated with a 1-minute
intravenous bolus injection of [11C]PIB (mean = 358
± 34 MBq). The Logan graphical reference method
(Logan et al., 1996) was applied at the voxel level
on PET scans in native space to obtain [11C]PIB
PET distribution volume ratio (DVR) parametric
map (1.22 × 1.22 × 1.22mm3).

All participants signed written informed consent to partic-
ipate in the study, which was approved by the local ethics
committee of the Pitié-Salpêtrière hospital. The prepro-
cessing steps mainly consist of brain extraction (Smith,
2002), intensity inhomogeneity correction (Tustison et al.,
2010) and affine intra-subject registration of MR data onto
[11C]PIB PET DVR image space using FLIRT algorithm in
the FSL package (Jenkinson et al., 2012). Finally, we re-
moved part of the background by cropping images to 128×
160×128 with a resolution of 1.22×1.22×1.22mm3. The
details of acquisition parameters and PET data quantifi-
cation are described in Bodini et al. (2016) and Veronese
et al. (2015).

- Training details: The whole data was first normalized by
using x̄ = (x−mean)/std, where mean and std were calcu-
lated over all the voxels of all the images in each sequence.
We did not use any data augmentation. During the train-
ing process, we first iteratively trained DS and GS of the
Sketcher for 400 epochs by fixing our Refiner. Then we
iteratively trained DR and GR of the Refiner from scratch
for another 400 epochs by fixing our Sketcher. The opti-
mization was performed with the ADAM solver with 10−4,
5×10−5 as initial learning rates for the Sketcher and the Re-
finer respectively. We used 3-fold cross validation (2 folds
have 9 subjects with 3 healthy subjects in each fold and
the last fold has 10 subjects with 4 healthy subject). Our
Sketcher-Refiner GANs was implemented with the Keras
(Chollet et al., 2015) library with Theano (Theano Devel-
opment Team, 2016) as backend. Two GTX 1080 Ti GPUs
were used for training.

In practice, the input noise z is often ignored by the con-
ditional GANs, such as the work of Isola et al. (2016).
Actually, in initial experiments, we found that the result
was marginally improved by introducing the input noise
z which is consistent with Hong et al. (2018). Moreover,
the input noise z is used to provide some slight variation
in the generated images. If we remove the noise vector,
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Fig. 3. Architectures proposed for the generator (panel A) and for the discriminator (panel B) in our GANs. (A) The 3D U-Net shaped generator with
implementation details shown in the image. (B) The proposed 3D patch discriminator which takes all the patches and classifies them separately to output
a final loss.

the network can still learn the mapping but it becomes de-
terministic. Since the output of the Refiner should be de-
terministic and similar to the true PET image, we kept the
noise vector z for the Sketcher and removed it from the
Refiner.

3.2. Comparisons with state-of-the-art methods
We compared our method with several state-of-the-art meth-

ods including a 2-layer DNN (Li et al., 2014), a 3D U-Net
(Sikka et al., 2018) and a single cGAN (Bi et al., 2017; Ben-
Cohen et al., 2017) (corresponding to the Sketcher in our ap-
proach). The 2-layer DNN consists of two convolutional layers
with a filter size of 7 × 7 × 7. To better detect the features,
the number of feature maps in each layer is augmented to 64
instead of 10 as mentioned in the paper (Li et al., 2014). The
architecture of the 3D U-Net is the same as shown in Fig. 3
(A). It is similar to 3D U-Net used in the work of Sikka et al.
(2018), but with a LeakyRelu layer as the last layer instead of
sigmoid as our output is not in the range [0,1]. In the works of
Sikka et al. (2018) and Li et al. (2014), their proposed methods
were aimed to discriminate Alzheimers disease from normals,
the authors thus segmented the images and used gray matter as
an input, which is not applicable to our problem. Moreover,
unlike the preprocessing step in their paper, we did not down-
sample our images. In terms of loss function, the L1 loss is

optimized for both the 2-layer DNN and the 3D U-Net. In the 
work of Bi et al. (2017), the authors used each patient’s lesion 
label as a separate channel in inputs for CT-to-PET synthesis. 
As the healthy volunteers in our dataset do not have any lesion, 
we just took MR images as inputs. To adjust to the 3D image, 
the 2D cGANs used in Bi et al. (2017) and Ben-Cohen et al.
(2017) were extended to 3D architecture which corresponds to 
the Sketcher (see in Fig. 2) in our approach and the loss func-
tion was the same as described in Bi et al. (2017). Furthermore, 
to better compare with our proposed methods, we also provided 
the information about the location of lesions for the 3D U-Net 
and the Sketcher by applying the proposed weighted L1 loss. 
These state-of-the-art methods were replicated to the maximum 
extent possible based on details provided in the paper, as their 
codes are not available.

Figure 4 shows the qualitative comparison and the true 
[11C]PIB PET DVR parametric map. We can find that the 2-
layer DNN failed to find the non-linear mapping between the 
multimodal MRI and the myelin content in PET. Especially, 
some anatomical or struc-tural traces (that are not present in the 
ground truth) can still be found in the 2-layer-DNN predicted 
PET. This highlights that the relationship between myelin 
content and multimodal MRI data is complex, and only two 
layers are not powerful enough
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to encode-decode it. It is also shown that the 3D U-Net and
the Sketcher (cGAN) generate blurry outputs with the primitive
shape and basic information. On the other hand, after the re-
finement process by our Refiner, the output is more similar to
the ground truth and the myelin content is better predicted. Ac-
cording to this, we can also conclude that the iterative training
process can refine and improve the results.

We then performed a quantitative comparison in terms of
global image quality (Table 1). Image quality is evaluated
by mean square error (MSE) and peak signal-to-noise ratio
(PSNR) defined as follows:

MSE =
1
N

N∑
i=1

‖(Ii
P, Î

i
P)‖2 (8)

PS NR = 20 · log10(MAXIP ) − 10 · log10(MS E) (9)

where MAXIP is the maximum voxel value of the image.
Our method is shown to outperform all the other methods for

both metrics. The difference with the 2-layer-DNN, the 3D U-
Net with weighted L1 loss (for both MSE and PSNR), the 3D
U-Net (for MSE) and the Sketcher with weighted L1 loss (for
PSNR) are statistically significant (p < 0.05 by two-sided T-
test). We can also find that the performance of the Sketcher is
better than 3D U-Net. This can be caused by the use of adver-
sarial training which can make the output image indistinguish-
able.

Table 1. Image quality metrics obtained with our method and the other
methods. MSE: mean square error; PSNR: peak signal-to-noise ratio. Re-
sults are displayed as mean (standard deviation).

MSE PSNR
2-Layer DNN 0.0136 (0.0048)∗ 27.767 (1.214)∗

3D U-Net 0.0107 (0.0041)∗ 29.297 (0.986)
3D U-Net+L1W 0.0113 (0.0043)∗ 28.606 (1.007)∗

Sketcher 0.0094 (0.0038) 29.475 (0.981)
Sketcher+L1W 0.0103 (0.0042) 29.077 (0.995)∗

Refiner (Proposed) 0.0083 (0.0037) 30.044 (1.095)
∗ indicates our method is significantly better with p < 0.05 by two-sided T-test

Then, we quantitatively compared the ability of the differ-
ent methods to accurately synthesize myelin content in the
three ROIs: 1) white matter (WM) in healthy controls (HC);
2) normal-appearing white matter (NAWM) in MS patients; 3)
lesions in MS patients. The myelin content prediction discrep-
ancy was defined as the mean absolute difference between the
mean myelin content of the ground truth and that of the predic-
tion PET across subjects and ROIs.

Results are shown in Table 2. Our method is more accurate
than other methods on these three ROIs. Of note, the highest
difference between our method and the others is in the MS le-
sions. This demonstrates that our neural networks indeed payed
more attention to MS lesions during the image synthesis pro-
cess, thanks to the specific loss of the Refiner network.

Furthermore, we also applied the proposed weighted L1 loss
to both 3D U-Net and cGANs for comparison. We can find
that in terms of global image quality measured by MSE and
PSNR shown in Table 1, the cGAN and 3D U-Net using the

weighted L1 loss performed respectively worse than the ones
using the simple L1 loss function. However, the comparison
of myelin prediction discrepancy in Table 2 suggests that us-
ing the weighted L1 loss will result in a better prediction in
our regions of interest especially MS lesions. All of the above
results demonstrate that the simple L1 loss can drive the net-
work towards the global image generation. On the contrary, the
weighted L1 loss specializes in the generation of a specific re-
gion.

3.3. Refinement Iteration Effect

We have demonstrated that the overall qualitative and quanti-
tative results have been improved after our proposed refinement
process. To compare the effect of different refinement itera-
tions, we assess the performance with respect to the number of
iterations (from 0 to 3). Note that the iteration 0 is our Sketcher
and an additional Refiner is used for each new iteration (so 1 it-
eration corresponds to the proposed Sketcher-Refiner method).
We studied the evolution of MSE (Fig. 5 (A)) and of the predic-
tion discrepancy in 3 ROIs (Fig. 5 (B)). One can see a dramatic
improvement when using the Refiner on top of the Sketcher (it-
eration 1). Iteration 2 also leads to an improvement, but it is
much smaller. In the third iteration, the MSE and the prediction
discrepancy in WM in HC worsen. Considering the trade-off

between the marginally improved performance and the extra
training time after first iteration, we suggest to use only one
iteration.

3.4. Global Evaluation of Myelin Prediction

We compared the myelin content distribution of the ground
truth to that of the predicted PET images in three ROIs by all
the methods. From Fig. 6, we can see that the average PET
value in the different regions can be predicted by all the meth-
ods except the 2-layer DNN whose prediction in MS lesions
is inconsistent with the gold standard. Specifically, both with
the gold standard and our synthetic data, there is no significant
difference (p = 0.88 by two-sided T-test) between NAWM in
patients and WM in HC, while a statistically significant reduc-
tion of myelin content in lesions compared to NAWM can be
found (p < 0.0001 by two-sided T-test).

Further, we presented the Bland-Altman plots for
WM/NAWM and MS lesions (Fig. 7) for all the methods
at the individual level. It can be seen that our method (the
Refiner) achieved the best results with 0.0091 and -0.06 as the
mean bias for WM/NAWM and the lesions respectively. In
particular, the proposed refinement process, passing from the
Sketcher to the Refiner, presents a remarkable performance
gain especially in the MS lesions. For the Sketcher, it is better
than 3D U-Net in WM/NAWM but has similar performance in
the lesions. By contrast, the 2-layer CNN achieved the worst
performance.

3.5. Voxel-wise Evaluation of Myelin Prediction

We also evaluated the ability of our method to predict myelin
content at the voxel-wise level in MS lesions. Within each
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Fig. 4. Qualitative comparison of the results of our method (“Refined”), of a 2-layer DNN , of a 3D U-Net and of a single cGAN (corresponding to the
Sketcher in our approach and denoted as “Sketch”) to the ground truth.

Table 2. Comparison of myelin content prediction discrepancy (defined as mean absolute difference between the ground truth and the predicted PET) in
three defined ROIs between our method and other methods. WM in HC: white matter in healthy controls; NAWM: normal appearing white matter in
patients. Results are displayed as mean (standard deviation).

WM in HC NAWM MS Lesions
2-Layer DNN 0.059 (0.040) 0.041 (0.036) 0.131 (0.051)∗

3D U-Net 0.053 (0.034) 0.039 (0.033) 0.035 (0.027)
3D U-Net+L1W 0.054 (0.034) 0.038 (0.031) 0.032 (0.029)

Sketcher 0.053 (0.041) 0.034 (0.022) 0.030 (0.017)
Sketcher+L1W 0.052 (0.037) 0.035 (0.027) 0.027 (0.022)

Refiner (Proposed) 0.048 (0.026) 0.029 (0.021) 0.022 (0.015)
∗ indicates our method is significantly better with p < 0.05 by two-sided T-test

MS lesion of each patient, each voxel was classified as de-
myelinated or non-demyelinated according to a procedure de-
fined and validated in a previous clinical study (Bodini et al.,
2016). This method involves the determination of a threshold
to separate demyelinated from non-demyelinated voxels. This
threshold being determined at the group-level, the procedure
involves a non-linear inter-subject registration onto MNI space
performed using FNIRT algorithm in the FSL package (Jenkin-
son et al., 2012).

We first measured the percentage of demyelinated voxels
over total lesion load of each patient for both the ground truth
and the predicted PET as shown in Figure 8 (A). Our predic-
tion results approximate the ground truth for most of the pa-
tients. We then compared, in each patient, the masks of de-
myelinated voxels classified from both the true and the pre-
dicted PET within MS lesions. The average DICE index be-
tween the demyelination maps derived from the ground truth
and our predicted PET is 0.83±0.12. This is a strong agree-
ment, demonstrating the ability of our method to predict the
demyelination in MS lesions at the voxel-wise level. Examples

of demyelinated voxel masks are shown in Figure 8 (B).

3.6. Attention in Neural Networks

Our proposed Visual Attention Saliency Map is used to inter-
pret the attention of neural networks for image prediction. In
case of a single modality, the attention saliency map will have
the same dimension as the input image. In case of the multi-
modal images, the size of the map will be 4D (3D+modality
channel). We took the maximum value across the modality
channels to derive the final attention saliency map.

Figure 9 displays the attention saliency maps derived from
the generators. The maps allow displaying which regions are
the most important for the prediction. We can observe that the
neural networks using weighted L1 loss pay more attention to
voxels located within MS lesions, which are the most important
for demyelination quantification. On the other hand, one can
see that a neural network using an unweighted L1 loss focuses
more on the ventricle regions which have no myelin content and
thus no interest for us. We can thus conclude that our designed
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Fig. 5. Performance assessment with respect to different number of itera-
tions. Note that the iteration 0 is our Sketcher and an additional Refiner is
used for each new iteration.

Fig. 6. Group level evaluation for all the methods. The box plots show the
median (middle solid line), mean (middle dotted line) and min-max (below
and above line) DVR for each ROI for PET-derived DVR parametric map
used as gold standard (blue) and the prediction results from our method
(yellow), 3D U-Net (green), Sketcher (red) and 2-Layer DNN (violet).

loss function is able to effectively shift the attention of the neu-
ral networks towards the MS lesions.

3.7. Contribution of Multimodal MRI Images

In this work, we chose to use MTR as well as three mea-
sures derived from DTI (FA, RD and AD) as our input images
because, among MRI features, they are considered the most in-
dicative of myelin content. Nevertheless, they likely contain re-
dundant information. We thus compared the predictions using:
1) only MTR; 2) MTR+RD; 3) MTR+DTI.

Table 3 shows the corresponding image quality metrics (MSE
and PSNR as defined in Eq. 8 and 9). It can be found that

only using MTR leads to the worst results in terms of MSE
and PSNR. Adding DTI RD, the results are slightly better. But
these improvements are small. By contrast, when the other two
DTI measures (FA and AD) are added, the performances are im-
proved dramatically from 0.0094 to 0.0083 for MSE and from
29.524 to 30.044 for PSNR. This is consistent with the find-
ings in Chartsias et al. (2018) that adding an additional input
modality resulted in a performance improvement and the best
performance is achieved when all the input modalities are used.

Table 3. Image quality metrics for different combinations of MRI features.
MTR: magnetization transfer ratio. RD: radial diffusivity. DTI: all three
diffusion tensor imaging metrics. MSE: mean square error. PSNR: peak
signal-to-noise ratio. Results are displayed as mean (standard deviation).

MSE PSNR
MTR 0.0094 (0.0043) 29.524 (1.671)

MTR+RD 0.0092 (0.0043) 29.581 (1.679)
MTR+DTI 0.0083 (0.0037) 30.044 (1.095)

Table 4 compares the prediction of myelin content for the
different combinations of MRI features. It shows that the pre-
diction discrepancy for all three ROIs decreased markedly when
DTI RD is added. The main reason is that RD reflects the dif-
fusion along the radial direction which increases with demyeli-
nation. Therefore, DTI RD can provide some extra informa-
tion and contribute for myelin content prediction. On the other
hand, adding other DTI metrics (FA and AD) only slightly im-
proved the performances and this improvement was not signifi-
cant (p > 0.5).

Table 4. Comparison of myelin content prediction discrepancy (defined as
MD) in three defined ROIs by using different combinations of MRI fea-
tures. MTR: magnetization transfer ratio. RD: radial diffusivity. DTI:
all three diffusion tensor imaging metrics. Results are displayed as mean
(standard deviation).

WM in HC NAWM MS Lesions
MTR 0.059 (0.040) 0.036 (0.021) 0.037 (0.029)

MTR+RD 0.050 (0.030) 0.031 (0.019) 0.025 (0.017)
MTR+DTI 0.048 (0.026) 0.029 (0.021) 0.022 (0.015)

4. Discussion

In this work, we proposed a method to predict the PET-
derived myelin content from multimodal MR images. Our ap-
proach called Sketcher-Refiner GANs, consists of two condi-
tional GANs with specifically designed adversarial loss func-
tions. A visual attention saliency map is also proposed to inter-
pret the attention of neural networks. The experimental results
demonstrate its superior performance for PET image synthesis
and myelin content prediction compared with the state-of-the-
art methods.

The demyelination in lesional regions and myelin content in
normal-appearing white matter can be well predicted by our
method. At the global level, the distribution of the myelin con-
tent derived from the ground truth in three ROIs is very similar
to that derived from our synthetic PET. Precisely, both with the
ground truth and the synthetic PET, no difference can be found
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Fig. 7. Bland-Altman Plots for WM/NAWM (left) and MS lesions (right) at the individual level for all the methods.

between NAWM in patients and WM in HC while a significant
reduction is found in MS lesions comparing to NAWM in pa-
tients. Using a previously validated clinical research procedure,
we showed that our prediction results approximate the percent-
age of demyelinated voxels derived from the ground truth indi-
vidually. At the voxel-wise level, there was a high concordance

between the demyelination maps derived from the ground truth
and from the predicted PET. Even though these results will need
to be confirmed in large populations, this demonstrates the po-
tential of method for clinical management of patients with MS.

Furthermore, we compared our approach with the state-of-
the-art methods through different aspects. First, by using MSE
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Fig. 8. (A) Percentage of demyelinated voxels in white matter MS lesions for
each patient computed from the ground truth (blue) and from our method
(grey). (B) Demyelinated voxels classified from the ground truth and our
predicted PET within MS lesions in two example patients. Agreement be-
tween methods is marked in yellow (both true and predicted PET indicated
demyelination) and white (both methods did not indicate demyelination).
Disagreement is marked in red (demyelination only with the true PET) and
orange (only with the predicted PET). The DICE coefficients in these two
cases are 0.88 (1st row) and 0.72 (2nd row). The corresponding T1-w MR
images are also shown on the left in each row. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)

and PSNR as image quality metrics, we demonstrate a superior
performance than the others. Second, we evaluate the myelin
prediction at a global level in three relevant ROIs. Although
there is no significant difference between the proposed method
and almost all other methods, our approach is shown to out-
perform the others in all three ROIs especially with the highest
performance in MS lesions. This demonstrates that our neural
networks indeed made more efforts on MS lesions during the
image synthesis process, thanks to the specific loss of the Re-

finer network.

The methods in Sikka et al. (2018); Li et al. (2014) and Pan
et al. (2018) have been proposed to predict FDG-PET using
MR images for AD diagnosis. However, the myelin signal
is much more subtle than the metabolic signal found in FDG
PET. Moreover, its relationship to the anatomical information
found in MRI is weaker. Thus, prediction of myelin content
is a more difficult image synthesis problem. We addressed
this difficult problem by a sketch-refinement process with two
cGANs. The idea of using multiple GANs for image synthesis
has already been explored in previous works, such as cascade
GANs in Wang et al. (2016). Specifically, the cascade GANs
designed in Wang et al. (2016) is to address the problem that
part of the data distribution might be ignored by the previous
GANs. Therefore, the authors proposed to iteratively train mul-
tiple GANs until no further improvements are obtained. But un-
like the traditional cascade GANs, our two GANs have different
specifically designed cost functions (Eq. 4 and 5) for sketching
anatomy and physiology information (Sketcher) and refining
myelin content (Refiner). Indeed, the adaptive weights in the
Refiner's loss function force it to shift its attention on MS le-
sions where demyelination happens. By contrast, without such
information, the Refiner would be driven towards generation of
normal anatomy, which forms the majority of the image content
but is of no interest for our problem. Furthermore, similar to
the Dice loss proposed by Milletari et al. (2016), our proposed
weighted L1 loss can also mitigate the effect of class imbalance
by assigning weights to samples of different class to make the
network not ignore the infrequent class.

In addition, in the works of Sikka et al. (2018); Li et al.
(2014) and Pan et al. (2018), only a single MRI pulse sequence
is used for prediction, for example Sikka et al. (2018) and Li
et al. (2014) only use T1-w MRI as the input. However, we
showed improved performances can be achieved by including
more modalities as inputs. Using MTR+RD instead of only
MTR can dramatically increase the myelin content prediction
results especially in MS lesions. Adding AD and FA only
marginally improved the results compared to MTR+RD. How-
ever, AD, FA and RD are all computed from a single DTI acqui-
sition. Therefore, adding AD and FA does not require acquisi-
tion of more MRI sequences and does not increase the scanning
time. We thus recommend using MTR+DTI since this leads
to the best results, even though the improvement is small com-
pared to MTR+RD. In fact, using multiple modalities for image
synthesis and segmentation has also been studied in Chartsias
et al. (2018) and Havaei et al. (2016). In their works, multichan-
nel neural networks have been used. During the inference step,
each modality is provided independently to convolutional neu-
ral networks. After encoding each modality into latent repre-
sentations, multiple fusion strategies such as the mean-variance
fusion (Havaei et al., 2016) or the max fusion (Chartsias et al.,
2018), have been applied. However, the fusion strategies maybe
unsuitable for image synthesis task which takes multiple modal-
ities as inputs. Some abnormal tissue regions which are impor-
tant but do not form majority of the image may be ignored after
the fusion step. Especially, the location and the shape of subtle
lesional features can be highly variable between patients. Fur-
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Fig. 9. The proposed visual attention saliency map. The white regions shown in first row are MS lesion masks. The second row shows some examples of the
attention of neural networks when L1 loss is used as the traditional constraint in the loss function, without the specific weighting scheme that we proposed.
The third row shows the corresponding attention of neural networks when our proposed weighted L1 loss is applied. It is clear that our designed loss
function is able to effectively shift the attention of neural networks towards MS lesions. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

thermore, the use of multichannel neural networks can lead to
high computational cost. Because each input modality is treated
independently by a neural network, the number of parameters
will be dramatically increased. On the contrary, our multiple
input modalities are arranged as channels and do not need the
fusion strategy, which can alleviate the above problems. Be-
sides, we use 3D operations for all the networks to better model
the 3D spatial information and thus could alleviate the discon-
tinuity problem across slices of 2D networks.

In order to interpret the attention of neural networks, we
also proposed a visual attention saliency map. The advan-
tage of our saliency map is that it can be generated by any
kinds of neural networks and calculated by standard backprop-
agation. In our work, as it is only used for the visualization
of the attention of neural networks, no backpropagation mod-
ification is applied. However, according to different applica-
tions, different strategies can be used to modify backpropaga-
tion, for example: 1) Guided Backpropagation (Springenberg
et al., 2014) which only propagates positive gradients for pos-
itive activations; 2) RELU Backpropagation (Zeiler and Fer-
gus, 2014) which only propagates positive gradients. Moreover,
class activation maps (CAM) (Zhou et al., 2016) and Grad-
CAM (Selvaraju et al., 2017) are other ways to visualize and
understand CNNs. Instead of using gradients with respect to
output, these methods use a global average pooling layer and
visualize the weighted combination of the feature maps at the
penultimate (pre-softmax) layer to obtain class-discriminative
visualizations.

There are also some limitations to our work. First, the pro-
posed weighted L1 loss needs the masks of different ROIs so
that the generator can pay more attention to the MS lesions.
However, in practice, these masks are not always available. In
particular, in this work, the MS lesions were manually seg-
mented. It remains to be seen if automatic methods could be
used for that process. This is left for future work. Second,
in the preprocessing steps, we did the intra-subject registration
onto [11C]PIB PET image space which is a common step when
using multiple modalities as inputs. However, the quality of
the synthesized image can be influenced by the registration ac-
curacy because of image noise and different selections of pa-
rameters in the registration step. In the future work, a spatial
transformation layer could be integrated in the neural networks
in order to avoid the influence from registration or alignment
of different modalities. The use of combined MR-PET systems
can also avoid this problem. Third, only a small, single-center,
dataset is used in our work to evaluate our proposed method.
Further experiments on larger, multi-center, datasets, will thus
be needed to assess the generalizability of the approach more
in depth. Such further validation is crucial before translation to
the clinic can be considered. Last, in our work the input MR
data was restricted to MTR and DTI derived metrics. These in-
puts were selected based on their potential to provide at least
indirect information about myelin content (based on the litera-
ture and discussion with MS experts). However, it could be that
other MR sequences or features (such as for example T1/T2 ra-
tio) provide complementary information. This would need to
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be assessed in future work.

5. Conclusion

We proposed Sketcher-Refiner GANs with specifically de-
signed adversarial loss functions to predict the PET-derived
myelin content from multimodal MRI. The prediction problem
is solved by a sketch-refinement process in which the Sketcher
generates the preliminary anatomy and physiology information
and the Refiner refines and generates images reflecting the tis-
sue myelin content in the human brain. Both qualitative and
quantitative results demonstrate that our method outperforms
the state-of-the-art approaches. Moreover, our method allowed
to accurately predict myelin content prediction at both global
and voxel-wise levels. The evaluation results show that the
demyelination in MS lesions, and myelin content in both pa-
tients’ NAWM and controls’ WM can be well predicted by our
method.
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