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Abstract

We analyze the stability of a linearized hydrodynamical model describing the response of
nanometric dispersive metallic materials illuminated by optical light waves that is the situation
occurring in nanoplasmonics. This model corresponds to the coupling between the Maxwell
system and a PDE describing the evolution of the polarization current of the electrons in the
metal. We show the well posedness of the system, polynomial stability and optimal energy
decay rate. We also investigate the numerical stability for a discontinuous Galerkin type
approximation and several explicit time integration schemes.

AMS (MOS) subject classification 35Q61, 93D20, 35B35, 65M12
Key Words Maxwell’s equations, dispersive media, stability

1 Introduction

Nanophotonics is the field that manages to exploit the interaction of light with nanometer scaled
structures. With, nowadays, the ability of designing nanometer scaled devices, came the exponen-
tial growth of potential applications of nanophotonics. Subwavelength imaging is one of the famous
example see e.g. [24, 9] and references therein. Most of very interesting features in nanophotonics
come from the possibility to enhance fields leading to the creation of very good absorbers or emit-
ters (see one example in e.g. [9, 33, 23]). All these reasons make nanophotonics a very active field
of research. Nanoplasmonics, one of the major subfield of Nanophotonics is of particular interest.
It is based on the exploitation of plasmons (see [21] for a physical insight). These occur when the
light interact with nanoscaled metals. Modelling is at the heart of the understanding of nanoplas-
monics. It relies on the description of the reaction of the electrons of the metal to an applied
external electric field. Popular classical models rely on a mechanical description of the movement
of the electrons. These descriptions lead to the famous Drude and Drude-Lorentz models that are
describing the electric dispersive nature of metals at optical frequencies. Indeed, electrons exhibit
a delay in response to the applied electric field and a polarization that characterizes a dispersive
media. These models give very good results when the size of the device is not smaller than ~ 15nm.
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Below this threshold, the repulsive interaction between electrons in the metal do play an important
role. Models that take into account of these effects are called "non-local" in the sense that the
reaction of the electron not only depends on the applied electric field at its precise position but
also on the field around it. To model these effects, one can describe the metal as a fluid of electron
and makes use of a hydrodynamical description (see [4]). This is the point of view that we adopt
in this paper and we focus on the linear response of such systems. The equations that we consider
come from a linearization of the non linear hydrodynamical model around a static equilibrium. We
refer the reader to [4] for details. The resulting system of equations is a linear hyperbolic system
of PDE’s that encompass the "non-local" character of the response through a linearized quantum
pressure term. These equations write formally as:

coe O —curl H = —J,
(1.1) woH + curl E = 0,
Jtt + 'yatJ — ,BQV(le J) = EowgatE,

The system of PDE consists in a linear coupling between Maxwell’s equations (with (E, H) the
electromagnetic field) with a PDE that describes the evolution of the polarization current .J.
Classically, €p, the vacuum permeability, €, the relative permeability of the media and p, its
permittivity, are physical constants. Furthermore, wf, is the plasma frequency and (3 is the so-called
"nonlocal" parameter. One should notice that if 8 = 0, the system reduces to Drude dispersive
model. The system (1.1) has been first investigated numerically in [13] (with Nédélec elements),
and later in [30] (with a Discontinuous Galerkin framework) with an emphasis on computational
aspects; the benefit for nanoplasmonics has been shown. However, no theoretical study of the
continuous model was provided in the latter. In [15], well posedness has been investigated for
(1.1), with zero normal trace for current J, using variational techniques without considering charge
conservation. Let us also mention a similar study of existence and uniqueness that can be found
in [8] (in german) together with a numerical approximation based on a splitting scheme. In this
work, we first investigate the question of well posedness for several types of boundary conditions
with the point of view of semigroup theory and including charge conservation, inherent to this
system. Stability is an important feature with regards to the complete understanding of the
phenomenon and has also an impact on the development of adapted numerical frameworks. We
thus also propose to investigate polynomial stability and optimal polynomial decay. This has
been studied in details for all classical dispersive media in [26] but not for the more involved
system (1.1) for which we propose to extend the latter results. We are also concerned with the
behavior of numerical schemes with respect to (polynomial) stability. In [15], the authors also
proposed a conforming space discretization framework with a leap-frog time integration strategy
and provide some numerical analysis of it and academic convergence test cases. Here, we adopt
a different point of view and propose to push the numerical analysis further. We especially focus
on discrete stability and discrete energy decay. We use the Discontinuous Galerkin discretization
framework of [30, 31, 29] combined with several explicit time integration schemes (from Leap-frog
to explicit Runge-Kutta schemes). We concentrate on establishing, using energy techniques precise
stability results, with CFL condition explicit in the physical parameters and polynomial orders.
Furthermore, we prove that the charge constraint inherent to (1.1), is weakly preserved at the
discrete level. Last we provide some 2D numerical tests that study the precise type of discrete
energy decay.

The paper is organized as follows: in section 2 we present the different notations and the model.
The well-posedness of the problem is then proved in section 3 by using semi-group theory. Section



4 is devoted to the polynomial decay of the energy. In section 5, we look at the optimality of the
polynomial decay. Finally, in section 6, we investigate the numerical approximation and provide
some numerical stability results.

2 Well-posedness of the systems

2.1 Notations

Let Q be a open bounded simply connected Lipschitz domain of R? or R3. We will denote by T its
boundary. The L?()-inner product (resp. norm) will be denoted by (-,-) (resp. || - ||). The usual
norm and semi-norm of H*(Q2) (s > 0) are denoted by | - ||s,o and | - | o, respectively. For s = 0
we drop the index s.

For further uses, let us introduce the following spaces:

H}(Q) = {u € H(Q)|u =0 on 90},

that is a Hilbert space for the inner product

/ Vu - Vodz,Yu,v € Hy (Q).
Q

Set
Hy(div; €2) ={x € L*(Q)3|divyx € L*(Q) and x -n =0 on '},
K@) = {x e L*Q)’divx = 0},
K©Q)  ={xeK®Q)x-n=0onT}=K(Q)N Hy(div; Q).

Similarly, we recall that
H(curl; Q) = {x € L*(Q)3|curl x € L*(Q)?},
Hy(curl; Q) ={x € L*(Q)*|curl y € L*(Q)® and x x n =0 on T'}.
Recall also the spaces

X7(Q) := H(curl; Q) N Hy(div, Q) = {x € Ho(div,Q)|curl x € L*(Q)?},
Xn(Q) := H(div, Q) N Hy(curl; Q) = {x € H(div,Q)|curl x € L*(Q)® and x x n = 0 on T'},

both are Hilbert space with the norm
Il = [ (Jcurl? + |div ) da
Recall that the next Green’s formula holds (see Lemma 3.1 of [25] or Lemma 2.5 of [11, p. 91]):
(2.1) /Q(curlE -E'+ E-curlE')dx = 0,VE € Ho(curl,Q), E' € H(curl, ).

We also denote O := 2x]0, +o00[ and X := I'x]0, +o0].



2.2 Mixed first order form of the model

This model, based on a linearization of a hydrodynamical model that describes the metal as an
electron gas [4], reads:

coeL O F —curl H = —J in O,
(2.2) 1O H +curl E=01in O,
Jit + 0, J — B2V (divJ) = aowf)(’“)tE in O,

where E (resp. H) is the electric (resp. magnetic) field and J is the polarization current. The
parameters § (driving the "non locality" in space), wj, (the plasma frequency), 7, €9, €1, are physical
quantities that can be assumed to be positive and constants. For shortness, we set ¢ = ggep. As

usual O, F = %—‘? is the partial derivative of E with respect to the time ¢. In this setting and for

further use, it is natural to rewrite this system in a mixed form as a first order system of PDEs:
coeL O E —curl H = —J in O,
woH +curl E =01in O,
O, J — B2VQ = 60w12)E —~J in O,
0:Q —divJ =0in O.
Remark 2.1 Here the new unknown Q plays the role of a charge.

(2.3)

This system has to be completed with initial conditions:
(24) E(, 0) = Eo(.), H(, 0) = I’I()(.)7 J(,O) = Jo(.), Q(, O) = Q0(> in Q,

in suitable spaces that will be specified later, and with boundary conditions. Later on, we will
focus on several type of boundary conditions. Either the electric boundary conditions

(2.5) Exn=0,H -n=0,divJ =0,Q =0,
or the magnetic boundary conditions
(2.6) E-n=0Hxn=0,J-n=0,VQ-n=0.

Here and below n denotes the unit outer normal vector on the considered boundary.
We will detail in each dedicated section, the type of setting (in terms of hypotheses on the
boundary) that will be used.

2.3 The system with electric or magnetic boundary conditions

2.3.1 The case of electric boundary conditions

In this section, we begin by the study the following system with electric boundary conditions.
coeL OB —curl H = —J in O,

uwoH 4+ curl E=01in O,

OyJ — f?VQ = eqwiE —~J in O,

0:Q —divJ =01in O.

Exn=0,H -n=0,divJ =0, =0o0n X,

E(.,0) = Eo(.), H(.,0) = Ho(.), J(.,0) = Jo(.), Q(-,0) = Qo(.) in €2,




The existence of a solution to (2.11) will be obtained by using semigroup theory in the appropriate
Hilbert setting that we describe below (see for instance [16, 25, 26]).
Introduce the Hilbert space

H={(F,G,R,S)" € H(div,Q) x K(Q) x L}(Q)? x L*(Q),div(¢F) = —S on Q},

with the inner product
1 B 2
2R‘ R/ + 5

2
€0wp Eowp

S-S5 dx,

(2.8) ((F,G,R,S)",(F',G'",R',S") ") :z/(gOaLF~F’+uG-C_¥’+
Q

The space H is indeed a Hilbert space for the associated norm thanks to the divergence conditions.
Note that the equations imply a divergence free constraint on H and a divergence constraint
on €E based on the original problem (2.3). Indeed the first and second equations in (2.3) formally
yields respectively
(div(eE)+ Q) = (divH); =0 in O.

Therefore
(div(eE) + Q)(x,t) = (div(eE) + Q)(z,0) and div H(z,t) = div H(z,0), Y € Q,t > 0,

and if we assume the divergence free properties at ¢t = 0, they will remain valid for ¢ > 0.
We define the unbounded operator A as follows:
(2.9)

D(A) = {(F,G,R, S)T € H|cwlG € L2(Q)3, R € H(div,Q), S € HL(Q) and F € XN(Q)}7

and for all U = (E, H, J,Q)" € D(A), AU is given by

e ter(curl H — )
—p~teurl E

BPVQ +eqwiE —~.J
div J

(2.10) AU =

The model (2.7) can then be rewritten as follows

o.U = AU,
(2.11) { U(O) — U,
where U is the vectorial unknown
E
H
(2.12) U= J ,
Q

where E, H, J,Q € L*(Q)? and for smooth enough E, H, J and Q,

Theorem 2.2 The operator A defined by (2.10) with domain (2.9) generates a Cy-semigroup of
contractions (T'(t))i>0 on H. Therefore for all Uy € H, the problem (2.11) has a weak solution
U e C([0,00), H) given by U = TUj.

If moreover Uy € D(AF), with k € N*, the problem (2.11) has a strong solution U € C([0, 00), D(A*))N
C([0, 50), D(AF1).



Proof. It suffices to show that A is a maximal dissipative operator (see [16, 25]), then by Lumer-
Phillips’ theorem it generates a C-semigroup of contractions (T'(¢));>o on H.
Let us first show the dissipativity. For U = (E, H,J,Q)" € D(A), we have
1 2 2 - B
(B°VQ +eqw, B —~J) - J + 5 divJQ | dx.
€0wp

(-AUaU)H:/

((CurlH—J)-E—curlE-H—l—
Q

2
E()wp

Hence by Green’s formula (2.1), we find that

2
(AU, U)y :/(H~cur1E7cur1E~H+ b 5
Q oWy

(div J-Q—div j~Q)+E !
0

Taking the real part of this identity, we obtain

R(AU, Uy = ——1 /\J|2d3:.
Q

2
E()wp

This shows that A is dissipative.
Let us go on with the maximality. Let A > 0 be fixed. For (F,G,R,S)" € H, we look for
U= (E,H,J,Q)" € D(A) such that

(2.13) (M — AU = (F,G,R,S)".

According to (2.10) this is equivalent to

(2.14) eAE —cwrl H + J = ¢F,
(2.15) pAH + curl B = pG,
(2.16) A = *VQ —eqwoE +~J = R,
(2.17) AQ—divJ =8S.

Assume for the moment that U exists. Then the first and second equation allow to eliminate J
and H since they are equivalent to

1 1
(2.18) H= o curl B + XG’
(2.19) J = —eAE +curl H + ¢F.
Thus
1 1
(2.20) J = —e\E — m curlcurl £ + X curl G + eF

Furthermore the last equation gives
(2.21) Q ! divJ + L S
. = —div -
A A
so that we recover the constraint since (E, H, J,Q) and (F,G, R, S) belong to H:

1
(2.22) Q= —5divE+§divF+XS



i.e.
(2.23) Q=—cdivE
Replacing in the third equation, we get

(2.24)
+7

— (XA +7) + 50wg) E - (/\,u)\> curlcurl E 4+ ¢?VdivE = R — Aty

curlG —e(A+~)F

that corresponds to a problem with only E as unknown.

We now consider the following variational problem: Find E € Xy (2) such that
(2.25) ax(E,E") = F\(E'),VE" € Xn(9),

where

(2.26) ax(T,T") = / ((5/\()\ + )+ Eowf,)T T+ A &7 curl T - curl T’ + ¢4% div T div T') dx,
Q H
and
o _ _
(2.27) (T = / (—R -Th+ %G ceurlT +e(A+7)F - T’) dx,
Q

for all T,T" € Xn(Q). Let us prove that this problem is well posed. As for A > 0, ay is clearly a
sesquilinear, continuous and coercive form on Xy (Q2) and F) is a conjugate linear and continuous
form on Xy (), by Lax-Milgram lemma, problem (2.25) has a unique solution E € X ().

We would like to come back to problem (2.13), with E in hand. We thus define H by (2.18);
H € L*(Q). Let us prove a regularity result on H. We first notice that (2.25) is equivalent to

(2.28) / ((e)\(/\ +7) + 2w E - B — (A +4)H - curl B + ¢4 div E div E) dz
Q
= / (-R-E' +e(\+7)F - E') dz,VE' € Xn ().
Q

In a first step we show that this identity implies that div E belongs to H'(Q). For that purpose,
we use the same argument as in the proof of Theorem 1.1 in [10]. As test function we take E' = Vo,
with ¢ € D(AP) := {p € HY(Q)|Ay € L?(Q) and ¢ = 0 on T'}. Then by integration by parts in
(2.28), we get

/ div B [~(eXA +7) + gowp) ¢ +ef°Ap] dz = / (—R+e(\+7)F) - Vadz, Yo € D(APT).
2 Q

On the other hand, thanks to Lax Milgram lemma again, there exists a unique solution q € H}(Q)
to

/ (EAA+7) + cow?)q + 62V - V) d = / (R—e(A+7)F) - Vgda, Y € H(SQ).
Q Q



Restricting test-functions to D(AP"), we get
Q Q

This implies that ¢ — div E is orthogonal to the range of (eA(A+7) +eow?)Id — 32A, since in that
case this range is the full L?(2), we conclude that div E = ¢, so that div E € H}(Q).
Now we come back to (2.28) and take test functions E’ € D(Q2)? to get

(2.29) (EAA+7) + eowi)E — (A + ) curl H — eV div E = =R + (A + 7)eF in D'(Q)°.

As divE € H'(Q), this identity guarantees that H belongs to H(curl;Q2) and since we have
(2.15), H € K(Q). We can now define J by (2.19). We obtain J € (L?(Q2))?. Furthermore
since divE € HY(Q) and div F € L? (since (F,G,R,S) € H), one obtains div.J € L?(2). Thus

1 1
Q = X divJ + XS is well defined. It remains to prove that Q € HJ () and thus we will have

divJ =0 on I'. Let us consider (2.28) and use the expression of J:
2
/ ((/\—l-’y)(—J—l—curlH—!—eF) “E'— (AN +v)H -curl B’ + %div(—J—&—sF)divE') dx
Q

—|—/ cow B - B dx = / (-R-E' +e(\+7)F-E') dz,VE' € Xn(Q).
) )

This gives

= 32 = ef3? .- 2 -
/(—(A+fy)J.E’——dideivE’—k—dideivE/) dx+/50w E-E'ds
Q A A o 7
:—/R-E’dm,VE’eXN(Q).

Q

1 1
But since XdivJ =Q - XS,

_ 1 _ 2 _ _
/(f(/\Jrv)J-E’—BQ(QfXS)divE’Jr%dideivE’) dx+/eow§E.E’da:
Q Q

= f/QR~E"das,VE’ € Xn(Q).
Using the divergence constraint in the space H, we get
/Q ( (A7) B ﬁQQdivE’) dz + /QeowiE B dx
(2.30) = —/QR-E’ dz,VE' € Xn(9).
Thus in the sense of distributions

—(A+7)J + B°VQ + ggwiE = —R.

This shows that Q € H'(Q) and as a result we also show that Q € HE(Q) (by integration by parts
in (2.30)). The constraint is recovered from (2.21) and the definition of J. The surjectivity of
A — Ais proved. m

We continue by the study of the kernel of A.



Lemma 2.3 One has

ker A := {0}.
Proof. U = (E,H,P,Q)" € D(A) belongs to ker A if and only if

(2.31) curl H — J =0,
(2.32) curl E = 0,
(2.33) B2VQ + €0w§E —~J =0,
(2.34) divJ = 0.

Taking into account (2.33), (2.34) implies that
/Q(,BQVQ VQ+egwiE - VQ —~J - VQ) dz = 0.
Integrating by parts, and reminding that e div E = —@Q, we get
| #vaE + 2uiop de =0,

consequently @ = 0 and therefore div E = 0. Since curl E = 0 and F € X (), we deduce that
E = 0 (recalling that € is supposed to be simply connected and Proposition 3.14 of [1]). This then
gives that J = 0.

For H, we notice that (2.31) implies that H is curl free. As it is already in K(2), we deduce
that H =0 as for £. m

We define the energy of (2.11) in H by

1 1 B?
2.35 E== EP +uH? + —|J]* + —|QI*)d 0 :
(235) 5 L (C1BE 4 HlHE 4 ol Q) dr, on 0, o

From the above computations (dissipativeness of A), we deduce that

Proposition 2.4 The solution (E,H,J,Q) of (2.11) with initial datum in D(A) satisfies

d Y 2
—& =— J|“d 0, +o00|.
dt Eow}%/ﬂ|| z on 0, [

Therefore the energy is mon increasing.

2.3.2 The case of magnetic boundary conditions

In a similar manner, we can prove an existence and uniqueness result for the operator with magnetic
boundary conditions. Since the proof are quite similar, we choose not to reproduce it here in details.

The model (2.37) can be rewritten in the form (2.11) with A defined by (2.10). The first
difference is the Hilbert space H defined here by

H={(E,H P,Q)" € H(div,Q) x J(Q) x H(div; Q) x L*(Q)?|div(eE 4+ P) = 0 in Q},



but equipped with the same inner product (2.8). The second difference is the domain of the
operator A:

(2.36) D(A) := {(E,H, P,Q)T € H|E € Xn(Q), H € X7(Q),div E, div P € H(Q),

and Q € H(div, Q)}.

coeL O —curl H = —J in O,

woH +curl E=01in O,

0 J — B?°VQ = sowZQ,E —~J in O,

0;,Q —divJ =01in O.
E-n=0Hxn=0,J-n=0,VQ -n=0on %,

E(.,0) = Eo(.), H(.,0) = Ho(.), J(.,0) = Jo(.), Q(-,0) = Qo(.) in €,

Theorem 2.5 The operator A defined by (2.10) with domain (2.36) generates a Co-semigroup
(T'(t))e>0 on H.

(2.37)

3 Stability results

Our stability results are based on a frequency domain approach. Recall that the polynomial decay
of the energy can be obtained by using the next result stated in Theorem 2.4 of [5] (see also [2, 3, 20]
for weaker variants and [27, 14] for exponential decay):

Lemma 3.1 A Cy semigroup e'* of contractions on a Hilbert space satisfies
1eUs|| < Ct=H|Uollpey, YU € D(L), Wt > 1,

as well as
e Uol| < Ct7Y|Usllpery, YUo € D(LY), VE>1,

for some constant C > 0 and for some positive integer | if

(3.1) p(L) DR,
and
. L. ~1
(3.2) limsup  |(i€ — £)7!]| < oc,
hold.

3.1 Electric boundary conditions

In order to check the assumptions of Lemma 3.1 for A, we first analyze the assumption (3.1).
Lemma 3.2 We have

0 € p(A) :={X € C|AId — A is densely defined and has a continuous inverse} .

10



Proof. Let (F,G,R,S)T € H, we look for U = (E, H,J,Q)" € D(A) such that
(3.3) AU = (F,G,R,S)".

According to (2.10) this is equivalent to

(3.4) curl H — J =¢F,
(3.5) —curl E = uG,
(3.6) B*VQ + cow, E —~vJ = R,
(3.7) divJ = S.

Suppose for a moment that such a U = (E, H,J,Q)" € D(A) exists. One has by (3.6),

(3.8) 2 i VQ - Vipdr + sow; i E - Vidx — 7/9 J - Vipdr = QR - Vipdz, for all ¢ € Hy(Q).
This gives

(3.9) 62/QVQ~V1Zda:—50wZ2,/QdivE-z/?dx—kfy/Qdiva/;dx = /QR-Vdex7 for all v € H ().
Since ediv F = —@Q and (3.7), we find

(3.10) 52/QVQ-V1/_de+%Ow§/QQ~z/_de:—’y/QS-q/_Jd:v—F/QR~Viﬁdx, for all v € Hy(Q).

We now go back to the problem (3.3). Let us introduce the sesquilinear continuous coercive
form a on H{ () as:

(.11 g ) € HYO), alg, ) = 07 [ Vi Vide+ 22 [ oot
Q Q

and the conjugate linear form F':

(3.12) Yy € Hi (), F(y) = —’y/ S @Edm—i—/ R - Vidz.
Q Q

Thanks to Lax Milgram theorem, there exists Q € H}(Q) such that

(3.13) a(Q,v) = F(¥), ¥y € Hy(Q).

Then, let us denote by ¢ € HZ(Q2) the unique solution to the following variational problem

(3.14) /V<p~V95'dI:/ %5’, V' € Hy(9).
Q Q

Furthermore, we introduce the following variational problem: Find £ € Xr(Q) N K(2) such that,

(3.15) / curl¢ - curl ¢'dx = —/ uG@'dr, Vo' € Xr(Q) NK(Q).
Q Q

11



This variational problem has a unique solution thanks to Lax Milgram lemma applied on X1 ()N
K(€Q) embedded with the || - || x(q)(= || curl-||2(q)) norm. Let us denote §{ € X7 (€2) N K(2) the
unique solution of this problem.

We then define E := curl€ 4+ V. We thus have

(3.16) / E-V@de = / 9@’, Vo' € H} ().
Q Q¢
Thus
(3.17) divE = —g
in L2(Q) and E € H(div,Q).
Furthermore,
(3.18) / E-curlg'dr = fu/ Gg', Vo' € Xr(Q)NK(Q).
Q Q

Since any ¢’ € X7 (Q2) can be written as
11[}, = VX/ + @67

with x' € D(ANe%) solution of
AY =divy/, in Q,

and then ¢}, € X7 (2) NK(Q2), we deduce that
(3.19) / E-curlg'dr = —/,6/ Gy, Vo' € Xr(Q).
Q Q

This yields curl E = —uG in L?(Q) and E x n = 0.

2
E

Let us define J = B + ﬁ—VQ + eow2 — in (L*(€2))?. Using (3.13), we deduce that V¢ € Hj (),
v Y v

2
60wp

(3.20) /J.w:_ﬂw;/qwx_ S - dda + E-Vide
Q ey Q Q Q

Since we have (3.17), we deduce that

(3.21) divJ = S,

which gives that J € H(div, ). )
Finally, the first equation allows to find H. Indeed as H has also to be in K(f2), we look for H
in the form H = curl x with x € Xx(Q) N K(©2), the unique solution of

/Curlx-curldjdx:/(€F+J)-1Zd:r,V1/)GXN(Q)QIC(Q).
Q Q

As eF + J is divergence free, this problem implies that

(3.22) /curlx-curl@da::/(eF—J)-@dw,vweXN(Q),
Q Q

12



because any ¢ € Xy () can be written as
Y = Vo + o,
with ¢ € D(AP) solution of
Ap =dive in Q,

and then ¢y € Xn(Q) N K(2). Problem (3.22) then yields that H = curley satisfies (3.4). The
continuity of the inverse of A4 is easily shown by basic estimations coming from the definition of
each fields. The proof is thus complete. =

Lemma 3.3 We have
iR C p(A).

Proof. As the previous lemma has shown that 0 € p(A), it remains to show that
iw € p(A),Yw € R\ {0}.

This means that for w € R, w # 0 and an arbitrary W = (F,G, R, S)" € H, we look for U =
(E,H,J,Q)" € D(A) such that

(3.23) (iw — AU =W,

that means solution of (2.13) with A = 4w. Hence the arguments of Theorem 2.2 lead first to
the problem (2.25) with A\ = iw (with ay and F defined respectively by (2.26) and (2.27)). This
problem is equivalent to

(3.24) e%a;(E,E') = " F;,(E"),YE' € Xn(Q),
forall § € R. Hence we look for one 6 such that ¢?a;, is coercive on Xx(2), i.e., such that
R(e”ai,(E, E)) Z |E|% (o) VE € Xn(9).
Simple calculations show that this property holds if
cosf > 0,
T tan6 41> 0,
w
—wryetanf + €0w,2, —ew? > 0.
For w > 0, these conditions are equivalent to

2 _ 2
50wp Ew

w
cosf >0,—— < tanf < ———,
y wye

and therefore it suffices to choose
0 e (90, 91),

2 2
(eowp Ew )

with 6y = — arctan(¥) and 6; = arctan
Y wye

13



On the contrary for w < 0 these conditions are equivalent to

2 2

SoWs — EW w
cosf > 0, O T tanf < -2
wye y
and therefore it suffices to chose
0 e (91, 00)

With this choice, problem (3.24) has a unique solution F € X () and the arguments of the proof
of Theorem 2.2 yield U = (E, H, P,Q)" € D(A) solution of (3.23). The fact that U belongs to H
comes from the property W e H. m

Now we need to analyze the behaviour of the resolvent on the imaginary axis.

Lemma 3.4 The resolvent of the operator of A satisfies condition (38.2) with | =2, i.e.

(3.25) lim sup

|€]—00

1
e (& — A) 7| < o0

Proof. We use a contradiction argument, i.e., we suppose that (3.2) is false with { = 2. Then there
exist a sequence of real numbers ¢, — +o0o and a sequence of vectors Z,, = (E,,, Hy, J,,Q,)" in
D(A) with || Z,||,, = 1 such that

(3.26) 211(i&, — A)Zn 2, — 0 as n — occ.

By (2.10), this is equivalent to

(3.27) 2|ig&n By, — curl Hy, + J,|lo — 0,
(3.28) E|ip&nHy + curl By |lq — 0,
(3.29) & i&nJn — BV Qn — cowi En + v Julla — 0,
(3.30) Ei6nQn — div Jn o — 0,

as n — +o00.
We now notice that

(3.31) R((1n — A)Zn, Zn)yy < (i&n — A) Znlly 120l = 1(€n — A) Zn ||y
and that, by dissipativity of A:

(3.32) R (i — A)Zn, Za)gy = R (€l Zal® — (AZn, Z0) ) = 5012 [BATE
P

From (3.26) we get
52/ |Jn|? dz — 0, as n — +oc.
Q

This means that
(3.33) &ndn — 0, in L2(Q)?, as n — +oo0.
This property and (3.29) imply that

(3.34) ||ﬁ2in + 50‘*);27En|| — 0,

14



One has that (E,) is bounded in (L?(£2))3, so (3.34) implies that V@Q,, is bounded in (L?(£2))3.
Moreover,

(3.35) || (52V@Q, + e ) - VQul < 15°9Qu + 0Bl IV Q.
This implies that

(3.36) [BIV@Qnll* + cowp | Qull?] — 0,

where we used that ediv E,, = —Q,,. We thus deduce that

(3.37) Qn — 0,

in H}(2). As a consequence,

(3.38) E, — 0,

in L?(Q). Using that ediv E,, = —Q,,, we have that div E, — 0 in L?(Q).
From (3.27) and the above results:

(3.39) & curl H, — 0,
in (L2(£2))3.
Since
/ curl B, - H,, dz = / E, - curl H, dz,
Q Q
we get
(3.40) &t / curl B, - H, dz = o(1).
Q

Now by (3.28) and the fact that ||H,|| = 0(1), we have

&t /Q(wann +curl E,) - H,, dxr = o(1),

and by (3.40) we get
(3.41) H, — 0, in L*(Q)>.

In conclusion, we have shown that
Zn — 0, in H,

which contradicts || Z,[,, =1. =
The previous Lemmas allow to check the hypotheses of Lemma 3.1 and then lead to the next
stability results.

Theorem 3.5 Problem (2.11) is polynomially stable in H, more precisely there exists a positive
constant C' such that

(3.42) E(t) < Ct7Y|Uol[Day, VE > 0,
for all Uy € D(A).
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3.2 Magnetic boundary conditions

Comparing subsections 2.3 and 2.3.2, we see that it mainly suffices to exchange the role of X1 ()
and Xx(Q), of ANe" and AP of Hy(div;Q) and H(div; Q) etc... Hence the arguments of the
previous subsection can be adapted to prove that Lemmas 3.2, 3.3 and 3.4 hold. By Lemma 3.1,
Theorem 3.5 is valid for system (2.37).

4 Optimal energy decay rate

4.1 A general result
The optimality of the decay is based on the next general principle, see [26, Le 5.1] or [19, 34].

Lemma 4.1 Consider a C°-semigroup T(t) acting on a complex Hilbert space H with infinitesimal
generator A. Assume that the two points below hold.

(i) For all k € N*, we assume given a family of eigenvalues A\, of A of the form A\, = —op + ik
(repeated according to their multiplicities) with o, 7, € R and <ok < &, where 0 < ¢ < co
and § > 0 are independent of k.

(ii) The eigenvectors ¢y, k > 1 associated with the eigenvalues Ag are orthonormal, in the sense
that

(¢k> O )2 = Ok, V(K K) € (N*)2.

Let ug € H be such that

. 1 1
(4.1) Uy = kz;lakd)k, with |ag| = T and q > 7

Then there exists a constant ¢ > 0 depending on ug such that

IT(¢) Vi > 1.

c
ol = 1a—1/2)/5°

4.2 Electric boundary conditions
Recall [22] that the operator Ay defined by

D(Ayx) ={F € H(curl,Q)|div E = 0 in Q,curlcurl E € L?*(Q)* and Exn = 0,curl E-n =0 on '},

and
ANE = curlcwrl E\VE € D(Ay),

is a positive selfadjoint operator in L?(Q2)® with a compact resolvent. Let us denote by {3 ;. }ren-
the eigenvalues of its discrete spectrum repeated according to their multiplicity. It consists of an
increasing sequence that tends to +o0o as k — +o0.

If Uy € D(A), we define the optimal rational decay rate w(Uy) by

(4.2)
1

w(Up) =sup{a € R:3e > 0,E(¢) = §||U(t)||%_[ < t%,Vt >0, with U the solution of (2.11)}.
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Lemma 4.2 For system (2.7), there exists ko large enough such that A has eigenvalues )\f, for
all k > ko satisfying

2

2
. _ . Eow YEow,, 1 1
4.3 A=+ 12\ + i P P4 ,Vk > k.
(43) k ilen) Nk = Ve 2Nk 2/\?\[’,C © )‘27\7’]@ ="

Its associated eigenvector U,;t is in the form

PN,k
———curlpy
(4.4) S ,
—eA - —)\3
k PN,k )\fﬂ N,kPN,k
0

where oy 1, 15 the eigenvector of the Mazwell operator An associated with the eigenvalue )\?\,7,c and
cf # 0 is a normalization factor chosen such that

U Nl = 1.

Proof. From the definition of A, if U = (E, H,J,Q)T € D(A) is an eigenvector of the operator
A of eigenvalue A € C\ {0}, it satisfies

AU = AU,
ie.
eEAE —curlH+J =0
(4.5) AMH = —curl £,

A — B2VQ — eqwlE +~.J =0,
AQ = div J,

From the second equation of (4.5), we deduce that curlcurl E € L?(2). Furthermore, we thus have

1
H = —)\—M curl £

1
J = —e\E — — curl(curl(E))
(4.6) ) A
A+
—(eAA+7) +eowp) E —

. A” curl(curl(B)) + 2V div E = 0

We try to take advantage of the spectral properties of Ay. Let us study the equation for
k e N*:

(4.7) A+ 7)Nep 4 peowid = —(A+ 1) Ay 4
(4.7) is equivalent to

(4.8) pr(A) =0,



with py the polynomial given by pi(A) := (A +7) (Azsu + )‘?V,k) + ueowg)\.
For each k € N*, there exists three complex roots that are different from —v. One has py(0) = 'y)\?vyk

and py(—7) = —peow’y < 0, so that there exists one real root —y < 7y, < 0.
usowgrk

We have that rp, + v = ————"—5—
By rZep + )‘?V,k

. Since —vy < 1 < 0, we deduce that

M€0w12,7

(4.9) O<r+v< 2
N,k

So that r, — —y as k — +o00. Moreover there exists kg € N* such that for k > kg, py is strictly
increasing. Therefore for k > kg, the two other roots are complex conjugates. Let us then denote
by )\,f these two complex eigenvalues and U ,f the vector

PN,k
*/\T curl o
(4.10) Ui = E
—e\ —— X
k PNk )\gﬂ NEPNk
0

For k > ko, (\f, U) are eigenvalue-eigenvector pairs since, by construction, each verify (4.6) and
thus (4.5). We have that ¢ € D(Ay) and we deduce that U € D(A). Let us now study the
asymptotic of these eigenvalues. Introduce, for the clarity of the reading x := ep and § := uaowf).
pi. thus rewrite

(4.11) pr(N) = (A +7) (KA* + A% 1) + 0A.

For k > kg, we write )f = qp+i(k, with (. > 0. We have the two following equations corresponding
to the real and imaginary part of the equation py(A\) = 0, where for the sake of clarity we dropped
the superscript 4 and consider for the moment the case of AT (the case of A~ would be treated
similarly),

(4.12) (o +7) ((ai — Pk + )\?\,k) — 203 (P + day, = 0,
(4.13) Gk (2(ok + y)ark + (0f — (R)k + Ay p + ) = 0.

Since (i # 0, we obtain

(4.14) 30kk + 2yapk — Gk + Ay + 0 = 0.

This equation has a real solution «y, if and only of its discriminant is non negative, this yealds:
(4.15) VK2 = 36(AX  + 6 — (k) > 0.

—7?K? + 3KAY  + 3KO

52 . Thus
K

In other words, (,f >

4,3 — 400, as k — +oo.
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Let us then study more precisely ay. (4.13) gives

(4.16) (af = )R+ AR = =0 — 2(op + 7) gk
Plugging this expression in (4.12), we find

(4.17) =20k (o +7)2 + G2 =

In other words, ay is a root of g, where

(4.18) ar(a) =20 + 4o’y + 2a(y? +Ck)+6l.

)
We have that g (0) = 27> 0. Also
K

o\ 5’Y 82 J
(4.19) Tk <_2/€Cg) TR {4&2@3 KCE " 1}

1 0
so that for k large enough such that — C 5 (—2’22> < 0. Furthermore, for k large enough,
k Kk

i, () > 0 and gy, is strictly increasing. Thus «y, is unique and — < ag < 0. This gives ag <0

o
2/-1(,3
and o — 0 as kK — +oo.

.. . . &
We can use more sophisticated ¢; to find an asymptotic expansion of aj. Denote 7 := it and
K

fix £ > 0 such that & > 777 . We denote by 9, the real quantity vy := f% + %. Some easy
k k
manipulations gives, if x := 2{ — 27,
(4.20) a(Vr) = o X+,
k

3 1 1 3Ine2 263
where ¢, 1= ( ’Y+2§’Y) Ck (147757) Ck+(772£+ 52))(@2‘)?é+><éo.

1
Since (, — +oo as k — 400, we deduce that for k sufficiently large: |ox| < 50 50 that since
the choice of £ gives x > 0, we find g (¢x) > 0. Thus

3
4.21 <op < ——b 2
(421 2ck ’ 2@% ¢t
We conclude that
n 1
4.22 « +O<).
(422 P ¢
Reusing (4.12), we first deduce that
AN,k
4.23 ~ =
(4.23) Ck NG



Then using (4.22) in (4.12), we obtain the following asymptotic expansion

AN k 0
4.24 =25
( ) Ck \/E + 2\/EAN7]§ +:uk?7
1
with pp = O | —5— |. We thus conclude that
ANk
2
HEQW 7 )\Nk 1 Eow p 1
(4.25) MNo=- - \/> .
k QA?v,k 2A N, Pl A?’V’k

]
Due to this lemma, we can prove the optimal energy decay rate for our system (2.7).

Theorem 4.3 For system (2.7), we have

4.26 inf w(up) =1.
(4.26) wof ) (uo)
Proof. The proof is the same as the one of Theorem 5.5 of [26] since the eigenvectors U, are

orthonormal in H and the asymptotic behavior of the /\;F is the same as the one from Lemma 5.4
of [26].

4.3 Magnetic boundary conditions

Here we need the operator Ar defined by
D(A7) ={F € H(curl,Q)|divE =0 in Q,curlcurl E € L*()® and E-n =0 on T},

and
ApE = curlcurl E,VE € D(Ay),

that is a positive selfadjoint operator in L?(Q2)? with a compact resolvent [22]. It is well known
that A7 has the same discrete spectrum than A, that we previously denote by {A%,k}kEN*a and
that or 1 is an associated eigenvector corresponding to A if and only if curl o7, is an associated
eigenvector corresponding to Ar.

Clearly we can prove the

Lemma 4.4 For system (2.37), there exists ko large enough such that A has eigenvalues )\f, for
all k > ko satisfying

2
Eow _ YCowpk 1
4.27 A= Fi(ep) "2 j:z\/ﬁ P 1o k> k.
( ) k ( ,LL) T,k 2>\Tk 2)\?\77!C A%7k = hO

Its associated eigenvector U,;t is in the form

PT.k
—— curlpr
(4.28) Ut =ct K
’ ’ —EAink—L)\Z OT,k 7
k PT, T,kPT,
Ak
0
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where @71, is the eigenvector of the Mazwell operator At associated with the eigenvalue )\2T7k and
cf # 0 is a normalization factor chosen such that

Ul = 1.
This Lemma directly leads to the optimality of the decay rate.

Theorem 4.5 The optimal rational decay rate (4.26) holds for system (2.37).

5 A high order Discontinuous Galerkin numerical framework

In this section we consider the discretization of the linearized Hydrodynamic dispersive model
(2.7), with a space discretization based on a Discontinuous Galerkin (DG) method.

Initially proposed by Reed and Hill [28] in the context of neutron transport problems, DG
methods have become very popular and have been applied to a vast field of computational physics
and engineering. DG methods have already been successfully used in the context of nanophotonics,
see e.g. [7] and [30, 17, 29] (in the context of the study of (2.7)). In a more academic context,
one can cite [32], [18]. Indeed, one can clearly benefit from the flexibility of DG methods to deal
with complex and heterogeneous structures such as the one encountered in nanophotonics. The
cost of the added unknowns resulting from the broken continuity at the interface is reduced by an
appropriate parallel computing environment.

In the following, we first detail the scheme that will be used and propose a unified framework
allowing to deal with several schemes at the same time. We fist recall the semi-discrete stability
estimates presented in [29]. We moreover add a constraint weak preservation result. Then, we
establish fully discrete stability estimates using energy techniques and keep track of the physical
parameters and polynomial order in the constants. Our results extend the preliminary results
obtained in [29] in this direction. We furthermore provide explicit CFL condition with respect to
physical parameters and polynomial order. The generality of the framework will open the route to
a more thorough stability analysis as a discrete analogue of the first part of this work. This will
be part of a future work.

5.1 The semi-discrete setting

The classical Discontinuous Galerkin approximation relies on the choice of a non conforming space
to approximate the unknown leading to a local weak formulation on each element of the mesh.
The communication at the interfaces of cells is recovered via the definition of numerical fluxes (in
the same spirit as finite volumes approximations).

We introduce a tetrahedral mesh of the domain Q (that we will assume for simplicity to be
convex polyhedral in this section) : Q = J €, Ng being the set of indices of the mesh elements.

1EN

We furthermore suppose that the mesh is auasi—uniform with quasi-uniformity constant n > 0.
We will denote the mesh size by h > 0. Furthermore, for all i € Ng, N, will denote the set of
indices of the neighboring elements of Q; (having a face in common) and F;, = Q; NQ,, Vg € Nq,,
the internal faces. We also denote by F the set of all faces of the mesh. We define the finite
dimensional non-conforming approximation space as

(5.1) Vi = {v e L*(Q),v]q, € Pp(),Vi € Na},
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where P,(€2;) is the space of polynomials of maximum degree p € N on ;. We also denote
W2 = (V2)10,

For ¥ € V¥, and i € Ng, we denote by ¥J; the restriction of V' on ;.

The semi-discrete DG formulation write as follows: find (Ey, Hy, Ji, Qn) € W4, such that for
all ¢ S Nﬂa V((phadjhaghm Ch) in W]p;

/‘ po(Hp)¢ - Yndx

i

—/ Ey, - curlypdx — / (n x E}) - pds,
S)i é)szi

/ €0€oo(ER)t - ppdx / (Hy, - curl pp, — Jp - op)dx + /
Sli Szi

(n x Hp) - ppds — / Iy - ppde,
a0

Q;

/‘(Jh)t - Epdx

i

- / 82Qy div &da + / BQi 6, - nds + / (cowl B - € — 1T - En)de,
Q; oQ;

i

/Qi(Qh)tChdl' = —/Q‘ In - VCthB—F/Q. Jy - nCpds.

i 0Q;

The * quantities refer to the flux at the interface that one has to define. Several choices are available
for these fluxes that will affect the different properties of the scheme such as e.g. dispersion or
dissipation. We will work with two basic fluxes, namely the centered and upwind ones, that can
be put in the following abstract form. Let i € N and [ € Ng,, then on F;;, we set

(5.2) Ep =5 ({En}y + aZnx [Hyla)  Hy =

1
2

withY:\/?andZ:\/ﬁ,
H €

({Hn}ty —a¥Ynx [Ena),

N |

ho= 1 —ozln~ )
(5.3) @ = 2({Qh}il 3 [[Jhﬂzl>7

1
n-Jy = 3 (m-{Jn}y —aBlQnla),
with a € {0,1}, n the outward normal to the considered face and for all ¥ € V} (Q), {9},, = 9,4+,
[ =9 — 9y, V(i,1) € Ng X Ng,. The case o = 0 is referred to as centered flux, while the case

a =1 is referred to as upwind flux.
To ease the reading, we introduce several discrete forms ap, by o, kj,, k7, Ca,n from WE x WP to
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R as

ap(9,9") = — (Ep, curlyy,), + (Hp, curlpy),
B s
P (Qn,divéy), — o (Jn, V), »

0%p
bh,a(9,9") = —((n X {EW}), [Yn])n — aZ{n x [Hu],n x [¢n])n
+ ((n x {Hp}), [en])n — oY (n x [E],n x [en])n

o - goﬁw {Qn}s[&n] - mhn - aafuz (PARNI N
+ soﬁ; ({n} - n, [Cul)n — aeoﬁ;<ﬂQhﬂ’ D),

k%b(ﬁ7"9/) = (Jh7 @h)h + (Eh7€h)ha
R2(0,9) = —— 5 (Jn, &n)p , V(9,9') € W2 x W2,

€0wp

and finally cqon = ap +ban + k,ll + k}% Here curl, div and V have to be understood as respectively
piecewise curl, divergence and gradient operator (on each €Q;, i € Ng). Furthermore, for all
(9,9") € 95 x 9%,

(9,9'), = Z (Wi, 9)) 12(02:)

i€ENq
0,9 F = > (9:,9)12p),
FeF
with the associated respective norms | - ||n, || - | -
If there is no ambiguity, we will denote ||| - |||7, the norm of linear and bilinear forms on either

(L(H,C), || - l¢) and (B(H x H, C), || - [|#)-
Finally, | - | is defined for ¥ € W%,

10
9% =6 l[9:1IF
j=1

with for j € {1,2,3}, 6; = cz, for j € {4,5,6}, 6; = cp, for j € {7,8,9}, 6; = £, and 6,9 = L=

Sow% ’
with c = — .
VER
Thus, the global semi-discrete weak formulation can be written as follows.
Find 9, € W} such that V9, € W7,

09
(55) <8th’19;1> = Ca,h(ﬁha'ﬂ%)'
H

One can easily prove that there exists a unique solution in C*(0, T, W?) with initial conditions
192 =Ty (190), where 7, is the corresponding L? orthogonal projector on Wh.

Inverse inequalities and quasi-uniformity of the mesh (with related parameter n) give
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Proposition 5.1 There exits C > 0 such that for all h > 0, and for all 9 € V¥,

[eurl(@)[n < Cop*h= '[9,
VO < Cop*h 9|,
|divdll, < Cop*h~ 9],
Iz < Cuph™ |9,
{9} = < Coph™ /28]

In the following, we give some continuity estimates on these bilinear forms that will help us
later to complete the stability study.

Proposition 5.2 Let « € [0,1]. There exists C,, > 0 such that

(5.6) llan + bh.allln < Cap®h ™',
w
kl < p
H| h|||7‘l = @7
K3 <.
Similarly

11banlllze < Canp®h™,
and finally ¥(s, &) € Wi x W¥,
[ban (5 €)] < Camph™* 5]l 1€]s-
One has the following result:
Proposition 5.3 [29] Let o € [0,1]. For all 9 € WY, it holds
an(9,9) + by 1 (9,9) = —al|9|3.
Furthermore, for all ¥ € W%, we easily see that

(5.7) H@®,9) = 0,
9

(5.8) kK (9,9) = Z )51

In the following we will need the canonical projectors p : Wy — W} : ¢ = (F,G,R,S) —
(F,0,0,5), q: W) - W) .9 = (F,G,R,S) — (0,G,R,0), pps : W) — WV : 9 =(F,G,R,S) =
(F,G,0,0), pg : W) — W} : 9 = (F,G,R,S) — (0,0, R, S). One immediately sees that q = id—p.

Proposition 5.4 Lets € {p,q,pa,pu} and d € {ap,bon, ki }, for all (9,9") € WL x W | we have

(9,5(9)))y, = (5(9),5(9)))y,

d(9,p(9)) = d(a(®),p(9)),

d(9,q(9)) = d(p(9),q(9)),
d(q(9),p(9") +d(p(),a(d)) = d(p(d)+a(9),p(¥) +q(3)).
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As a consequence, for all 9 € WY, we have
d(q(9),p(9)) + d(p(9),q(9)) = d(9, 9).
Furthermore, for all (9,9") € W) x W¥  we have

kn(9p(9)) = 0,
kn(9,a(9)) = ki(a(¥'),q(9)).

We do not detail the proof since it is straightforward.

We also have the following estimate.
Proposition 5.5 Let d € {ap,bo,n}, for all 9 € W}, we have

(9, p(9))] < Cenp® ™ lpar(9) I3, + CBmp*h ™ o (9)I13,

with ¢ = and C a generic positive constant. More generally, for all (9,9) € Wh x WP,

|an(9,9")| < Cenp®h ™ [par(9) |3 lloar (9l + CB1p° ™ [P 2 (9) |l lp £ () |4,
and for all o € 10, 1],
[bern(9,9")] < Cenph ™ |[par (9)9 |2 llpar(9) |e+C Bup*h ™ [p 1 (9) cllp (9" |2+ Craph™ % 9] 5|9 |13,

and
Wp

|k (9, 9")] <

(HPM(ﬂ)HH”pM('ﬁ/)HH + ||PH(19)||H||PH(19/)||H) .

€oo

Proof. We only detail how to obtain the first inequality since the other inequalities are obtained
similarly.
For all 9 € W%,

3 1
Iah(ﬁ,p(ﬁ))lSCx/EIIFHh\/ﬁIIcurl(G)IIh+B\/§O%HRIIh\/%prVSIIh-

Using Proposition 5.1, we find that

lan(9,p(9))] < Cenp?h™ e ||F||n/ul| Gl + CBnp*h~! EL(LPHRHh EiprSHh
< Cenp®h™Hpar ()5, + CBnp*h ™ p e (9)]15;-

]
Combining all the previous propositions, we easily obtain the following result.

Proposition 5.6 One has for all (9,9") € WP x W,

_ w
@9 < (2Cem " + < ) oa (9) s (9 +
_ w _1
(208742 ) o )l () + Crpt 191519
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All these estimates will serve in proving the stability of the fully discrete schemes that we will
consider.

First, we focus on the semi-discrete stability. To this end, we define the energy of the semi-
discrete problem by

1
(5.9) En = i(ﬁhaﬁh)?[» on |0, T7.

One has
Proposition 5.7 [29] For « € {0,1},

-
En(t) = En(0) — —_ 1Tnl* = a9,
p

with ’19h = (EhaHha Jhth)'

Proof. This result easily follows from Proposition 5.3, (5.7), (5.8) and the regularity (in time) on
the solution. m

Remark 5.8 The previous Proposition means that we are using a semi-discretization that con-
verges and that adds (if a # 0) numerical dissipation to the system, (i.e., the term |9,|%). The

dissipation term coming from the continuous setting, i.e., the term — HJh”2 is itself unchanged.

2
0Wp

As mentioned in [29], a direct combination of the arguments used in [17] allows to conclude to
the convergence of the semi-discrete schemes, with classical orders (i.e. p if « =0 and p + %, if
a =1). We will not reproduce the proof here.

Last, we can prove that the constraint is preserved at the semi-discrete level.

Proposition 5.9 Let Y C H}(Q) be the space of piecewise continuous polynomials of degree p
with zero trace on the boundary. If On, = (En, Hp, Jn, Qn) € WY is the solution of (5.5), and if at
the initial time,

—(eEn(0,-), Vpn) + (Qn(0,-), pr)y) = 0,Vpn € Y},

then for all t € [0,T],
7<€Eh(t7 ')7 vph> + <Qh(t7 ')7ph> = Ovvph € Yﬁa
i.e. one has a weak (and discrete) preservation of the constraint div(eE) + @ = 0.

Proof. Let p, € Y}. Due to the continuity of ps, Vpj, has no tangential jump at the element
interfaces and has zero tangential trace at the boundary of the domain. Now, we consider the weak
2
formulation (5.5) and choose 9}, = (—E(?T%Vph,o,o,ph), with p, € Y}. One thus has, using the
tangential continuity of Vp;, and p; at interfaces and the zero boundary condition,
B B B B
—e——(0:En, Vpn) + (0:Qn,pn) - (Jn: Vor) + ——5 (Jn, V)
Eow Eow Eow

2 2
P 0%p P p

EoWw,
= 0.

This shows that —(Ep, Vpr) + (Qn,pr) is constant in time. Thus, if it is zero at the initial
time, it will remain zero at all positive time.
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5.2 Time discretization

We will now focus on the time integration scheme. We will discretize in time by using three time
integration schemes: a Leap-frog scheme of order 2 (LF2) and two explicit Runge-Kutta schemes
(RK2 of order 2 and RK4 of order 4). We will review the stability properties of these scheme
in our precise context. In [29], the stability of the LF2 (with « = 0) and RK4 (with o = 1)
schemes were quickly sketched. Proving the stability of these schemes relies on a generalization of
the arguments used in [17], where the focus was put on RK4 schemes. Here, we choose to go more
into details, especially by detailing the stability proofs for LF2 and RK2 and giving explicitly the
stability constant in terms of the physical parameters.
In this prospect, we introduce a uniform subdivision of the time interval [0, T], with (t,,)neqo,n7, N €

T
N* with time step At = N

5.2.1 The Leap-Frog scheme of order 2 (LF2)

The LF2 scheme shall preserve the dissipative properties of the semi-discrete scheme. It writes as
n+1 n+1 .

follows: For n € [0, N], find 9} = (EP, Hy 2, J; 72, Q) € WP such that for all i € Ny and all

(‘phy why £h7 Ch) € Wi:

9t 9 “n o ~n R | oo
(5'10) (hAtha'ﬁh> = ah(ﬂha'ﬁh> + ba,h('ﬁhv’g;m) + kl{b(ﬂhvﬁh) + §k}21( ht "9h+1719;1)'
H

~ 1 1
with 9, = (EPTY H 72 02 Qrtt).

Remark 5.10 If o = 0, then the scheme can be easily written in an explicit form. However, if
a # 0, the upwind part of the flux is implicit. Doing so, we loose the flexibility of the locality of
DG method combined with a Leap-frog type approximation. we will therefore only concentrate on
the case of Leap-frog scheme with centered fluzes (i.e. a« =0).

We focus on energy techniques to prove stability. In [12], the stability of a centered DG scheme
with LF2 time integration for Maxwell’s equation with absorbing boundary conditions is studied.
Following modified energy technique used in the latter, we could investigate the stability of the
upwind scheme (o = 1) combined to the LF2 time discretization. However, we will not include
this case in the following proofs, since we will not use LF2 scheme with upwind fluxes (see previous
remark).

First, we point out some straightforward properties that will be used in the sequel. One has

(5.11) p(d,) = p(O; ),

(5.12) a(9,) = (7).

We then define the fully discrete energy as:

[NIE

(5.13) gt = %( ;f,ﬁh")H
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We remark that this energy can be rewritten using the projectors p and q as:

(5.14) &7 1= 5 @R, A0+ 5 (O ROR)),

This energy is not necessarily positive, but one has the

Proposition 5.11 Let o = 0. If At (Ccanh_l + \/WELW) <1 and At (Cﬁanh_l + \7%) <1,

then the energy is positive definite.
Proof. Let i € N. One has

g7 = (”15”— "+19”)

h hsYh h h’H

n qn 1 n q " n
( hv'lgh)H+§( heUn —ﬂh)H

WpUsingi;lthat 9y =97 = (EpT—EP,0,0,Q1 T —Qm), we easily see that for all 9, = (F/,G', R', S') €
P we have

DN = DN =

(5.15) (90" = 03.93) = (93" = 93.p(91)),,.

with p(9%,) = (F’,0,0,5)). Then the scheme (5.10) gives:
7l+% 1 n qn At Q" n Q" n 1,3" n 1 2/ qn n+1 n
&, 3 (O, )y + > an(Fp,, p(9%)) + bo.n (9, p(9})) + ki (9y,, 9(I3)) + ikh(ﬂh +9,7 7, p(97))

1 At

= S OO 5 [analR), (97)) + bo.n(a(97). pOR) + L5 (97))]

since $k2(9) + 97 p(9})) = 0.
We furthermore have

Kk (D, p(97) = (T2 B,
so that

~n n w 1 n+i
[ (9, p (I < —2= ( — I, 7P +ell 2R * )
\E Eow,
oo P

Combining this last estimate with estimates of Proposition 5.5, we finally obtain:

n % 1 n n C —
&% = 5 (0 00)y — Ak [ellpar (V)G + CBllpa (V)I3]

At w 1 n+1 n
At w ( A 2||2+e||Eh2).

2 fem gow?
Thus
ntl 1 _ n+1/2 - w n
&7 = 5 |(1—ConAtp*h™ )| Hj, P2+ (1~ CenAtp*h™ — ,—;;OAt)g”EhW

1 B2
1— Atp2h-t — A n+1/2)2 4 (1 _ Atp2h—! ny2
+(1 = CpnAtp™h NS t)gw%HJh I*+ (1 — CBnAtp°h )gngthl ;

which gives the result. =
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Remark 5.12 If w, and 3 are zero, we recover Maxwell’s equations and the classical CFL con-
dition. If B = 0, we recover the so-called Drude model. From the estimate, we see that one has
also to refine the time-step accordingly to the plasma frequency wy,, which is physically coherent.
Finally, if all parameters are non-zero, since, physically, the speed of the hydrodynamic wave (§
here) is always less that the speed of light (c here), the most constrained CFL condition remains

the one associated to Mazwell’s equations alone (i.e., At (C’canhfl + \75%) <1).

Proposition 5.13 One has the following energy principle,

n—1/2 n+1/2 |2
(5.16) gt g | T
' h h E()UJ% 2

Proof. Using the scheme at different times and with different test functions, one obtains

1971 _197171 n +,l9n71 1 N n—1 n —i—’l9n71 1 N
(B Py s b)) = (a4 Saop)
H
~n—1 n+,l9n—1 1 n
+bo,n (9, 7Q(%) + §P(T9h))
~n—1 n—‘r’ﬁnil 1 n
+ky (9, ,Q(%)+§p(ﬂh))
+§ki21(19h o (e 5 B )+§P(19h))7

and

O =08 Loom)) = an(@ So01) + bon (B Lp(8)) + kL] Lp(op)
T»§P h = ap ha§P h 0,h ha§p ) h ha§P h

H
1 n n 1 n
‘*‘5]@}21( n ot §p(79h))'

Summing the two equations, we obtain for the left hand side

<192 — 9! a (O

At 2 ) 2 At 2 At 2

At

(AR

Using (5.14), we find

N | 9t -9 1 n+1/2  n—1/2
(5.17) ( (e )+p(192)) + (h ,p(ﬂZ)> =& -
At 2 2 u At 2 w h

For the right hand side, let us group similar terms. Let d € {ap, bo }, we have
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+P( h)) +< h hob( I)) _ <q( h I Wt h
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~n 1 n ~n—1 Z—|—’l9;;71 1 n ~n ~n—1 1 n ~n—
d(ﬂhvip(ﬁh))+d(ﬂh 7‘1(?)‘*‘59(1%)) = d(¥, +79, »§p(79h))+d(ﬂh
Furthermore, using Proposition 5.5, (5.11) and (5.12),
~n ~n—1 1 PP L L n
(519) Ay + 9, SpR) = dla(PEEE) b))
49y " n
(5.19) = d(q(Z5—),p(97))
Similarly,
~n—1
~n—1 I+ 9 ~n—1 nygn—1
(5.20) A9, a(=—5)) = d(p(d) ), (P F)
(5.21) = d(p(9}). a(PHF )
n Ip+9) !
(5.22) = dp(d}),a(*3—)

Finally, from Proposition 5.4 and Proposition 5.3, one finds

n n—1 _
~n—1 ’l9h +’19h 1 O +I} 1

Ay, 3p(0R) + @, o) b p(97)) = d(a( ) p(9R)) + d(p(9F), (%

~n—1
1 w9

,q(

2

,1971_‘_1971—1
h h ))

= d(p(d) + q(EEZ ) p(97) + q(ZFZ )

Moreover, by using Propositions 5.4, (5.7) and (5.8), one gets

)
2

el n_|_0n71 B
ki (9, a(—L 2h ) 4+ kL9, =k (9, a(

)+

2

0.

n p(9h)) I
2

)

)



and

1 n— n n+19n—1 1 n 1 n n 1 n
Ski (O + 9%, q(P—2—) +=p(97)) + Sk (95 + 95, Sp(d7))
2 2 2 2 2
,077.71_’_071 n_i_,ﬂnfl
= k(a5 )
,lg’n—l +19n ﬁn+ﬁn—1
= B (a( P (PR
_ " 2
T P ek
B Eowg 2

Combining all these equalities, we find the result. m
Finally, we establish the fully discrete weak constraint preservation property.

Proposition 5.14 If for n € {0,..,N}, 9} = (EZ,H;LHM,J}?H/Q,QZ) € W% is the solution of
(5.10), and if at the initial time,

—(E}, Vpn) + (@0, pr) = 0,Vpy € Y},
then for alln € {0,--- , N},
—(eEy},, Vpn) +(Qp, pr) = 0,Vpn € Y},
i.e. one has a weak (and discrete) preservation of the constraint div(eE) + @ = 0.

Proof. The strategy is analogous to the semi-discrete case. Let Y} C Hg(Q) being the space of
piecewise continuous polynomial of degree p with zero trace on the boundary. Let p, € Y}. Due to
the continuity of py,, Vp, has no tangential jump at the element interfaces and has zero tangential
trace at the boundary of the domain. Now, we consider the weak formulation (5.10) and choose

b= (—B—QVp;“ 0,0,pp), with p, € Y. One thus has, Vp, € Y}, using the tangential continuity

50“«'12,
of Vpy, and pj at interfaces and the zero boundary condition,

e e
EEOWI2,< At Vpn) + {—:0w§< At 'Ph)
2 2
= & 2 <J;?+1/2’Vph> + %<J2+1/2,Vph> =0.
oWy Eowy

This gives the result using the hypothesis on the initial conditions. m

5.2.2 Explicit Runge Kutta schemes of order 2 and 4.

As mentioned above, the use of upwind fluxes in the case of a Leap-frog discretization is ruining
all the advantages and flexibilities of the approach.

The use of upwind fluxes is more appropriate to explicit Runge-Kutta discretization. We focus
on explicit Runge Kutta scheme of order 2 (RK2) and explicit Runge-Kutta scheme of order 4
(RK4). We investigate stability results in this context. Mimicking the strategy of [6] and [17],
one can establish stability results for both RK2 and RK4 '. The situation and properties of the

Lstability for RK4 was briefly envisaged in [29], without detailing the computations
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discrete operators are more general than [6] and [17]. We here choose to present the details of the
computations for RK2 to emphasize the energy technique and, in particular, the resulting CFL
condition (explicit in physical parameters and polynomial order).

Explicit RK2 schemes can be easily re-written in our context. For all n € {1,..., N}, find

n € WP with (L7, 19Z+1/2,L’2L) € WY x WP x WP defined as follows: for all ¥}, € W},

(LTlLvﬁ;«b)H = Ca,h( Z?ﬁ/h)v
(077204), = (5. 90),, + At (LY, 95),,.
(L3,95), = can(®2,0}),
and then for all 9), € WY,
(523) (ﬂ}z+1719;1)7.[ = ( haﬂ;z)q.[ + 7 ((leﬂ;z)q.[ + (L277~9;1)7.L) '

In other words, for all n € {1,..., N}, find 9¥; € W} with 19Z+1/2 € W defined as follows: for
all 9}, € WP,

(5.24) (192“/2,192)H = (95 9h)5 + AL (can(95,93))
. 1 N n At n
oy~ L)+ ).

In the case of RK schemes, we simply define the fully discrete energy as

n 1 n n
The following results give a stability result under a CFL condition.
Proposition 5.15 The scheme is stable under a 4/3-CFL condition given as vy < 0, vg < 0,
vy <0, v1 <1 and v < 1, with

4
vy = 4AE3 (QCcnpzh_l + t:) ,

4
= 4AL (20 Bnp*h " + —2
Vo t <C’ﬂnph + 5004-’7 )

oo

2 2
v == o | 4C?At* 2 ap?h =t | 2Cenp® =t + et 2 + C?°A*n?aph~t [ 20Bnp*h 1 + el 2 +
VE
+C?Atn*ap®h~t — 1),
vy = C2Atp?ap?h~t — 1,

vs := 10vAt — 1.
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Proof. Testing the first equation of (5.24) with 1}, and the second with 219;‘“/2 gives:

(05772,07), = (B 00y + At (05, 97).
n n+1/2 no gntl/2 gntl/2
(ﬁh+1a2ﬂh /)7-[ B ( O /’ﬂh /)H
+At0a,h(ﬁ2+1/271‘92+1/2)'

Summing the two equations and using that (192+1,219Z+1/2)H = |93 tH2, + ||19Z+1/2H§_L -

|97+ — 97/2|12, we find that

(5.26) |07 Y3, — |07, — 107+ — 932 |2, = Atca n (97, 9%) + Atcan (972, 9712

Writing the variation of the energy over one time step, one has an estimate for ||192+1 -

n+1/2
9,23,
Indeed
n+1 n+1/2 / 1 n+1/2 n / At n+1/2 / n /
(or7 =0t 20) =5 (O0E =00 0)) )+ Srean (0T 00) — At (97 95).
Then using the first equation of (5.24), one finds
n n At n At n n
(,ﬂh+1 - 0h+1/2’ 19;1)7—[ - TCa’h ( h> 19;1) + 7ca’h("9h+1/2702) - Atca,h( h?ﬂgz)'
Thus
(5.27) (19;;“ - ﬁh“/Q,ﬂ;L)H = Scan (ﬂh+1/2 - ﬁ;;,ﬁ’h) .
Let us define g := ﬁZH/Z -9, e Wp.
One can thus rewrite (5.27) as
(5.28) (’9h+1 - ﬂh+1/27 Z)H = g Cah (97, 9%) -
One has
(5.29) (91, 0h), = Atcan (9%,9),) -

Now we use the estimate on ¢, ; given in proposition 5.6. We obtain,

Y
VEoo

Wp

Vem

IR < At(20077p2h1+ >|pM<z9h>H||pM<gz>||H+

At (205np2h_1 + + V) o2 (90) acllp 2 (97) 192 + CAtnaph™ 9] g7 [l
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Y
Vs
+CAtnaph ™2 |94 s/lpar(g7) |-

a2 < At(20077p2h‘1+ )||pM<z9h>H||pM<gz>|H+

w

\/;> o (O3 el (o) 3

+OAtnaph™ [94]s 0 (9) 13 + VAL (97 jeqr,.. 0y 13-

(gl < At (2Cﬁnp2h‘1+

This gives,

_ w
N ) | I

el 2

At [ 2C 2p1
( Bnp +\/<§

) o @)l + CAtnaph™Dhls + AL 82 scpr...00 0

Ipar (gl < At (2Cem?h=t + 2222 pas (90l +
CAtnaph~2|9y,]s,

and

o (o)l < At (20802~ + 2= ) [pi (9)llse + CABaph™HDnls + 1 AU er, oyl

Furthermore,

" . At o
(530) (,,9’2‘#1 _ 19h+1/2’192+1 _ 19h+1/2)7_[ — ?Ca,h <92a0h+1 - 0h+1/2) .

We thus conclude that

" _ W, n
(,ﬂ}i-i-l . 19Z+1/2,192+1 7 192—&-1/2)% S At (QC'cnpzh 1 + \/;;OO) ||pM(gh)||’H||pM(19Z+l o ﬁz+1/2)||H +

Wp

2 ) o )l (97 = 977

+CAtaph™ 3 |gi | s[[93H — 97 2|5,
A (pr(9)) je g, oy lalpar (97 — 97T 2) |15

At <2Cﬁ77p2h_1 +

This implies

2
n n — w _1 _ w
||19h+1—19h+1/2uﬂ < (At? <2Ccnp2h 1 +¢;;) lpar (90 || +C At naph ™2 (2Ccnp2h Ly \/€i> [9s)

2
A (208mp?n " + 22 9 CAnaph=* (208np*h"1 + 22 9
(8 (203~ 22 ) )l + CALyoph* (2C8m " + St ) 9ils)

-1 n n
+ CAtnaph™2 gy |s +yAt|(pu(9r))jeq7,.. 01 12
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Finally,

4
n n _ w n
|92 — 92, < (AL <20677p2h LS ) lpar (9312

VEoo
2
+ 5C2 At a?p?h ! (2C'cnp2h_1+ (Zp ) |19m%)
4 2
_ w n — — W n
5(Art <2Cf>’v7p2h 1+€%+7> o (92, +C2 AP0y 1<205?7p2h o ) 9712)

+ CP AP h 9% + C2 AR 2P h 9P R 4 59 AR (par(9f)) je .0 30

EnTt — & < o Atpar (97) I3 + vo At [P (97) |3, + vs At % + vat]9; T2 [%

9 9
n n 2
—yAtus S 193,112, — vAtus S 1973113,

i=7 i=7
with v;,7 = 1,...,5 defined before. Hence if v3 < 0, v4 <0, v5 <0, v; < 1 and vy < 1, then
(5.31) EMt g < AtE},

and the conclusion follows using Gronwall’s inequality. m

Remark 5.16 In the previous Proposition, the dominant CFL condition is a 4/3-CFL condition
(namely vy < 1) and is independent of the upwinding parameter «.

Finally, we study the fully discrete weak constraint preservation property.
Proposition 5.17 If forn € {0,...,N}, 9% = (E}', H', J', Q}) € W}, is the solution of (5.24)-
(5.25), and if at the initial time,
_<€E27 vph> + <Q9L7ph> = O7vph S Yi?
then for all m € {0,..., N},
—(eE}, Vpn) +(Qp.pn) = 0,p, € Y},
i.e. one has a weak (and discrete) preservation of the constraint div(eE) + @ = 0.

Proof. The strategy is analogous to the semi-discrete case and to the case of Leap frog scheme.
Let Y} C HJ(€2) being the space of piecewise continuous polynomial of degree p with zero trace
on the boundary. Let p, € Y}. Due to the continuity of ps, Vp, has no tangential jump at the
element interfaces and has zero tangential trace at the boundary of the domain. Now, we consider

in the weak formulation of the RK2 scheme (5.24)-(5.25) and choose 9}, = (—%Vph,o,o,ph),

with pp € Y7, One thus has, Vp, € Y}, using the tangential continuity of Vpy, and p, at interfaces
and the zero boundary condition in (5.24)

g Ept? g B Q- qp
32) —
(5 3 ) 550w127< At 7Vph> + 50‘*}% < At 7ph>
_ 1 /32 n /82 n —
-1 ( g T+ R V) =0
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Using (5.25), we find,

525 +1 +1 ﬁQ n+1/2 n+1/2
— B n = - E E h
Lot B )+ Og«cz Pr) gz € (BL™2 4 B V) — (@7 + Q)
1 ﬂz n+1/2 BQ n+1/2
ol J, J,
#3 (g i 9o + L )
= 0.
And thus from (5.32), one deduces that
—(ER Vo) + (@i pn) = (B}, Vpn) + QR pa)-

This gives the result using the hypothesis on the initial conditions. m
In the remainder of this paragraph, we briefly consider the case of the explicit RK4 scheme.
It writes, for all n € {1,..., N}, find 9% € WP with (974 97"/2 97 +3/%) ¢ (WD) defined
as follows: for all 9), € WY,

(5.33) (fgzﬂ/{ﬂ’h)ﬂ = 2719;1)7.[+At (con(97,95))

B0 e, - e,
v (cahw:““ 9)).

(5.35) (19’;+3/4,19;L)H _ ;(Igh ) 0h>y
FE (can@ 72, 90)

(5:36) O 0, = S (00 o o)
+A4t (c(, h(z92+3/4,19§l)> .

(5.37)

We define for n € {0, .., N}, the fully discrete energy as

n 1 n n
(5.38) &y = 5( haﬁh)y

Even though not presented in this paper (because the arguments are similar to a combination
of extra long computations of [17] and the strategy adopted here for RK2), one could obtain with
lengthy computations that under a 4/3-CFL condition, the RK4 scheme is stable. Similarly, we
can prove a constraint weak preservation property, since for any (¢, prn) € WZ X YZ,

Can(Cpr€n) =0,

. 2
if gh = <_EIOBT}27Vph7 07 Oaph)-

36



5.2.3 Some remarks on convergence estimates

Using the stability results developed in last sections and consistency estimates, one can obtain
convegence results. We choose not to detail the proof here, but on shall obtain an estimate such
as

5.39 97 — 9(t,)|| < CTH™n (5:2)
(5.39) ne{mﬁ’fm” h— Ot <

6 Numerical results

Based on our analysis, we numerically investigate the stability of the given schemes. In this paper,
we concentrate on giving first 2D numerical results and postpone 3D results and a more thorough
analysis of the discrete stability properties of the schemes to a future work.

Numerical setting.  We consider a 3D setting that is invariant in the z direction (domain and
solution) and we focus on a transverse mode i.e. H, = H, = E, = J, = 0. As such, the 3D problem
is reduced to a 2D Maxwell Hydrodynamic problem with unknowns (E, Ey, H,, J;, Jy, Q).

The convergence of the schemes presented in the last section has been previously assessed
numerically, hence we do not reproduce these academic convergence tests (see e.g. [29] for these
results for RK4 and LF2 in particular). Let us mention that the empirically found CFL condition
for LF2 follows the theoretical predictions of the previous section. For Runge-Kutta schemes, one
could numerically obtain the classical CFL condition At < h.

Remark 6.1 This discrepancy between theoretically predicted CFL and effective one is due to the
energy technique proof.

We consider the square domain © = [0,1] x [0,1]. The physical quantities, variables and
unknowns are adimensioned using the speed of light in vacuum cq = 3e8m.s~!.

In order to test the long time behavior of the numerical solution, we choose several test cases
with different initial conditions Uy € D(A), mesh parameters and order of approximation (P; to

P,).

Academic constants. We fix the adimensioned physical parameters to unitary values (with
respect to the speed of light in vacuum cp). In other words, e, = 1, g9 = 8.85e-12 F.-m ™!, ju = 4re-
7TH.m™! (and ¢y = \/%Tu)’ wp = ¢, ¥ = ¢o and = co.

First, we rely on the theory developed in section 4, especially Lemma 4.2. For k € N*, we define

Ek
1 k
———curl ¥
(6.1) Uk = ¢ kH L1 .
2
—eAp BF — mAN,kE
0
¢ # 0 is a normalization factor chosen such that
[Uklln =1,
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k 5 10 15 20 30 40 50 60 70 80
k=2 0.04 0.01 4.4e-3 2.5e-3 1.11e-3 6.25e-4 4e-4 2.77e-4 2.04e-4 1.56e-4
Decay 0.014 0.011 5.59e-3 3.25e-3 1.49e-3 8.34e-4 5.27e-4 3.58e-4 2.567e-4 2.05e-4
rate
Power - —0.33 —1.72 —1.81 —1.97 —2.02 —2.05 —2.11 —2.17 —1.65
decay
rate

Table 1: Numerical exponential rate of decay of the energy for LF2 scheme with centered fluxes
and total adimensioned simulation time 7" = 1000 (physical time 3 * 1075s).

k 5 10 15 20 30 40 50 70 80
k=2 0.04 0.01 4.4e-3 2.5e-3 1.11e-3 6.25e-4 4e-4 2.04e-4 1.56e-4
Decay 0.40 0.58 0.60 5.5e-3 3.2e-3 0.18 0.65 2.76 4.86
rate
Power - 0.54 0.11 —16.35 4.39 5.92 5.83 4.28 4.23
decay
rate

Table 2: Numerical exponential rate of decay of the energy for RK2 scheme with upwind fluxes
and total adimensioned simulation time 7' = 1000 (physical time 3 * 10~5s).

where EF = (EX, EF).

EF . (x,y) +— cos(%”x) sin(%”y),
Ellj t(z,y) > —sin(®2) cos(Ery).

The latter is an eigenvector of Ay for the eigenvalue )‘?\/,k = 2(kr)®. We also denote \; =
2 2
i(ep) V2 AN + Z\/g;;j:pk - 726,{]%:#.

Doing so, we expect to observe an exponential decay rate of the energy (i.e. the energy decays
as exp(—vt), with v the decay rate) proportional to k2 for k large enough . For LF2 and centered
fluxes, the numerical results confirm the expected exponential decay. Furthermore, we can have
a numerical estimation of the approximate energy decay rate. We observe that the rate of expo-
nential decay decreases as k increases, with an asymptotic power decay of k=2 that corresponds
to theoretical predictions (see table 1). This is in accordance with the fact that this scheme is
energy preserving (in the sense that it preserves the continuous discrete energy principle at the
discrete level) i.e. the scheme is non-dissipative. On the contrary, for Runge-Kutta schemes with
upwind fluxes, this conclusion does not hold (see table 2). As expected, the introduction of nu-
merical dissipation, due to upwind fluxes, changes the rate of decay. Same conclusions hold for
RK4 scheme with upwind fluxes, other mesh discretization parameters and polynomial orders (we
do not reproduce the detailed results here).

Then for a second type of numerical tests, we propose to use several initial conditions with
various degrees of smoothness. As a simple example of initial condition we choose:

E,:(xz,y) — cos(mx)sin(my),
E,:(x,y) +— sin(mzx)cos(my),
H,:(z,y) +— cos(mz)sin(my).

We define @ using the constraint:
(6.2) Q = -—div(eE)
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Then we consider several expressions for (Jy,Jy). In particular, we investigate the case of
smooth initial data to initial data that do not belong to D(A). As smooth initial data (S), we
simply choose

IS (z,y) +— O cos(mz)sin(my),

S . :
J; i (z,y) = dsin(mz)cos(my),

with d a given positive constant. Secondly, we also consider a continuous piecewise linear initial
data (CPL).

JOPL (z,y) — 1.0, if 2 <1/3,
1-3(x—-1/3),if1/3 <z <2/3,
0.0, if x > 2/3,
JSPE (my) - 1.0,if 2 < 1/3,
1-3(x—1/3),if 1/3 < x < 2/3,
0.0, if > 2/3.
The results are summarized in figures 1 and 2. In figures la and 2a, we represent the evolution
over time of the relative energy. In figures 1b and 2b, we represent the evolution over time

t — log(E(t)/|lUo?). In both cases, we observe an exponential decay with saturation due to
discretisation error.

— LF2+centered fluxes — LF2+centered fluxes
— RK2+upwind fluxes — RK2+upwind fluxes
---  RK4+upwind fluxes ---  RK4+upwind fluxes

08

02
-3.0

04 0.0 0.5 L0 L5 2.0 3'{).() 0.5 L0 L5 2.0
x1077 x1077

(a) Discrete energy over time (b) Representation of log(W) over time.

Figure 1: Energy plots for smooth initial data with 7= 2% 10""s, h = 1072m and At ~ 10~ !!s.

In order to test an initial data (NS) that does not belong to D(A), we choose

JgJCVS : (x,y) = log(\/(x - Um)2 + (y - Uy)2)7
IV (x,y) o log(y/(@—va)? + (y — vy)?),

with a given value of (vg,vy) €]0,1[x]0, 1[. Here we choose (vg,vy) = (5, 3)-
In figures 3a, 3b and 3c, we represent the evolution over time of respectively the energy, ¢t —
t&(t) and t — log(&(t)) in this precise case. We do not observe any exponential convergence, but
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1.0 0.0

— LF2+centered fluxes — LF2+centered fluxes

— RK2+upwind fluxes s — RK2+upwind fluxes
- rkd+upwind fluxes ] ' == RK4+upwind fluxes

0.4

02 1 L
3.0

i 05 10 5 20 340 05 10 5 20
X107 X107

(a) Discrete energy over time (b) Representation of log(W).

Figure 2: Energy plots for continuous and piecewise initial data over time with T = 2 % 107",
h =10"2m and At ~ 10~ !!s.

polynomial decay. We observe that up to a given time 7' < T the quantity ¢ — t&(t) is bounded.
However, we observe a linear growth after this critical time T'. This behavior is due to discretisation
error. Indeed, the discrete energy can be (non optimally) bounded by a sum of two contributions:
|| and ||U — Up||3- The latter term can be estimated using (5.39). Therefore, for a fixed mesh
size h if ¢ is big enough, the (at least) linear growth will dominate over the stability decay of t£(t).

Physical values of the parameters One could also perform the same numerical experiments
with physical values of the parameters. As typical values, one can use a silver medium model
eg. e = 1, g9 = 8.85e-12 F.m™ !, u = 4dne-TH.m™ !, w, = 1.24el6rad.s~!, v = T.4el4 Hz and
B = 1.35e06m.s~!. Interestingly, in this case and for all tested initial data, one numerically
observes an exponential decay of —v. As an example, we represent in Figure 4 the value of the log
of the relative energy v.s. time for smooth initial data. Same plots could be obtained for other
type of initial data (including data of type (6.1)). The curves show a clear exponential decay. In
table 3, we computed the curves’ slope for all the test cases and several discretisation parameters.
The results confirm a decay rather close to exp(—~t) (i.e. a decay rate close to ). This can be
understood as the physical decay since the polarization current is predominant due the respective
ranges of the physical parameters. Let us point out, that, in particular, in the predicted asymptotic
behavior in Lemma 4.2, the respective ranges of the physical parameters have not yet been taken
into account and could impact the higher order terms.
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