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Abstract

In this paper, we present a new implicit Monte-Carlo scheme for photonics. The new solver combines
the benefits of both the IMC solver of Fleck & Cummings and the SMC solver of Ahrens & Larsen.
It is implicit hence allows taking affordable time steps (as IMC) and has no teleportation error (as
SMC). The paper also provides some original analysis of existing schemes (IMC, tilted IMC, SMC),
especially with respect to the teleportation error in the equilibrium diffusion regime. In particular,
we demonstrate that any small spatial inaccuracies during the sampling of source particles for IMC
lead to a competing behaviour between the spatial and time discretisation parameters. The new
scheme we suggest is implicit, conservative, has no teleportation error (and as a consequence does
not need tilting), does not rely on source sampling for the emission of source particles, captures
the equilibrium diffusion limit (provided a small enough time step), can be used with arbitrary
equations of state and does not suffer the above competing behaviour. All those properties are
either demonstrated or numerically highlighted in the paper.

Keywords: Transport, Monte-Carlo, Numerical scheme, Photonics, IMC, SMC

1. Introduction

In this article, we are interested in the Monte-Carlo (MC) resolution of the time-dependent,
nonlinear, radiative transfer equations. The model has general form (see [1]):

1

c
∂tI + ω · ∇I + σtI = σaB(Tm) + σs

∫
4π

I
dω′

4π
,

∂tE(Tm) =

∫
4π

cσa

(
I

4π
−B(Tm)

)
dω′.

(1)

In the above equations, I = I(t, x, ω) and Tm(t, x) are the unknowns of the system and stand
respectively for the density of radiation energy and the material temperature. Variables t ≥ 0,
x ∈ Ω ⊂ R3 and ω ∈ S2 are respectively the time, space and angle variables. The cross-sections
σt = σt(x, t), σa = σa(x, t) and σs = σs(x, t) are given functions of (x, t). They stand for the
total, absorption and scattering opacities. In particular, we have σt = σa + σs. The density of
internal energy E depends on Tm via an equation of state dE = ρCv(Tm)dTm with ρ the mass
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density and Cv the heat capacity (constant for a perfect gaz). Quantity B(x, t) = aT 4
m(x, t)/4π

is the frequency-integrated Planck function with a the radiative constant. Quantity c denotes the
speed of light. Initial and boundary conditions must be supplemented to system (1):

u(0, x, ω) = u0(x, ω), Tm(0, x) = T 0
m(x), x ∈ Ω, ω ∈ S2, (2)

u(t, x, ω) = ub(t, ω), t ≥ 0, x ∈ ∂Ω, ω · ns < 0, (3)

where ns is the outward normal to Ω at x. System (1) together with initial and boundary conditions
(2) + (3) define the well-posed mathematical problem we want to solve. To be more precise, in
this paper, we are even interested in being able to accurately capture a particular regime: in
diffusive media, system (1) behaves, at leading order, like the nonlinear diffusion equation on
Φr(Tr) = aT 4

r =
∫

4π
I

4πdω{
∂t(Φr(Tr) + E(Tr))−∇ ·

(
c

3σt
∇(Φ(Tr)

)
= O(δ),

Φr(Tr) =
∫

4π
I

4πdω = B(Tm) +O(δ).
(4)

With
∫

4π
B(Tm)

4π dω = aT 4
m and Φr(Tr) = aT 4

r , the second equation is equivalent to Tm = Tr:
the radiative and matter temperatures are at equilibrium. In the above equation, δ ∼ 0 is a
small parameter characterising what is commonly called the equilibrium1 diffusion2 limit [2, 3, 4].
The limit can be defined by introducing a characteristic length X , a characteristic time T and a
characteristic collision rate λ and assuming we have{

cTD = O( 1
δ ),

cσ Tλ = O( 1
δ2 ),

(5)

with δ ∼ 0 small. System (1) and its limit (4) are relevant to model photons incoming into cold
media [1, 5, 6].

At this stage of the discussion, the problem of interest in this paper may seem to lack generality
in the sense we here focus on what is commonly called the grey approximation3 with isotropic
scattering4 and the opacities are independent of the temperature5. Still, it is enough to focus on
the main numerical difficulties we aim at considering in this paper: a high-dimensional (6 dimensions
in 3D) and highly nonlinear (via B ∝ T 4

m) system (1) degenerating toward (4) in diffusive media.
Of course, care has been taken to make sure the new numerical method we present in this paper
can be generalised.

In this article, due to the high-dimensional problem we aim at tackling, we only focus on MC
based numerical solvers. MC schemes to solve (1) are known to be extremely costly and inaccurate
in diffusive media, i.e where absorptions/emissions of photons dominate transport [2, 3, 4]. The
aim of this paper is to provide a new and original analysis of some existing schemes, identify some
flaws and suggest a new way, i.e. a new MC scheme, to circumvent them.

The paper is organised as follows: in section 2, we describe one of the most common way to
solve (1) together with its limit (4), the IMC scheme [7]. The scheme is described here because

1Relative to Tm = Tr.
2Relative the second order spatial term in (4).
3Relative to having I = I(x, t, ω) instead of I = I(x, t, ν, ω) where ν ∈ R+ is the frequency of the photons.
4Relative to having σs = σs(x, t) instead of σs = σs(x, t, ω · ω′).
5Relative to having σα = σα(x, t) instead of σα = σα(Tm(x, t)).
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one important ingredient is used later on in our new approach. In particular in this section, we
identify a simple configuration and illustrate what is commonly called the teleportation error, see
[4, 8]. Section 3 is devoted to an original analysis of the aforementioned teleportation error and
of the tilts, commonly used to mitigate it [8, 3, 4]. In particular, we demonstrate that small
inaccuracies on the emission term (during the source sampling phase) can lead to the construction
of a solver with competing numerical parameters (namely the time step ∆t and the grid size ∆x or
any spatial discrepancy δx during the source sampling phase). We also put forward the fact that
even if mitigating the teleportation error, tilts can not change the competing behaviour of ∆t and
∆x. Finally, in section 4, we suggest a new implicit MC scheme which can not, by construction,
produce any teleportation error (hence it does not need the use of a tilt). We call it the ISMC
scheme because it is based on both the SMC scheme of [9] and an adaptation of the implicitation
at the basis of the IMC scheme of [7]. Section 5 is finally devoted to numerical benchmarks.

2. The Implicit Monte Carlo (IMC) method

We first describe one of the most common methodology to solve system (1). It is denoted by
IMC for Implicit Monte-Carlo and has been introduced by Fleck and Cummings in [7]. Even though
the method has been described many times by multiple authors [10, 2, 3, 11], we recall the main
ideas introduced in the original paper. These ideas play an important role in our new MC scheme
we propose in section 4. The IMC method takes its roots in the statement that the standard explicit
scheme developed in [10] by Fleck exhibited objectionable features (small time steps are needed),
especially in collisional media. The idea of Fleck and Cummings in [7] is to introduce some sort
of implicitness in the time discretization scheme in order to unstiff the coupling between radiation
and material. Implicit time discretization of (1) yields the following linear system:

1

c
∂tI + ω · ∇I + σnt I = σnaB

n+1 + σns

∫
4π

I
dω′

4π
,

∂tE =

∫
4π

cσna

(
I

4π
−Bn+1

)
dω′.

(6)

To solve system (6) using an MC scheme, one has to sample the source term σnaB
n+1 which is

unknown at the beginning of the time step. In [7], the authors propose a particular estimation of
Bn+1 that leads to the Fleck and Cummings equations that approximate the original system (1).
We sum up the construction of Bn+1 in the few next lines for the grey approximation. System (1)
can be rewritten with respect to variables (I,Φ = aT 4

m) instead of variables (I, Tm):
1

c
∂tI + ω · ∇I + σtI = σaΦ + σs

∫
4π

I
dω′

4π
,

∂tΦ =

∫
4π

cσaβ(Φ)
I

4π
dω − cσaβ(Φ)Φ, with β =

dΦ

dE
.

Note that β = dΦ
dE has been introduced to express ∂tE with respect to ∂tΦ. In a sense, this term

deals with all the physics relative to the equation of state E(Tm) = E(Tm(Φ)) together with making
sure the system can be closed using variables (I,Φ).

The above system is still nonlinear. A linearisation is mandatory to apply an MC scheme.
Integration of the radiation-material energy balance equation on time step [tn, tn+1], using the
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backward Euler scheme for Φ and the forward Euler scheme for σa and β yields:

Φn+1 = Φn +

∫ tn+1

tn

∫
4π

cσnaβ
n I

4π
dω − cσnaβn∆tΦn+1.

It can be easily inverted in term of Φn+1 to give:

Φn+1 = fnΦn + (1− fn)

∫ tn+1

tn

∫
4π

I

4π
dω

dt

∆t
, with fn =

1

1 + cσnaβ
n∆t

.

The quantity fn is the so-called Fleck factor. Replacing the time integral by its instantaneous value
and using the approximation of Φn+1 in the transport equation yields the time-discretized Fleck
and Cummings transport equation :

1

c
∂tI + ω · ∇I + σnt I = fnσnaΦn + [σns + (1− fn)σna ]

∫
4π

I
dω′

4π
,

∂tE = cfnσna

(∫
4π

I

4π
dω − Φn

)
.

(7)

Notice that by redefining σna ← fnσna and σns ← σns + (1 − fn)σna , one obtains a transport equa-
tion similar to the first one of (6) except that the emission term fnσnaΦn is now known because
evaluated at the beginning of the time step. The time-discretized transport equation above has
been supplemented by the proper material energy equation. Choosing to work on E instead of Φ
here ensures, by construction, the conservation of the total energy for the system matter+photons
provided Φn+1 can be deduced from En+1 (eos).

Equations (7) are the Fleck and Cummings equations and form a closed linear system on time
step [tn, tn+1]. This system is a consistant time-discretized version of the original system (1).
Remark that the semi-implicit time discretization introduces an artificial scattering term that un-
stretches the stiff coupling between radiation and material. This numerical trick is important and
efficient in practice and will be used in the derivation of our new MC scheme (section 4). Fleck and
Cummings’ solver for (1) then consists in solving successively the two equations of system (7) within

every time step. Let us introduce a spatial grid of Nx non-overlapping cells such that Ω =
⋃Nx

i=1 Ωi.
Then, during time step [tn, tn+1 = tn + ∆t],

– transport equation (7) is solved with an MC method. We denote by NMC the number of MC
particles. The source term is classically treated with a source sampling strategy within each
cell (Ωi)i∈{1,...,Nx}, see [7, 2, 3, 4].

– The material energy En+1 is updated in each cell (Ωi)i∈{1,...,Nx} by tallying the radiation
energy deposit in the material with a track length estimator [12] during the MC resolution.

Now, we aim at analysing the asymptotic behavior of the time-discretized system (7) in the diffusive
regime. This analysis has been carried out in [2]. One can show that, during time step [tn, tn+1],
at leading order with respect to δ in the diffusive regime characterised by (5), system (7) behaves
like: 

∂tΦr −∇ ·
(

c

3σnt
∇Φr

)
=

1

βn∆t
(Φr − Φn) +O(δ),

En+1 = En +
1

βn∆t

[∫ tn+1

tn
Φrdt− Φn

]
+O(δ).

(8)
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Notice that, from the comparison of (4) and (8), one can expect the solution to exhibit isotropy
for I (given enough MC particles) and recover the diffusion coefficient c/3σnt (provided a fine
enough spatial discretization). On another hand, the equilibrium property Φr = Φ of (4) is only
Φr−Φ = O(βn∆t) once the IMC linearisation applied, see (8). Let us now present some numerical
results on a ’fil rouge’ problem and illustrate why we felt the need to build a new MC scheme.

Let us here consider a particular configuration: note that every details (initial conditions, numer-
ical parameter choices and test-case justifications) of the test-problem are presented in Appendix
A. We consider a diffusive medium for which (4) is valid. The initial condition is a Heaviside of
(relaxed Tm = Tr) temperatures in the center of the spatial domain, see figure A.10. The solution
at the final time exhibits steep propagation fronts. The (reference) solution obtained by solving (4)
is recalled in every pictures of figure 1 together with the radiative Tr and material temperatures
Tm obtained with the IMC solver for

– always the same time step ∆t = 10−12,

– about NMC ≈ 4× 105 MC particles (analog MC scheme + source sampling),

– and several mesh sizes as Nx ∈ {20, 40, 80, 160, 320, 640, 1280, 2560}.

In other words, figure 1 presents a convergence study on the spatial temperature profiles (Tr, Tm)
with respect to the spatial discretization Nx for fixed ∆t and NMC obtained from an IMC solver.

The top-left picture of figure 1 shows an important difference between the reference solution
and the IMC one. On a coarse mesh (Nx = 20), we experience what is commonly called the
teleportation error [4, 3, 8]: the IMC solution does not behave as a diffusion solution (care will
be taken to characterise its behaviour more precisely in section 3). Then, as testifies figure 1, the
finer the mesh (as Nx grows), the better the equilibrium diffusion solution is captured. But keeping
NMC fixed as Nx grows also leads to noisier and noisier results. There are less and less particles
per cell as Nx grows. The number of MC particles NMC must grow with Nx to ensure recovering a
smooth/accurate solution. Note that the decoupling between radiative and material temperatures,
driven by the numerical relaxation time6 1

βn∆t , is satisfactory: the authors in [2] emphasized the
fact that in practice, time steps ensuring a good agreement for this equilibrium limit are affordable
for the IMC scheme (meaning we can afford βn∆t small enough in common applications).

With this simple example, we wanted to express the stakes of being able to deal with the
teleportation error. Being able to capture the equilibrium diffusion limit with an MC scheme on a
coarse mesh will lead to considerable gains especially because smooth (i.e. not noisy i.e. accurate)
solutions will be available with even less MC particles. For this reason in the following section,
we focus on the spatial discretization. More precisely, we focus on the spatial discretization of
the source term which is critical in the diffusive regime, cause of what is commonly called the
teleportation error [13, 14, 4, 8]. The next section is devoted to a deepened and original numerical
analysis of this teleportation error. Care is taken to characterise precisely its effect on the solution
of (8).

6The steeper the derivative of Φ with respect to E at En (i.e. the greater dΦ
dE

(En) = βn), the smaller the time
step needs to be to ensure equilibrium.
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Figure 1: Comparisons of the material and radiative temperatures Tm and Tr obtained from (reference so-
lution) a deterministic solver for the equilibrium diffusion limit (4) and the IMC approximation for Nx ∈
{20, 40, 80, 160, 320, 640, 1280, 2560}, ∆t = 10−12 and NMC ≈ 4 × 105 MC particles (analog MC scheme + source
sampling).
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3. Analysis of the teleportation error

The analysis of the limit equation on time step [tn, tn+1 = tn+∆t] for the IMC scheme has been
carried out continuously with respect to the spatial variable whereas many authors (see [4] and the
references therein) admit the spatial discretisation of the source term in the IMC linearisation is
closely related to the teleportation error. See [2, 8, 4] for very pedagogical numerical examples. It
is even confirmed by the fact that tilts, i.e. spatial interpolary reconstructions of Φ, can lead to
significant improvements, see [8, 4]. In practice, a spatial discretisation is introduced (i.e. D =⋃Nx

i=1Di), together with assumptions such as constant Φ in each cell. At every beginning of time

step we have an O(∆x) approximation of Φ(x) =
∑Nx

i=1 Φi1Di
(x) + O(∆x) where ∆x = maxi |Di|

and Φi = 1
|Di|

∫
Di

Φ(x)dx. This choice affects Φ(x) but also β and above all the source sampling of

the MC particles at every beginning of time steps. In the following paragraphs, we suggest

– taking into account a spatial O(δx) discrepancy in the source term within cells (inaccurate
source sampling),

– together with the asymptotic development O(δ) in the equilibrium diffusion limit defined by
(5) of the linearized system (1).

Let us now revisit the limit equation under such condition. Let us perform a Taylor development
of Φ(x) with respect to a small spatial parameter δx. Note that we are also going to perform a
Hilbert [15, 2] development afterward with respect to δ. For this, we write:

Φ(x) = Φ0(x) + δxΦ1(x) +O(δ2
x),

with of course Φ0(x) =
∑Nx

i=1 Φ0
i 1Di(x) and Φ1(x) = ∇xΦ. The upperscripts refer to the terms in

the development with respect to δx. Assume constant opacities, then for small δx, we have:

β(Φ) = β(Φ0) + δxΦ1 dβ

dΦ
(Φ0)︸ ︷︷ ︸

β′(Φ0)

+O(δ2
x).

Plugging the spatial Taylor development of Φ within four terms appearing in (7) (we drop the n

upperscripts for conciseness), namely cσaf , cσa(1− f), cσafΦ, leads to

cσafΦ =
cσaΦ0

1 + cσaβ(Φ0)∆t
+ δxcσaΦ1 1 + cσa[β(Φ0)− Φ0β′(Φ0)]∆t

(1 + cσaβ(Φ0)∆t)2
+O(δ2

x),

cσa(1− f) = cσa
cσaβ(Φ0)∆t

1 + cσaβ(Φ0)∆t
+ δxcσaΦ1 cσaβ

′(Φ0)∆t

(1 + cσaβ(Φ0)∆t)2
+O(δ2

x),

cσaf =
cσa

1 + cσaβ(Φ0)∆t
− δxcσaΦ1 cσaβ

′(Φ0)∆t

(1 + cσaβ(Φ0)∆t)2
+O(δ2

x).

Now use the fact that cTD = O( c
∗

δ ), cσa
T
λ = O(

c∗σ∗a
δ2 ) as in (5). Let us perform a Hilbert development

[15, 2] of the above system with respect to δ. It consists in

– expanding I = I0 + I1δ + I2δ
2 +O(δ3), Φ = Φ0 + Φ1δ + Φ2δ

2 +O(δ3) and E = E0 + E1δ +
E2δ

2 +O(δ3) as formal power series of δ,

7



– plugging their expressions in (7),

– and identify the coefficients of δ0, δ1, δ2.

With this additional development, the above equations become (note that we drop the upperscript
∗ for conciseness)

δ2cσafΦ =

(
Φ0

0

β(Φ0
0)∆t

+
Φ0

1δx

β(Φ0
0)∆t

− Φ0
1δx

β′(Φ0
0)Φ0

0

β(Φ0
0)2∆t

+O(δ2
x)

)
δ2 +O(δ3),

δ2(cσs + cσa(1− f)) = cσt +

(
− 1

β(Φ0
0)∆t

+ Φ0
1δx

β′(Φ0
0)

(β2(Φ0
0)∆t)

+O(δ2
x)

)
δ2 +O(δ3),

cσaf =
1

β(Φ0
0)∆t

− Φ0
1δx

β′(Φ0
0)

∆tβ2(Φ0
0)

+O(δ2
x) +O(δ).

By anticipation, the two first term have been multiplied by δ2 (to be used in the first equation of
(7)) and not the last one (to be used in the second equation of (7)).

The above developments are then plugged in the collisional part of (7) solved on time step
[tn, tn + ∆t] assuming δ → 0 and keeping only the O(δ4) orders. We obtain:

δ2∂tI + δcω · ∇I + cσtI =
δ2

β(Φ0
0)∆t

Φ0
0 + δ2 [β(Φ0

0)− Φ0
0β
′(Φ0

0)]

β(Φ0)2∆t
δxΦ1

+

(
cσt −

δ2

β(Φ0
0)∆t

+ δ2 β′(Φ0)

β2(Φ0
0)∆t

δxΦ1

)∫
4π

I

4π
dω +O(δ2

x) +O(δ4),

δ2∂tE = cσaf(Φ)

(∫
4π

I

4π
dω − Φ

)
+O(δ4).

Note that we did not develop the last equation with respect to δx: we only need the δ development
in the following to conclude. The leading order terms allow identifying the asymptotic regime for
the linearized equation:

I0 =

∫
4π

I0
4π
dω,

cω · ∇I0 + cσtI1 = cσt

∫
4π

I1
4π
dω,

∂tI0 + cω · ∇I1 + cσtI2 =
1

β(Φ0
0)∆t

(
Φ0

0 −
∫

4π

I0
4π
dω

)
+
δx[β(Φ0

0)− Φ0
0β
′(Φ0

0)]Φ1
0

β2(Φ0
0)∆t

+ cσt

∫
4π

I2
4π
dω +

β′(Φ0
0)

β2(Φ0
0)∆t

Φ1
0δx

∫
4π

I0
4π
dω +O(δ2

x),

Φ0 = Φ0
0 + δxΦ1

0 +O(δ2
x) =

∫
4π

I0
4π
dω = Φr,0,

Integrating the previous relations over angles and combining them yields:

∂tΦr,0 −∇
(

c

3σt
∇Φr,0

)
=

1

β(Φ0
0)∆t

(Φ0
0 − Φr,0) +

δxΦ1
0

β2(Φ0
0)∆t

[
β(Φ0

0) + β′(Φ0
0)(Φr,0 − 2Φ0

0)
]

+O(δ2
x).
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The leading order with respect to δ ensures for Φ0:

Φ0 = Φ0
0 + δxΦ1

0 +O(δ2
x) = Φr,0.

This finally leads to:

∂tΦr,0 −∇
(

c

3σt
∇Φr,0

)
= −C(Φ0

0)
δx
∆t

Φ1
0 +O(δ2

x),

= −C(Φ0
0)
δx
∆t
∇Φ0 +O(δ2

x),

= −C(Φ0
0)
δx
∆t
∇Φr,0 +O(δ2

x).

The limit equation on time step [tn, tn+∆t] of the IMC scheme obtained with an infinitely accurate
MC approximation but taking into account an O(δx) discrepancy in the source term (during the
source sampling phase) yields:

∂tΦr −∇
(

c
3σnt
∇Φr

)
+ C δx

∆t∇Φr = O(δ2
x) +O(δ),

En+1 = En + 1
βn∆t

[∫ tn+1

tn
Φrdt− Φn

]
+O(δ) +O(δx).

(9)

This limit equation is an advection-diffusion one. The velocity of the advection operator depends on
the discretisation parameters ∆t and δx. They even compete during time step [tn, tn+ ∆t]. On one
hand, taking ∆t the smaller possible ensures recovering the equilibrium limit, but imposes a finer and
finer spatial discretisation. In fact, the error can be very important for steep gradients of Φr (front
of a Marshak wave for example for which ∇Φr � 1). It is well-known the mechanism accumulates
discrepancies proportionally to the number of time steps (due to the cycle-to-cycle differences of
magnitude δx

∆t∇Φr, see [4]). The behaviour of the IMC scheme is close to the behaviour of the
Dufort-Frankel scheme for parabolic equations. For this scheme, if Kδx = ∆t → 0, the scheme is
inconsistent. It is possible to force ∆t = K the greater possible (limit of stability) and make sure
δx → 0 to obtain a converging O(δx) scheme.

Let us verify and illustrate the above analysis on our ’fil rouge’ test-case. The physical configu-
ration is exactly the same as in figure 1 and Appendix A except we here fix Nx = 20 and NMC ≈ 4×
105 and perform a convergence study with respect to ∆t ∈ {10−8, 5×10−9, 10−9, 10−10, 10−11, 10−12, 10−13, 10−14}.
The results are displayed in figure 2. Note that the common ground for all the pictures of figure
2 is that the grid is coarse: Nx = 20. The top-left picture testifies that even if the grid is coarse,
the teleportation error is much less important with such big time step. On another hand, the time
step is too big to ensure the relaxation of the radiative and material temperature and Tm 6= Tr
on this same picture. Of course, as ∆t tends to zero on the successive other pictures of figure 2,
we recover the fact that Tr → Tm as predicted by (9) (second line). But we also recover the fact
that the solution looks more and more like the solution of an advection-diffusion equation rather
than a diffusion one, as predicted by (9) (first line). In fact, with this study, we characterised the
teleportation error: it stands for the resolution of an advection-diffusion equation with numerical
advection speed depending on ∆t and δx in a competitive way. Note that the latter numerical
experiments show the previous analysis is not optimal: indeed, the results of figure 2 tend to show
that the advection velocity behaves as C(Φ) δx∆t−→Cδx as ∆t→ 0 as the spreading increases less and
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Figure 2: Comparisons of the material and radiative temperatures Tm and Tr obtained from (reference solution) a de-
terministic solver for the equilibrium diffusion limit (4) and the IMC approximation for Nx = 20, NMC ≈ 4×105 MC
particles (analog MC scheme + source sampling) and ∆t ∈ {10−8, 5×10−9, 10−9, 10−10, 10−11, 10−12, 10−13, 10−14}.
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less as ∆t is decreasing. Still, we do not intend to be optimal here, we only wanted to characterise
the competing behaviour observed in several papers [3, 4].

As emphasized in many publications, see [4] and the references therein, if the emission is non
uniform within the cell, a reconstruction method can be introduced to estimate cfσΦ in at every
beginning of time steps. This is commonly called a tilt (see [4, 8]) and it has been experimentally
observed it reduces teleportation errors. In fact, it corresponds to a first order approximation of
Φ(x) = Φtilt(x) +O(δ2

x). The same asymptotic developments (Taylor of order 2 with respect to δx
and Hilbert one with respect to δ) applying an accurate tilt can be performed. The second order
reads:

cσafΦ =
cσaΦ0

1 + cσaβ(Φ0)∆t
+ δ2

xcσaΦ2 1 + cσa[β(Φ0)− Φ0β′(Φ0)]∆t

(1 + cσaβ(Φ0)∆t)2
+O(δ3

x),

cσa(1− f) = cσa
cσaβ(Φ0)∆t

1 + cσaβ(Φ0)∆t
+ δ2

xcσaΦ2 cσaβ
′(Φ0)∆t

(1 + cσaβ(Φ0)∆t)2
+O(δ3

x),

cσaf =
cσa

1 + cσaβ(Φ0)∆t
− δ2

xcσaΦ2 cσaβ
′(Φ0)∆t

(1 + cσaβ(Φ0)∆t)2
+O(δ3

x),

with Φ2 = ∇2
xxΦ. Plugged in the linearized transport equation on time step [tn, tn + ∆t] and going

through the same steps as before leads to:

∂tΦr,0 −∇
(

c

3σt
∇Φr,0

)
= −D(Φ0

0)
δ2
x

2∆t
∇2Φ0 +O(δ3

x),

= −D(Φ0
0)

δ2
x

2∆t
∇2Φr,0 +O(δ3

x).

Re-arranging the terms produces expression
∂tΦr −∇

[(
c

3σnt
+D

δ2
x

2∆t

)
∇Φr

]
= O

(
δ3
x

∆t

)
+O(δ),

En+1 = En + 1
βn∆t

[∫ tn+1

tn
Φrdt− Φn

]
+O(δ) +O(δx).

(10)

It is a diffusion equation (up to order O(δ3
x)). The asymptotic diffusion coefficient is c

3σt
+ D

δ2x
2∆t

and depends on discretisation parameters δx and ∆t. Once again, both discretisation parameters
compete during time step [tn, tn + ∆t]. This is attenuated by the fact that δx is squared but it
still accumulates discrepancies proportionally to the number of time steps due to the cycle-to-cycle

differences of magnitude
δ2x

2∆t∇2Φr.
Once again, we suggest verifying numerically our analysis. Let us revisit the two previous

convergence studies (with respect to Nx as in figure 1 and with respect to ∆t as in figure 2) in
the same numerical conditions but with a first order tilted IMC scheme. Basically, the tilt we use
here builds a linear approximation of Φ within each cell and corrects the position of the sampled
source MC particle together with the Fleck factor. The results are displayed in figures 3 and 4.
Figure 3 (to be compared with figure 1) presents the convergence study with respect to the spatial
discretisation Nx. For a coarse grid (top-left picture of figure 3), the teleportation error is still
observable. But we can already see that it has a different nature than in figure 1. The propagation
fronts are closer to the reference ones and, as expected, one order of magnitude is gained: the grid
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Figure 3: Comparisons of the material and radiative temperatures Tm and Tr obtained from (reference solution)
a deterministic solver for the equilibrium diffusion limit (4) and the first order tilted IMC approximation for Nx ∈
{20, 40, 80, 160, 320, 640, 1280, 2560}, ∆t = 10−12 and NMC ≈ 4 × 105 MC particles (analog MC scheme + source
sampling).
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Nx = 320 of the tilted solution gives similar results to the Nx = 640 one for the non-tilted one,
see figure 1. Note that the equilibrium is sufficiently well resolved with ∆t = 10−12, just as it was
already the case with the non-tilted IMC scheme: we recover numerically the fact that tilts only
ensure a spatial improvement.

Let us now comment on figure 4 displaying the convergence study with respect to ∆t in the
same numerical conditions as in figure 2 but with the first order tilted IMC scheme. Once again,
we recover the competing behaviour of ∆t and δx : if ∆t is not small enough, equilibrium is not
fulfilled, see for example the top pictures of figure 4. But making sure ∆t goes to zero increases
the teleportation error, even if less pronunced than with the non-tilted IMC scheme. Still, a gain
is observable as the spreading of the solution is more contained: the propagation fronts are less
far away from the reference solution. In a sense, these two studies validate our numerical analysis:
the tilted IMC scheme behaves a little bit more like a diffusion equation. But a first order tilt
is not enough to capture the good diffusion coefficient except for a fine tuning between ∆t and
∆x, see (9). The same remark as above still applies here: if ∆t = Kδ2

x with δx going to zero,
the tilted IMC scheme is inconsistent (behaviour to be compared with the Dufort-Frankel scheme
for parabolic equations). On another hand, if δx

∆t = K is kept constant and δx goes to zero, a
convergence behaviour can still be observed. The above analysis shows that an accurate second
order (tilt) reconstruction (i.e. Φ(x) = Φtilt(x)+O(δ3

x)) is mandatory to recover the correct diffusion
coefficient for the regime δ → 0.

At this stage of the discussion, we could present results with higher-order tilts (or second order
ones, allowing to, at least recover the good diffusion coefficient). But we prefer here taking few
lines to list the pros and cons of having resort to them:

– first, let us keep in mind that the above analysis is independent of the kind of tilt one use. This
means that polynomial, piecewise constant, splines etc. are all going to behave as above. They
may give slightly different behaviours but they all are going to be the same with respect to the
competing behaviour between ∆t and ∆x, as soon as a small spatial inaccuracy in the source
sampling is introduced. Note that this behaviour is also observable with the teleportation
corrector suggested in [3] (which is probably much more accurate than a tilt but can not
guaranty having strictly δx = 0).

– Second, the analysis suggested the coefficients to build the high order tilts were computed
accurately. In practice, they must be evaluated from an MC, i.e. potentially noisy, solution.
This may induce some complications.

– Those difficulties may be amplified by the dimension of the problem: here, we only considered
1D spatial problems and only 2 coefficients needed to be evalutated (namely the coefficients
Φ0,Φ1 = ∇Φ in each cell). For 3D spatial problems and a first order tilt, at least 4 coefficients
are needed. For 3D spatial problems and a second order tilt, 16 coefficients are needed. The
reconstruction depends on the dimensionality of the problem which is kind of contradictory
with having resort to an MC scheme, classically used when we need to be the less sensitive
possible to the dimension.

– Besides, 3D gradient reconstructions are far from being obvious, especially on unstructured
grids.

– Add to these points the fact that the previous analysis is only valid if the Fleck factor is
also corrected: to obtain (9)–(10), the spatial Taylor development of Φ must be taken into
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Figure 4: Comparisons of the material and radiative temperatures Tm and Tr obtained from (reference solu-
tion) a deterministic solver for the equilibrium diffusion limit (4) and the first order tilted IMC approximation
for Nx = 20, NMC ≈ 4 × 105 MC particles (analog MC scheme + source sampling) and ∆t = {10−8, 5 ×
10−9, 10−9, 10−10, 10−11, 10−12, 10−13, 10−14}.
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account in the expression of fn. Correcting the emission position is not enough to recover
the previous results. There are many ways to correct the Fleck factor but every of them are
complex to verify, even in 1D.

– Finally, the competing behaviour between ∆t and δx, despite being tedious to tune (maximise
∆t to avoid having too much teleportation error but not too much to make sure the relaxation
is fulfilled), can become impossible to handle in practice for models where (1) has to be coupled
to another physics demanding small time steps for an accurate resolution (see for example
radiative hydrodynamics [6, 1, 5]).

For these reasons, instead of introducing an additional reconstruction, we prefer building MC
schemes which do not suffer teleportation errors. In the following section, we present our new
implicit MC schemes and detail some of its asymptotical properties.

4. The new Implicit Semi-analog Monte-Carlo (ISMC) solver

In this section, we present the new implicit MC scheme we felt the need to build due to the pre-
viously detailed reasons. We here want to build a scheme for which there is no spatial discrepancies
at the emission of a radiative MC particle: in other words, we want to cancel, by construction, the
error in the sampling of the emitted photons (we insist we want δx = 0 and not δx ≈ 0).

Note that, to our knowledge, at least one attempt has been made in order to do so within an
IMC and source sampling framework in [3]. The main idea consists in storing source positions
along the flight path of each particles to use the banks to emit photons at the beginning of the
next time step. The memory consumption consequently grows with the number of MC particles
and the number of banking sites. It also has an additional complexity (how to determine the source
sites and how to sample the photons from them) and an overcost [3]. But overall, the authors still
observe their teleportation corrector does not change the competing7 behaviour between ∆t and δx.
Still, it is interesting noticing that the solver in [3] has a key ingredient in common with the scheme
we develop in the following (namely the SMC scheme of [9]).

As explained before, we want to cancel the discrepancies at emission. MC schemes for neutronic
applications [16, 17] generally inject the fission sources into the scattering cross-sections. This
allows avoiding having resort to source sampling to model the neutrons emitted during a fission
reaction. By construction, the fission neutrons are emitted exactly at the fission banks without the
need for storing them in memory. We would like to do the same for the photonic application of
this paper. To do so, let us rewrite (1) in a manner allowing to integrate the source term into a
scattering part. For this, let us first rewrite (1) with respect to E as

1

c
∂tI + ω · ∇I + σtI = σaη(E)E + σs

∫
4π

I
dω′

4π
,

∂tE =

∫
4π

cσa

(
I

4π
− η(E)E

)
dω′.

(11)

In (11), we introduced B(E) = η(E)E. We now suggest introducing variable e(x, t, ω) defined by
1

4π

∫
4π
e(x, t, ω)dω = E(x, t). Variable e is only an auxiliary variable whose first order moment with

7See figure 5 of [3] and the comment ”Decreasing the time step [...] increases the amount of teleportation error”.
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respect to the angular variable ω coincides with E. System (11) can then be rewritten in term of
unknowns (I, e) as8:

1
c∂tI + ω · ∇I = +σaη(E)

∫
4π

e

4π
dω′ − σtI + σs

∫
4π

I
dω′

4π
,

∂te = −cσaη(E)e+

∫
4π

cσa
I

4π
dω′.

(12)

This system is still nonlinear. From now on, let us assume that η(E(x, t)) = η(x, t) for t ∈
[tn, tn + ∆t]. With the previous hypothesis, (12) becomes

1
c∂tI + ω · ∇I = +σaη

∫
4π

e

4π
dω′ − σtI + σs

∫
4π

I
dω′

4π
,

∂te = −cσaηe+

∫
4π

cσa
I

4π
dω′.

(13)

Independently of the choice of η, (13) is linear (η is a function of x, t but not anymore of E). An
MC scheme can then be applied to solve it on time step [tn, tn+∆t]. Of course, in practice, a choice
must be made for η (explicit, implicit etc.): let us postpone this choice and rather go through few
properties of the above linearization (those remains independent of the choice of η).

4.1. Few properties of the linearised system (13)

Let us list few properties one can expect asymptotically (i.e. with an important number of MC
particles) from an MC resolution of (13) on time step [tn, tn + ∆t].

4.1.1. The multigroup structure of (13) with analytical basis functions

As explained before, system (13) is now linear and can be solved with an MC scheme. We here
insist on the fact that it has the same structure as a multigroup transport equation in neutronics
for example, see [17, 16]. But in this case, there are only two groups and the basis functions are
analytical, given by φ0(v) = δc(v) and φ1(v) = δ0(v). To clarify this point, let us put forward the
expression of the total and scattering cross-sections of linear system (13).

To solve (13), let us build ψ(t, x, ω, v), a new unknown depending on one more dimension and
on unknowns (I, e) solutions of (13). Variable v is chosen such that ψ(x, t, ω, v) = I(x, t, ω)δc(v) +
e(x, t, ω)δ0(v). In the latter expression, δ0, δc are such that∫

{V }
δc(v)dv = δV,c and

∫
{V }

δ0(v)dv = δV,0,

where δV,k is the Kronecker symbol9 and {V } denotes the singleton V . In fact, v is nothing more
than a velocity which can be c for photons or 0 for matter. Let us now build the linear equation
satisfied by ψ. Expression (13) can be rewritten (we drop the dependences for conciseness):

∂t(Iδc + eδ0) + vω · ∇(Iδc + eδ0) =− c(σtIδc + σaηeδ0)

+ c

(
σaδcη

∫
4π

e+ σaδ0

∫
4π

I + σsδc

∫
4π

I

)
.

8Integrate (12) with respect to 1
4π

∫
4π ·dv and recover (11).

9i.e. is such that δV,k = 0 if V 6= k and δV,k = 1 if V = k.
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It remains to make ψ appear in the collisional part. For the moment the integration is only over
the angular distribution. Let us introduce the Kronecker symbols

δ0,c(v
′, v) = δ0(v)δc(v

′) and δc,0(v′, v) = δc(v)δ0(v′).

We can then rewrite the above equation as:

∂tψ + vω · ∇ψ + c(σtδc(v) + σaηδ0(v))ψ =

+ c

∫
V

∫
4π

[σaδc,0(v′, v) + σsδc,c(v
′, v) + σaηδ0,c(v

′, v)]ψ(v′, ω′)dv′dω′,
(14)

with V = {0, c} a discrete space with only two elements. One can check that performing
∫
{c}(14)dv

allows recovering the transport equation of (13) and that
∫
{0}(14)dv leads to the second equation.

We can identify the scattering Σs(v, v
′) and total Σt(v) cross-sections to rewrite the system above

under the general form:

∂tψ + vω∇ψ + cΣt(v)ψ =

∫
V

∫
4π

cΣs(v
′, v)ψ(v′, ω′)dv′dω′.

In the above expression, we have:

Σt(v) = σtδc(v) + σaηδ0(v), and Σs(v
′, v) = σaδc,0(v′, v) + σsδc,c(v

′, v) + σaηδ0,c(v
′, v).

Let us rewrite the scattering part as Σs(v)Ps(v
′, v) = Σs(v

′, v). This implies

Σs(v) =

∫
Σs(v

′, v)dv′,

=

∫
[σaδc,0(v′, v) + σsδc,c(v

′, v) + σaηδ0,c(v
′, v)] dv′,

= (σs + σaη)δc(v) + σaδ0(v).

By definition of Ps we have:

Ps(v
′, v) =

σs(v
′, v)

σs(v)
,

=
[σaδc,0(v′, v) + σsδc,c(v

′, v) + σaηδ0,c(v
′, v)]

(σs + σaη)δc(v) + σaδ0(v)
.

The above expression can be considerably simplified by noticing that

for v = 0, Ps(0, v
′) = δc(v

′), for v = c, Ps(c, v
′) =

σsδc(v
′) + σaηδ0(v′)

σs + σaη
,

so that Ps resumes to

Ps(v, v
′) = δ0(v)δc(v

′) + δc(v)
σsδc(v

′) + σaηδ0(v′)

σs + σaη
.

Now, we are interested in a direct resolution of (13) on time step [tn, tn + ∆t]. In other words, we
need (cf. [18]) to characterise the total and scattering cross-sections of the adjoint form of (13). It
is given by

−∂tψ − vω · ∇ψ + cΣt(v)ψ =

∫
V

∫
4π

cΣS(v′, v)ψ(v′, ω′)dv′dω′, (15)
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where
ΣS(v, v′) = ΣS(v)PS(v, v′) = Σs(v

′)Ps(v, v
′).

Then we have

ΣS(v) =

∫
V

Σs(v
′)Ps(v, v

′)dv′,

=

∫
V

((σs + σaη)δc(v
′) + σaδ0(v′))

(
δ0(v′)δc(v) + δc(v

′)
σsδc(v) + σaηδ0(v)

σs + σaη

)
dv′,

= (σa + σs)δc(v) + σaηδ0(v) = σtδc(v) + σaηδ0(v) = Σt(v).

Few calculations, similar to the already performed one before to identify PS , show that:

PS(v, v′) = δ0(v)δc(v
′) + δc(v)

σsδc(v
′) + σaδ0(v′)

σs + σa
.

Note that Ps and PS only differ from the fact that η is factor of σa in Ps and not in PS .
With the above calculations, we identified the direct and adjoint cross-sections for (13) to be

revisited as a 2-group10 linear transport equation (15). The main interest of the above identifications
concerns the fact that we here showed the new solver we will build in the next sections can be easily
implemented in an already existing MC multigroup simulation code. The relevance of the above
calculations will also be highlighted later on when the numerical MC resolution will be tackled.

4.1.2. Conservativity (13) on time step [tn, tn + ∆t]

Independently of the choice of η, the linearized system is conservative as

∂t

(∫
V

∫
4π

ψdvdω

)
+∇ ·

(∫
V

∫
4π

vωψdvdω

)
= 0,

∂t

(∫
4π

Idω +

∫
4π

edω

)
+∇ ·

(∫
4π

cωIdω

)
= 0.

This implies that if a conservative MC scheme is used to discretise (13), the MC discretisation will
be conservative through the successive times steps. Care will be taken to build such MC scheme in
the next parts.

4.1.3. The equilibrium diffusion limit on [tn, tn + ∆t] for system (13)

Let us finally show why linearization (13) is satisfactory with respect to the equilibrium diffusion
limit (4) we aim at capturing accurately. On time step [tn, tn + ∆t], in the limit defined by (5) the
previously presented linearization resumes to

δ
c∂tI + ω · ∇I = +1

δ
σaη

∫
4π

e

4π
dω′ − 1

δ
σtI + σs

∫
4π

I
dω′

4π
,

∂te = − 1
δ2 cσaηe+

∫
4π

1

δ2
cσa

I

4π
dω′.

(16)

10With analytical basis functions.
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Let us perform a Hilbert development [15, 2] of the above system with respect to δ by expanding
I, e and η as formal power series of δ. System (16) yields for 0th, 1st and 2nd orders:∫

4π

(η0e0 − I0)dω = 0,

cω · ∇I0 = cσa

∫
4π

(η0 e
1

4π
+ η1 e

0

4π
) + cσs

∫
4π

I1

4π
dω − cσtI1,

∂tI
0 + cω · ∇I1 = cσa

∫
4π

(η0 e
2

4π
+ η1 e

1

4π
+ η2 e

0

4π
) + cσs

∫
4π

I2

4π
dω − cσtI2.

It leads to (we used the notations Ei =
∫

4π
ei

4π ,Φ
i
r =

∫
4π

Ii

4π ):

η0E0 = Φ0
r,

c

3
∇Φ0

r = −σtΦ1
r,

∂tΦ
0
rcσ −∇

(
c

3σt
∇Φ0

r

)
= σa(η0E2 + η1E1 + η2E0 − Φ2

r).

The same development of the second equation yields:

η0e0 =

∫
4π

I0

4π
dω,

η0e1 + η1e0 =

∫
4π

I1

4π
dω,

∂te
0 = −cσa

(
η0e2 + η1e1 + η2e0 −

∫
4π

I2

4π
dω

)
.

Integrating with respect to the angular variable leads to :

η0E0 = Φ0
r, η0E1 + η1E0 = Φ1

r,

∂tE
0 = −cσa(η0E2 + η1E1 + η2E0 − Φ2

r).

Some equations are redundant (hence no incompatibility) but we finally obtain the asymptotic limit
for the linearized system: 

Φ0
r = η0E0 +O(δ) = Φ0 +O(∆t) +O(δ),

∂t(E
0 + Φ0

r)−∇ ·
(

c

3σnt
∇Φ0

r

)
= O(δ).

(17)

We recall the above properties are independent of the choice of η. To sum up, any MC scheme
discretising system (13) will capture the equilibrium limit up to a fine enough time discretisation
(cf. the O(∆t) term in the first line of (17)) and the diffusion limit (second line of (17)).
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4.2. The explicit SMC solver of [9] as a particular case of linearisation (13)

Let us here take few lines to emphasize the fact that the SMC solver described in [9] is a
particular case of linearisation (13): it corresponds to the case η = ηn and leads to

1
c∂tI + ω · ∇I = +σaη

n

∫
4π

e

4π
dω′ − σtI + σs

∫
4π

I
dω′

4π
,

∂te = −cσaηne+

∫
4π

cσa
I

4π
dω′.

(18)

This means the few properties highlighted in the previous sections also apply to (18). Of course, the
multigroup structure and the conservativity were already put forward in [9] but in some particular
cases (namely σs = 0, cross-sections independent of the temperatures, perfect gas eos). The analysis
here is more general and, to our knowledge, original with respect to the equilibrium diffusion limit
studied in section (4.1.3). The cross-sections are given by (adjoint form for a direct resolution)

– Σt(v) = ΣS(v) = σtδc(v) + σaη
nδ0(v) so that the equivalent of the absorption cross section

ΣA(v) = Σt(v)− ΣS(v) = 0 is zero.

– and PS(v, v′) = δ0(v)δc(v
′) + δc(v)σsδc(v′)+σaδ0(v′)

σs+σa
.

Having ΣA = 0 corresponds to the particular case where sampling the interaction time from ΣS
or Σt is equivalent. The weight of each MC particle along the flight path remains the same as the
weight modification during interval of time [t0, t1] is by definition e−vΣA(v)(t1−t0) = e0 = 1. With
this remark, we only want to point out the fact that the scheme is called ’semi-analog’ in [9] but
could have been called ’non-analog’ due to the fact both are equivalent for ΣA = 0.

Now, the MC scheme to solve (15), presented also in [9], implies

– letting ’photon’ MC particles (v = c) travel at speed of light c until it undergoes a collison. The
interaction time is sampled from an exponential distribution of parameter cΣt(c) = cΣS(c) =
cσnt .

– A ’matter’ MC particle is held motionless (v = 0) at its absorption site until it is re-emitted.
The time to emission is sampled with an exponential distribution of parameter cΣt(0) =
cΣS(0) = σnaη

n.

– The scattering term PS tells a ’matter’ MC particle becomes a photon with probability 1 once
the interaction time reached: indeed PS(0, v′) = δc(v

′).

– On another hand, ’photon’ MC particles can remain in a ’photon’ state (i.e. endure a scat-
tering) with probability PS(c, c) = σs

σt
or be absorbed (i.e. become a ’matter’ MC particle)

with probability σa

σt
.

The identification of Σt,ΣS , PS as in the previous sections allows being in the conditions of theorem
3.2.1 of [12] and ensures, if the above treatments are performed to the MC particles, the convergence
toward system (18) on time step [tn, tn + ∆t] as NMC (the number of MC particles) grows.

With this tracking algorithm, space locations of absorption sites of the particles are never lost
(by construction δx = 0). This remarkable property of this MC solver is to be tempered with the
fact it may need severe restriction on the time step due to the poor explicit time discretisation of
η as outlined by [4].
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In practice, the SMC scheme is computationally unusable due to the small time steps it needs for
stability [11]. The solver also has the reputation of not being able to deal with arbitrary equations
of state (only perfect gases). The aim of the next section is to build a new scheme combining the
advantages of both SMC (δx = 0) and IMC (implicitness) solvers together with being able to take
into account arbitrary equations of state (eos).

4.3. Combining the benefits of SMC and IMC: the new ISMC scheme

In this section, we build a new MC scheme combining the properties of both the SMC (with
respect to the teleportation error) and IMC (with respect to the time discretisation) ones. Just as
Fleck & Cummings suggested replacing B by Bn+1 to go from (1) to (6), we suggest replacing η
by ηn+1 in (13). In the next lines, we are going to go through exactly the same steps as in section
2 but we are going to work on ηn+1 instead of Bn+1. The first step yields,

1
c∂tI + ω · ∇I = +σaη

n+1

∫
4π

e

4π
dω′ − σtI + σs

∫
4π

I
dω′

4π
,

∂te = −cσaηn+1e+

∫
4π

cσa
I

4π
dω′.

(19)

Let us identify the equation satisfied by η. Remember, by definition, we have B(E) = η(E)E so
that we have

∂tB(E) = E∂tη(E) + η(E)∂tE = (Eη′(E)︸ ︷︷ ︸
ζ(E)

+ η(E))∂tE.
(20)

Note that ζ(E) = Eη′(E) = E dη
dE (E) echoes the role of β(E) = dΦ

dE (E) (see section 2) for the IMC
scheme. In particular, just as β helps dealing with arbitrary eos for the IMC linearisation, ζ will
make sure the solver can be used in the same conditions. Replacing ∂tE by its expression on both
sides of the above equation reads

∂tη(E) = ζ(E)cσa

(∫
4π

I

4π
− η(E)E

)
. (21)

Following [7] (steps recalled in section 2), we propose an estimation of ζn, ηn+1 using an explicit-
implicit time discretization:

∂tη = ζncσna

(
1
E

∫
4π

I

4π
dω − ηn+1

)
. (22)

We now integrate the above equation with respect to time to write

ηn+1 = ηn + ζncσna

(∫ t

0

1

E

∫
4π

I

4π
−∆tηn+1

)
,

≈ ηn + ζncσna∆t

(
1
E

∫
4π

I

4π
− ηn+1

)
.

(23)

We finally have

ηn+1 = ηn 1
1 + ζncσna∆t

+
ζncσna∆t

1 + ζncσna∆t
1
E

∫
I

4π
,

= ηnχn + (1− χn) 1
E

∫
4π

I

4π
,

(24)
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with χn = 1
1+cσn

a ζ
n∆t . Note that χn echoes the Fleck factor fn = 1

1+cσn
aβ

n∆t introduced in section

2. It also plays the same role with respect to the eos via ζn instead of βn.

Remark 4.1. Quantity ζ(E) = Eη′(E) plays the same role as β(E) = Φ′(E) ≥ 0 in an IMC
framework. The positiveness of β is a sufficient condition for the convenient application of an MC
scheme to the IMC linearisation (because βn > 0 =⇒ fn ∈]0, 1]). Otherwise, time step restrictions
are necessary (in order to have 1 + cσnaβ

n∆t > 0 and ensure the positiveness of the Fleck factor).
For the new quantity ζ we introduced, we have

ζ(E) = β(E)− η(E) = β(E)− Φ(E)
E ,

= β(E)− Φ(E)−Φ(0)
E−0 ,

= β(E)− 1
E−0

∫ E

0

dΦ

dE
(e)de,

= β(E)− 1
E−0

∫ E

0

β(e)de.

The mean value theorem ensures, under smoothness conditions on β, that there exists Ẽ ∈]0, E[ such

that 1
E−0

∫ E
0
β(e)de = β(Ẽ). This implies ζ(E) = β(E)− β(Ẽ). If furthermore β is non-decreasing

(i.e. d2Φ
dE2 = β′(E) ≥ 0), the positiveness of ζ(E) is ensures ∀E ∈ R+ as β(E) − β(Ẽ) = ζ(E) ≥ 0

and the positiveness of the modified cross-sections is ensured. Otherwise, the positiveness of ζ is
closely related to the heat capacity Cv(T ) just as the positiveness of β in the IMC framework. Let
us consider two examples from [19]:

– for a perfect gas eos, Cv(T ) = Cv and the positiveness is fulfilled as ζ(E) = 3η(E) ≥ 0.

– For a cold solid, Cv(T ) = Cv
(
T
θ

)3
+ K where θ is a Debye temperature and T ∈ [θ,∞[, the

positiveness is fulfilled if K > 0 as β′(T ) = 12aT 2K
ρC2

v(T ) > 0.

The eos is not the main purpose of this paper and the positiveness of ζ may be, as illustrated above,
case dependent. All in all, if ζ > 0, this ensures the positiveness of the MC scheme (in the sense
it cannot produce negative densities of material and radiative energy). In the following sections,
we will call χn the modified Fleck factor in the following. In the next benchmarks, perfect gas are
considered and χn = 1

1+3cσn
a η

n∆t .

To our knowledge, being able to deal with arbitrary eos in the SMC framework is new and original.
With this approximation, one can rewrite the transport equation in (18) using the new estimation
of η on the time step:

1

c
∂tI + ω · ∇I +σnt I =χnσnaη

n

∫
4π

e

4π
+ ((1− χn)σna + σns )

∫
4π

I
dω′

4π
,

∂te +χncσna e =χncσna

∫
4π

Idω.

(25)

Like in [7], the implicit time discretization gives rise to a pseudo-scattering term in the transport
equation which tends to unstrech the stiff coupling between radiation and matter. Furthermore,
with the converging MC tracking algorithm we describe next, space locations of absorption sites of
the particles are never lost (by construction δx = 0).

System (25) is closed, linear, explicit (i.e. only quantities at time tn appear) and exactly
conservative in total energy. The cross-sections are given by (adjoint form for a direct resolution)
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– Σt(v) = ΣS(v) = σtδc(v) +σaχ
nηnδ0(v) so that the equivalent of the absorption cross section

ΣA(v) = Σt(v)− ΣS(v) = 0 is zero.

– and PS(v, v′) = δ0(v)δc(v
′) + δc(v) [σs+(1−χn)σa]δc(v′)+σaχ

nδ0(v′)
σt

.

Having ΣA = 0 corresponds to the particular where sampling the interaction time from ΣS or Σt
is equivalent. This means that once again, the scheme is called ’semi-analog’ but could have been
called ’non-analog’ due to the fact both are equivalent for ΣA = 0.

Now, the new MC scheme to solve (15) implies

– letting ’photon’ MC particles (v = c) travel at speed of light c until it undergoes a collison. The
interaction time is sampled from an exponential distribution of parameter cΣt(c) = cΣS(c) =
cσnt .

– A ’matter’ MC particle is held motionless (v = 0) at its absorption site until it is re-emitted.
The time to emission is sampled with an exponential distribution of parameter cΣt(0) =
cΣS(0) = σnaχ

nηn.

– The scattering term PS tells a ’matter’ MC particle becomes a photon with probability 1 once
the interaction time reached: indeed PS(0, v′) = δc(v

′).

– On another hand, ’photon’ MC particles can remain in a ’photon’ state (i.e. endure a scat-

tering) with probability PS(c, c) = σs+(1−χn)σa

σt
or be absorbed (i.e. become a ’matter’ MC

particle) with probability σaχ
n

σt
.

The identification of Σt,ΣS , PS as in the previous sections allows being in the conditions of theorem
3.2.1 of [12]: it ensures, if the above treatments are performed to the MC particles, the convergence
with respect to NMC toward system (18) on time step [tn, tn + ∆t]. Note that the new presented
implicit solver is easy to implement if one has already access to an SMC implementation: one just
has to correct few samplings thanks to the modified Fleck factor χn (compare the few items of
sections 4.2 and 4.3).

In a sense, we could here sum up the original idea of this scheme (and whole paper) is to apply
the implicit time discretization introduced by Fleck and Cummings (IMC) in [7] to the approximate
system (SMC) described by Ahrens and Larsen in [9]. For this reason, we call this new MC scheme
the ISMC one (combining IMC [7] and SMC [9]).

We now suggest revisiting the ’fil rouge’ problem of this paper together with some benchmarks
from the literature with the MC scheme we just described.

5. Numerical results

In this section, we first come back to our ’fil rouge’ application with the new ISMC scheme we
presented in the previous section. We then compare our new MC solver with the IMC solver on
Marshak wave test-case presented in [3].
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5.1. Back to the ’fil rouge’ application

One last time, we suggest verifying numerically our analysis on the ’fil rouge’ problem of figures
(no tilt) 1–2 and (first order tilt) 3–4. Let us revisit the two previous convergence studies (with
respect to Nx as in figures 1–3 and with respect to ∆t as in figures 2–4) in the same numerical
conditions but with the new ISMC scheme. The results are displayed in figures 5 and 6. Figure
5 (to be compared with figures 1–3) presents the convergence study with respect to the spatial
discretisation Nx. With the new ISMC scheme we suggest in this paper, the equilibrium diffusion
limit is captured on a coarse grid Nx = 20, see figure 5 (top-left). As the number of cells grows,
the noise induced by the MC resolution of (11) also grows: as we keep NMC fixed, the number of
particles per cell becomes smaller and smaller. But the new implicit SMC scheme converges faster
than the tilted or not IMC ones with respect to Nx as, by construction, the spatial discrepancy at
emission δx = 0. As a consequence, a good accuracy can be obtained with few cells but also few
particles. Let us revisit the convergence study with respect to ∆t for fixed Nx, NMC in exactly the
same conditions as in figures 2–4. Figure 6 presents the results obtained with the ISMC scheme.
First, for big time steps, the relaxation of the material and radiative temperatures is not fulfilled.
This was already the case for the IMC and tilted IMC solvers and is predicted by the numerical
analysis (17). On another hand, making sure ∆t tends to zero does not degradate the quality of
the solution: no teleportation error is produced and the relaxation is better and better captured.
Finally, we do not experience a competitive behaviour between the spatial and time discretisation
parameters as was the case for the (tilted or not) IMC scheme with source sampling.

In the next section, we revisit one benchmark of the litterature with our new ISMC solver.

5.2. Marshak wave test-problem from [3]

In this section, we revisit a benchmark from [3]. It is, to our knowledge, the only benchmark of
the literature putting forward the competing behaviour between the spatial and time discretisation
(i.e. with a convergence study with respect to ∆t for a fixed spatial discretisation).

Let us begin by a short description. The test-case corresponds to the study of a 1D Marshak
wave [1] with dimensionless units. A black body heats the left boundary of the domain x ∈ D = [0, 4]
with temperature T (x = 0) = 1. The radiation constant is a = 1 and so is the speed of light c = 1.
There is no scattering (i.e. σs = 0) and σt(Tm) = σa(Tm) = 10

T 3
m

. Note that this benchmark will

demonstrate our new MC solver can be used with temperature dependent opacities. Besides, the
test-problem considers a perfect gas eos with ρ = 1 and Cv = 7.14. The medium is initially cold as
T (x, t = 0) = T0(x) = 10−2 ∀x ∈ D = [0, 4]. We are here interested in the (material and radiative)
temperature profiles at t∗ = 500.

Figure 7 presents a convergence study with respect to the spatial parameterNx = {20, 40, 80, 160, 320, 640, 1280, 2560}
for ∆t = 5×10−2 and NMC ≈ 107. Here we have approximately 107 MC particles (and not exactly)
because we have resort to source sampling (at least for the boundary for the ISMC scheme). Of
course, IMC also needs it for the volumic sources. The figure displays a convergence study on the
material temperature at t∗ = 500 for IMC (left) and ISMC (right). Note that a reference solution
obtained from a (finely resolved) deterministic solver for the equilibrium diffusion limit (4) is also
plotted. Once again, we recover the fact that for fixed ∆t, the IMC solver (see left picture of figure
7) converges toward the reference solution. But the convergence is slow. For coarse discretisations
Nx = {20, 40, 80, 160}, the error remains very important. The finer the mesh, the noisier the results
as we kept NMC almost constant (up to source sampling fluctuations) for this study. On another
hand, the ISMC solver (see right picture of figure 7) shows a fast convergence toward the reference
solution. For Nx = 20, the accuracy of the ISMC solver is equivalent to the one of IMC with
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Figure 5: Comparisons of the material and radiative temperatures Tm and Tr obtained from (reference so-
lution) a deterministic solver for the equilibrium diffusion limit (4) and the ISMC approximation for Nx ∈
{20, 40, 80, 160, 320, 640, 1280, 2560}, ∆t = 10−12 and NMC ≈ 4 × 105 MC particles (analog MC scheme + source
sampling).
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Figure 6: Comparisons of the material and radiative temperatures Tm and Tr obtained from (reference solution) a de-
terministic solver for the equilibrium diffusion limit (4) and the ISMC approximation for Nx = 20, NMC ≈ 4×105 MC
particles (analog MC scheme + source sampling) and ∆t = {10−8, 5×10−9, 10−9, 10−10, 10−11, 10−12, 10−13, 10−14}.
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Figure 7: Material temperature profiles T (x, t∗ = 500) at t∗ = 500 for the IMC scheme (left) and the ISMC one
(right) for Nx = {20, 40, 80, 160, 320, 640, 1280, 2560}. The figure also displays a reference equilibrium diffusion
solution obtained with a deterministic scheme solving (4).

Nx = 160, hence a gain of a factor 80. Of course, the finer the mesh, the noisier the results, also
for ISMC.

Figure 8 presents the results obtained on the same quantity of interest but for Nx = 10 (i.e.
a coarse spatial discretisation as in [3]) for ∆t ∈ {100, 10−1, 10−2, 10−3}. The reference solution
obtained from a deterministic solver (solving the equilibrium diffusion limit (4)) is also displayed.
The IMC results are worse and worse as ∆t decreases. For such coarse mesh, ∆x is not small enough
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Figure 8: Material temperature profiles T (x, t∗ = 500) at t∗ = 500 for the IMC scheme (left) and the ISMC one
(right) for Nx = 10 (same conditions as in [3]) and ∆t ∈ {100, 10−1, 10−2, 10−3}. The figure also displays a reference
equilibrium diffusion solution obtained with a deterministic scheme solving (4).

with respect to ∆t to compensate the advection term ∝ δx
∆t (see (9)): as a consequence, the IMC

solutions are way faster than the reference solution. Of course, tilts or the teleportation correction
of [3] tend to mitigate the effect of decreasing the time step: those results are not recalled here
but can be found in [3] in the same spatial conditions (Nx = 10 zones, same scales for the figures)
and for a slightly different range of time steps. On another hand, the results obtained with the
ISMC solver (left picture of figure 8) tend to show that the new MC scheme is not sensitive to a
decrease of ∆t: every curves for ∆t ∈ {100, 10−1, 10−2, 10−3} are indistinguishable. Furthermore,
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despite the fact that we consider a coarse mesh, the base of the Marshak wave is rather well located.
This benchmark confirms the new ISMC scheme has no teleportation error and allows avoiding the
competing behaviour of ∆t and δx.

5.3. Performance studies for ISMC

Finally, we would like to finish with few performance studies. But before, we insist on the fact
that in our opinion, having the above properties (no teleportation error, no competing behaviour
between spatial and time discretisation parameters) for an MC scheme are priorities and must be
dealt with prior to performance considerations.

Let us revisit the previous test-cases of sections 5.1 and 5.2 but from a performance point of
view. Let us begin with the ’fil rouge’ problem of section 5.1 and compare the restitution times for
fixed parameters ∆t = 10−12, Nx = 20 and NMC ≈ 106:

– IMC: 228s.,

– tilted IMC: 336s.,

– ISMC: 229s..

Of course, the accuracy of the different solver is different for such fixed parameters. To give an idea
of their accuracies, the conditions are almost the same as for the top left pictures of figure 1 (for
IMC), figure 3 (for the 1st order tilted IMC) and figure 5 (for ISMC). In term of accuracy, ISMC
is better than the 1st order tilted IMC which is better than IMC. But the overcost of tilted IMC is
significative whereas IMC and ISMC have similar restitution times. We recall here that each (tilted
or not) IMC computation is carried out with an analog MC scheme. Non-analog MC computations
would lead to higher cost without any gains with respect to the teleportation error nor in term of
smoothness of the results (indeed, for such coarse grid, the analog MC scheme is converged in term
of MC particles).

Performing the same kind of study on the Marshak wave of section 5.2 and choosing ∆t =
5× 10−2, Nx = 20 and NMC = 106 leads to restitution times given by

– IMC: 2854s.,

– ISMC: 1681s..

Once again, the solvers do not have the same accuracies: to give an idea, the results obtained in
the conditions above are presented figure 7 (see the the coarser spatial discretisations). ISMC is
both more accurate and faster than IMC.

Let us now compare restitution times for fixed accuracies. Obtaining similar accuracies with
three solvers having three discretisation parameters is quite complex. Here is what we suggest. For
both problems of sections 5.1 and 5.2, we first select a time discretisation which ensures having
Tm ≈ Tr with a good accuracy (less than 1% error for Tm(x, t∗) ≈ Tr(x, t∗) with t∗ the final time).
We then choose a spatial discretisation ensuring the chronometry of the radiative wave is converged
up to 1% with respect to the reference solution (obtained with a finely resolved deterministic solver
for (4)). We then make sure the noise are almost equivalent by choosing the number NMC of MC
particles. For the fil rouge problem of section 5.1, we obtain:

– IMC: ∆t = 10−12, Nx = 1280 and NMC ≈ 106, restitution time 1300s.

– 1st order tilted IMC: ∆t = 10−12, Nx = 640 and NMC ≈ 106, restitution time 1507s.
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Figure 9: Material temperature profiles T (x, t∗) for the...

– ISMC: ∆t = 10−12, Nx = 80 and NMC ≈ 106, restitution time 305s.

To give an idea of the accuracies of the three above solvers, see figure 9 (left). Note that we should
have used more than NMC = 106 MC particles for the IMC schemes to reach the accuracy of ISMC.
In other words, ISMC is faster and more accurate. Finally, for the Marshak wave problem of section
5.2, we obtain:

– IMC: ∆t = 5× 10−2, Nx = 1280 and NMC ≈ 2× 107, restitution time 3570s.

– ISMC: ∆t = 5× 10−2, Nx = 160 and NMC ≈ 2× 107, restitution time 1584s.

Figure 9 (right) gives an idea of the respective accuracies reached with the above parameters for
IMC and ISMC. Note that once again, we should have used more MC particles for the IMC solver
to give equivalent results as ISMC. Once again, ISMC is faster and more accurate.

6. Conclusion

In this paper, we suggest a new implicit MC scheme for photonics. It combines the advantages of
IMC (implicitness) and of SMC (no teleportation error) together with a generalisation for arbitrary
equations of state. The scheme is called ISMC. An asymptotic analysis of ISMC scheme yields, to
leading order, a valid implicit conservative discretisation of the equilibrium diffusion equation (4).
The MC scheme does not introduce ’source sampling’ as a resolution strategy and consequently
does not suffer the teleportation error (avoiding potential competing discretisation parameters, no
cycle-to-cycle error explosion). Dealing with arbitrary eos is as straightforward as for the IMC
linearisation. However, the leading order radiation intensity is not given by a planckian at the
local end of time-step (see first equation of (17)) in general. Thus, the above method only has
the diffusion limit, and not the equilibrium diffusion one, or only up to order O(∆t). Still, time
steps to ensure equilibrium are affordable (just as with an IMC solver). The scheme also has the
following properties:

– It is a convergent MC scheme for the linearized problem on each time step [tn, tn + ∆t].

29



– It is similar to a multigroup solver except the basis functions within the (2) groups are
analytical (δ0(v) and δc(v)). Hence, the solver is easy to plug in an existing multigroup
simulation code. It is also similar to an SMC solver and can also be easily implemented in a
simulation code implementing SMC (few modification via the modified Fleck factor).

– The solver is conservative: this is mainly due to the choice of the linearized system on time
step [tn, tn+1 = tn + ∆t]. In practice, an MC particle switches status between ’matter’ and
’radiation’ so that the energy is always conserved for the whole system ’matter+photons’.

– The solver, just as the IMC linearization (7), allows capturing the diffusion limit and the
equilibrium one up to O(∆t).

– The solver has, by construction, no teleportation error and does not need source tilting:
radiative sources are emitted at the emission banks (no need to store them), during the
tracking of the MC particles. The operations one must perform to each MC particle are
simple (no tilts, not teleportation corrector etc.).

– From an HPC point of view, the solver only needs an ’estimated value’ estimator to update
(I, E) at each beginning of time step. No need for a track length estimator as for the IMC
linearization. This allows gains in term of atomic for shared memory parallelisation, see
[20]. Note that there is no need anymore for source sampling which is a sequential phase in
the whole program (see [20]): in other words, the scheme goes in the direction of a better
scalability.

– The spatial and time discretisation parameters are not competing (we, at least, experimentally
verified it, but this is mainly due to the absence of additional spatial approximations during
the MC phase).

– The solver once implemented, does not need any more effort in multidimensional spatial
problems and on unstructured grids as one only has to tally the matter and radiative con-
tributions within each cell volume at the end of the time step: no multidimensional gradient
reconstructions needed.

– The spectral extension can be carried out naturally, this is a consequence of the structure of
the linearized problem (13). Same remark concerning eventual anisotropic scattering. Taking
into account the dependance with respect to the temperature of the opacities is straightforward
as testifies both the description of the scheme of section 4.3 and the benchmarks of section 5.

– It can be extended to arbitrary eos under the condition ζn can be estimated. In fact, ζ = E dη
dE

echoes the coefficient β = dΦ
dE in the IMC framework. Exactly as β for IMC, function ζ may

not be known analytically in general. But many numerical approximation strategies can be
applied. Depending on the type of gas one needs to consider, the latter approximation may
require finer time steps but will definitely not introduce any spatial discrepancies (we will still
have δx = 0 by construction).

– Finally, in a sense, this work also emphasizes the fact that the IMC implicitation of [7] can be
applied to different linearisation: it may benefit other regimes or even other coupled systems
needing an MC resolution.

For all those reasons and the numerical results on the different benchmarks, we think we built a
promising MC numerical solver. More properties will be studied in future works.
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Appendix A. Details about the ’fil-rouge’ problem of this article ( initial and bound-
ary conditions, test-case justifications)

In this paper, we intensively make use of the configuration presented in this appendix. We call it
our ’fil rouge’ configuration as we solve it with several numerical schemes and progressively highlight
the effect of each of them on this toy problem. The initial and boundary conditions together with
the problem justifications are provided here for both, the sake of conciseness of the paper and of
reproducibility of the results.
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Figure A.10: Initial and final spatial profile of the temperatures (Tm = Tr) in the equilibrium diffusion limit for the
’fil rouge’ test-problem of this paper.
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The ’fil rouge’ problem considered all along the talk can be described as follows: let us consider
a 1D spatial domain such that x ∈ Ω = [0, 1]. The domain is filled with a diffusive media σt = 2000,
with no (physical) scattering, i.e. σs = 0 and σt = σa. Initially, a Heaviside of temperatures at
equilibrium is set in the middle [0.4, 0.6] of domain Ω = [0, 1]. In other words, we have at t = 0:

Tm(x, t = 0) = Tr(x, t = 0) = 2.3× 1071[0.4,0.6](x) + 2.3× 1041[0,1]\[0.4,0.6](x).

Note that 1Ω(x) denotes the indicatrix of domain Ω. The initial condition is displayed in figure
A.10 together with the solution of system (4) at final time T = 10−8. This reference solution has
been obtained solving (4) with a deterministic solver (with a fine mesh).

Note that for time t ∈ [0, T ], the solution does not reach the boundaries. This test-case has
been chosen precisely in order to avoid having resort to the sampling of boundary particles so
that the only sampled particles for t > 0 are produced by the source term (for the IMC schemes).
Benchmarks of the literature often consists of Marshak waves needing boundary particle sampling.
Of course, more classical benchmarks are tackled in section 5. Besides, in order to avoid the
multiplication of test-cases together with being able to show many different features of the different
analysed schemes, we autorised ourselves to change few constants: the radiative constant is set to
a = 10−14, the speed of light to c = 3× 1010. A perfect gas is considered to that E(Tm) = ρCvTm
with ρ = 20, Cv = 4 × 107. The configuration may not appear particularly physical but is sitll
relevant for real life encountered difficulties.
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