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Abstract

We analyze the stability of a linearized hydrodynamical model describing the response of
nanometric dispersive metallic materials illuminated by optical light waves that is the situation
occurring in nanoplasmonics. This model corresponds to the coupling between the Maxwell
system and a PDE describing the evolution of the polarization current of the electrons in the
metal. We show the well posedness of the system, polynomial stability and optimal energy
decay rate. We also investigate the numerical stability for a discontinuous Galerkin type
approximation and several explicit time integration schemes.

AMS (MOS) subject classi�cation 35Q61, 93D20, 35B35, 65M12
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1 Introduction

Nanophotonics is the �eld that manages to exploit the interaction of light with nanometer scaled
structures. With, nowadays, the ability of designing nanometer scaled devices, came the exponen-
tial growth of potential applications of nanophotonics. Subwavelength imaging is one of the famous
example see e.g. [24, 9] and references therein. Most of very interesting features in nanophotonics
come from the possibility to enhance �elds leading to the creation of very good absorbers or emit-
ters (see one example in e.g. [9, 33, 23]). All these reasons make nanophotonics a very active �eld
of research. Nanoplasmonics, one of the major sub�eld of Nanophotonics is of particular interest.
It is based on the exploitation of plasmons (see [21] for a physical insight). These occur when the
light interact with nanoscaled metals. Modelling is at the heart of the understanding of nanoplas-
monics. It relies on the description of the reaction of the electrons of the metal to an applied
external electric �eld. Popular classical models rely on a mechanical description of the movement
of the electrons. These descriptions lead to the famous Drude and Drude-Lorentz models that are
describing the electric dispersive nature of metals at optical frequencies. Indeed, electrons exhibit
a delay in response to the applied electric �eld and a polarization that characterizes a dispersive
media. These models give very good results when the size of the device is not smaller than ' 15nm.
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Below this threshold, the repulsive interaction between electrons in the metal do play an important
role. Models that take into account of these e�ects are called "non-local" in the sense that the
reaction of the electron not only depends on the applied electric �eld at its precise position but
also on the �eld around it. To model these e�ects, one can describe the metal as a �uid of electron
and makes use of a hydrodynamical description (see [4]). This is the point of view that we adopt
in this paper and we focus on the linear response of such systems. The equations that we consider
come from a linearization of the non linear hydrodynamical model around a static equilibrium. We
refer the reader to [4] for details. The resulting system of equations is a linear hyperbolic system
of PDE's that encompass the "non-local" character of the response through a linearized quantum
pressure term. These equations write formally as:

(1.1)


ε0εL∂tE − curlH = −J ,

µ∂tH + curlE = 0,

Jtt + γ∂tJ − β2∇(div J) = ε0ω
2
p∂tE,

The system of PDE consists in a linear coupling between Maxwell's equations (with (E,H) the
electromagnetic �eld) with a PDE that describes the evolution of the polarization current J .
Classically, ε0, the vacuum permeability, εL, the relative permeability of the media and µ, its
permittivity, are physical constants. Furthermore, ω2

p is the plasma frequency and β is the so-called
"nonlocal" parameter. One should notice that if β = 0, the system reduces to Drude dispersive
model. The system (1.1) has been �rst investigated numerically in [13] (with Nédélec elements),
and later in [30] (with a Discontinuous Galerkin framework) with an emphasis on computational
aspects; the bene�t for nanoplasmonics has been shown. However, no theoretical study of the
continuous model was provided in the latter. In [15], well posedness has been investigated for
(1.1), with zero normal trace for current J , using variational techniques without considering charge
conservation. Let us also mention a similar study of existence and uniqueness that can be found
in [8] (in german) together with a numerical approximation based on a splitting scheme. In this
work, we �rst investigate the question of well posedness for several types of boundary conditions
with the point of view of semigroup theory and including charge conservation, inherent to this
system. Stability is an important feature with regards to the complete understanding of the
phenomenon and has also an impact on the development of adapted numerical frameworks. We
thus also propose to investigate polynomial stability and optimal polynomial decay. This has
been studied in details for all classical dispersive media in [26] but not for the more involved
system (1.1) for which we propose to extend the latter results. We are also concerned with the
behavior of numerical schemes with respect to (polynomial) stability. In [15], the authors also
proposed a conforming space discretization framework with a leap-frog time integration strategy
and provide some numerical analysis of it and academic convergence test cases. Here, we adopt
a di�erent point of view and propose to push the numerical analysis further. We especially focus
on discrete stability and discrete energy decay. We use the Discontinuous Galerkin discretization
framework of [30, 31, 29] combined with several explicit time integration schemes (from Leap-frog
to explicit Runge-Kutta schemes). We concentrate on establishing, using energy techniques precise
stability results, with CFL condition explicit in the physical parameters and polynomial orders.
Furthermore, we prove that the charge constraint inherent to (1.1), is weakly preserved at the
discrete level. Last we provide some 2D numerical tests that study the precise type of discrete
energy decay.

The paper is organized as follows: in section 2 we present the di�erent notations and the model.
The well-posedness of the problem is then proved in section 3 by using semi-group theory. Section
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4 is devoted to the polynomial decay of the energy. In section 5, we look at the optimality of the
polynomial decay. Finally, in section 6, we investigate the numerical approximation and provide
some numerical stability results.

2 Well-posedness of the systems

2.1 Notations

Let Ω be a open bounded simply connected Lipschitz domain of R2 or R3. We will denote by Γ its
boundary. The L2(Ω)-inner product (resp. norm) will be denoted by 〈·, ·〉 (resp. ‖ · ‖). The usual
norm and semi-norm of Hs(Ω) (s ≥ 0) are denoted by ‖ · ‖s,Ω and | · |s,Ω, respectively. For s = 0
we drop the index s.

For further uses, let us introduce the following spaces:

H1
0 (Ω) := {u ∈ H1(Ω)|u = 0 on ∂Ω},

that is a Hilbert space for the inner product∫
Ω

∇u · ∇v dx,∀u, v ∈ H1
0 (Ω).

Set

H0(div; Ω) = {χ ∈ L2(Ω)3|divχ ∈ L2(Ω) and χ · n = 0 on Γ},
K(Ω) = {χ ∈ L2(Ω)3|divχ = 0},
K̂(Ω) = {χ ∈ K(Ω)|χ · n = 0 on Γ} = K(Ω) ∩H0(div; Ω).

Similarly, we recall that

H(curl; Ω) = {χ ∈ L2(Ω)3| curlχ ∈ L2(Ω)3},
H0(curl; Ω) = {χ ∈ L2(Ω)3| curlχ ∈ L2(Ω)3 and χ× n = 0 on Γ}.

Recall also the spaces

XT (Ω) := H(curl; Ω) ∩H0(div,Ω) = {χ ∈ H0(div,Ω)| curlχ ∈ L2(Ω)3},
XN (Ω) := H(div,Ω) ∩H0(curl; Ω) = {χ ∈ H(div,Ω)| curlχ ∈ L2(Ω)3 and χ× n = 0 on Γ},

both are Hilbert space with the norm

‖χ‖2X(Ω) =

∫
Ω

(| curlχ|2 + |divχ|2) dx.

Recall that the next Green's formula holds (see Lemma 3.1 of [25] or Lemma 2.5 of [11, p. 91]):

(2.1)
∫

Ω

(curlE · E′ + E · curlE′) dx = 0,∀E ∈ H0(curl,Ω), E′ ∈ H(curl,Ω).

We also denote O := Ω×]0,+∞[ and Σ := Γ×]0,+∞[.
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2.2 Mixed �rst order form of the model

This model, based on a linearization of a hydrodynamical model that describes the metal as an
electron gas [4], reads:

(2.2)


ε0εL∂tE − curlH = −J in O,

µ∂tH + curlE = 0 in O,

Jtt + γ∂tJ − β2∇(div J) = ε0ω
2
p∂tE in O,

where E (resp. H) is the electric (resp. magnetic) �eld and J is the polarization current. The
parameters β (driving the "non locality" in space), ωp (the plasma frequency), γ, ε0, εL are physical
quantities that can be assumed to be positive and constants. For shortness, we set ε = ε0εL. As
usual ∂tE = ∂E

∂t is the partial derivative of E with respect to the time t. In this setting and for
further use, it is natural to rewrite this system in a mixed form as a �rst order system of PDEs:

(2.3)



ε0εL∂tE − curlH = −J in O,

µ∂tH + curlE = 0 in O,

∂tJ − β2∇Q = ε0ω
2
pE − γJ in O,

∂tQ− div J = 0 in O.
Remark 2.1 Here the new unknown Q plays the role of a charge.

This system has to be completed with initial conditions:

(2.4) E(., 0) = E0(.), H(., 0) = H0(.), J(., 0) = J0(.), Q(., 0) = Q0(.) in Ω,

in suitable spaces that will be speci�ed later, and with boundary conditions. Later on, we will
focus on several type of boundary conditions. Either the electric boundary conditions

(2.5) E × n = 0, H · n = 0,div J = 0, Q = 0,

or the magnetic boundary conditions

(2.6) E · n = 0, H × n = 0, J · n = 0,∇Q · n = 0.

Here and below n denotes the unit outer normal vector on the considered boundary.
We will detail in each dedicated section, the type of setting (in terms of hypotheses on the

boundary) that will be used.

2.3 The system with electric or magnetic boundary conditions

2.3.1 The case of electric boundary conditions

In this section, we begin by the study the following system with electric boundary conditions.

(2.7)



ε0εL∂tE − curlH = −J in O,

µ∂tH + curlE = 0 in O,

∂tJ − β2∇Q = ε0ω
2
pE − γJ in O,

∂tQ− div J = 0 in O.

E × n = 0, H · n = 0,div J = 0, Q = 0 on Σ,

E(., 0) = E0(.), H(., 0) = H0(.), J(., 0) = J0(.), Q(., 0) = Q0(.) in Ω,
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The existence of a solution to (2.11) will be obtained by using semigroup theory in the appropriate
Hilbert setting that we describe below (see for instance [16, 25, 26]).

Introduce the Hilbert space

H = {(F,G,R, S)> ∈ H(div,Ω)× K̂(Ω)× L2(Ω)3 × L2(Ω),div(εF ) = −S on Ω},

with the inner product

(2.8) ((F,G,R, S)>, (F ′, G′, R′, S′)>)H :=

∫
Ω

(ε0εLF · F̄ ′+µG · Ḡ′+ 1

ε0ω2
p

R · R̄′+ β2

ε0ω2
p

S · S̄′) dx,

The space H is indeed a Hilbert space for the associated norm thanks to the divergence conditions.
Note that the equations imply a divergence free constraint on H and a divergence constraint

on εE based on the original problem (2.3). Indeed the �rst and second equations in (2.3) formally
yields respectively

(div(εE) +Q)t = (divH)t = 0 in O.
Therefore

(div(εE) +Q)(x, t) = (div(εE) +Q)(x, 0) and divH(x, t) = divH(x, 0), ∀x ∈ Ω, t > 0,

and if we assume the divergence free properties at t = 0, they will remain valid for t > 0.
We de�ne the unbounded operator A as follows:

(2.9)

D(A) :=
{

(F,G,R, S)> ∈ H| curlG ∈ L2(Ω)3, R ∈ H(div,Ω), S ∈ H1
0 (Ω) and F ∈ XN (Ω)

}
,

and for all U = (E,H, J,Q)> ∈ D(A), AU is given by

(2.10) AU =


ε−1

0 ε−1
L (curlH − J)

−µ−1 curlE
β2∇Q+ ε0ω

2
pE − γJ

div J

 .

The model (2.7) can then be rewritten as follows

(2.11)
{
∂tU = AU,
U(0) = U0,

where U is the vectorial unknown

(2.12) U =


E
H
J
Q

 ,

where E,H, J,Q ∈ L2(Ω)3 and for smooth enough E,H, J and Q,

Theorem 2.2 The operator A de�ned by (2.10) with domain (2.9) generates a C0-semigroup of
contractions (T (t))t≥0 on H. Therefore for all U0 ∈ H, the problem (2.11) has a weak solution
U ∈ C([0,∞), H) given by U = TU0.
If moreover U0 ∈ D(Ak), with k ∈ N∗, the problem (2.11) has a strong solution U ∈ C([0,∞), D(Ak))∩
C1([0,∞), D(Ak−1)).
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Proof. It su�ces to show that A is a maximal dissipative operator (see [16, 25]), then by Lumer-
Phillips' theorem it generates a C0-semigroup of contractions (T (t))t≥0 on H.

Let us �rst show the dissipativity. For U = (E,H, J,Q)> ∈ D(A), we have

(AU,U)H =

∫
Ω

(
(curlH − J) · Ē − curlE · H̄ +

1

ε0ω2
p

(β2∇Q+ ε0ω
2
pE − γJ) · J̄ +

β2

ε0ω2
p

div JQ̄

)
dx.

Hence by Green's formula (2.1), we �nd that

(AU,U)H =

∫
Ω

(H ·curl Ē−curlE ·H̄+
β2

ε0ω2
p

(div J ·Q̄−div J̄ ·Q)+
1

ε0ω2
p

(E ·J̄−J ·Ē)− 1

ε0ω2
p

γ|J |2) dx.

Taking the real part of this identity, we obtain

<(AU,U)H = − γ

ε0ω2
p

∫
Ω

|J |2 dx.

This shows that A is dissipative.
Let us go on with the maximality. Let λ > 0 be �xed. For (F,G,R, S)> ∈ H, we look for

U = (E,H, J,Q)> ∈ D(A) such that

(2.13) (λI −A)U = (F,G,R, S)>.

According to (2.10) this is equivalent to

ελE − curlH + J = εF,(2.14)

µλH + curlE = µG,(2.15)

λJ − β2∇Q− ε0ω
2
pE + γJ = R,(2.16)

λQ− div J = S.(2.17)

Assume for the moment that U exists. Then the �rst and second equation allow to eliminate J
and H since they are equivalent to

H = − 1

µλ
curlE +

1

λ
G,(2.18)

J = −ελE + curlH + εF.(2.19)

Thus

(2.20) J = −ελE − 1

µλ
curl curlE +

1

λ
curlG+ εF

Furthermore the last equation gives

(2.21) Q =
1

λ
div J +

1

λ
S,

so that we recover the constraint since (E,H, J,Q) and (F,G,R, S) belong to H:

(2.22) Q = −ε divE +
ε

λ
divF +

1

λ
S
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i.e.

(2.23) Q = −εdivE

Replacing in the third equation, we get

(2.24)

−
(
ελ(λ+ γ) + ε0ω

2
p

)
E −

(
λ+ γ

µλ

)
curl curlE + εβ2∇ divE = R− λ+ γ

λ
curlG− ε(λ+ γ)F

that corresponds to a problem with only E as unknown.

We now consider the following variational problem: Find E ∈ XN (Ω) such that

(2.25) aλ(E,E′) = Fλ(E′),∀E′ ∈ XN (Ω),

where

(2.26) aλ(T, T ′) =

∫
Ω

(
(ελ(λ+ γ) + ε0ω

2
p)T · T̄ ′ + λ+ γ

µλ
curlT · curl T̄ ′ + εβ2 div T div T̄ ′

)
dx,

and

(2.27) Fλ(T ′) =

∫
Ω

(
−R · T̄ ′ + λ+ γ

λ
G · curl T̄ ′ + ε(λ+ γ)F · T̄ ′

)
dx,

for all T, T ′ ∈ XN (Ω). Let us prove that this problem is well posed. As for λ > 0, aλ is clearly a
sesquilinear, continuous and coercive form on XN (Ω) and Fλ is a conjugate linear and continuous
form on XN (Ω), by Lax-Milgram lemma, problem (2.25) has a unique solution E ∈ XN (Ω).

We would like to come back to problem (2.13), with E in hand. We thus de�ne H by (2.18);
H ∈ L2(Ω). Let us prove a regularity result on H. We �rst notice that (2.25) is equivalent to∫

Ω

(
(ελ(λ+ γ) + ε0ω

2
p)E · Ē′ − (λ+ γ)H · curl Ē′ + εβ2 divE div Ē′

)
dx(2.28)

=

∫
Ω

(
−R · Ē′ + ε(λ+ γ)F · Ē′

)
dx, ∀E′ ∈ XN (Ω).

In a �rst step we show that this identity implies that divE belongs to H1(Ω). For that purpose,
we use the same argument as in the proof of Theorem 1.1 in [10]. As test function we take E′ = ∇ϕ,
with ϕ ∈ D(∆Dir) := {ψ ∈ H1(Ω)|∆ψ ∈ L2(Ω) and ψ = 0 on Γ}. Then by integration by parts in
(2.28), we get∫

Ω

divE
[
−(ελ(λ+ γ) + ε0ω

2
p) ϕ̄+ εβ2∆ϕ̄

]
dx =

∫
Ω

(−R+ ε(λ+ γ)F ) · ∇ϕ̄ dx,∀ϕ ∈ D(∆Dir).

On the other hand, thanks to Lax Milgram lemma again, there exists a unique solution q ∈ H1
0 (Ω)

to ∫
Ω

(ελ(λ+ γ) + ε0ω
2
p)qϕ̄+ εβ2∇q · ∇ϕ̄) dx =

∫
Ω

(R− ε(λ+ γ)F ) · ∇ϕ̄ dx,∀ϕ ∈ H1
0 (Ω).
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Restricting test-functions to D(∆Dir), we get∫
Ω

q(ελ(λ+ γ) + ε0ω
2
p)ϕ̄− εβ2∆ϕ̄) dx =

∫
Ω

(R− ε(λ+ γ)F ) · ∇ϕ̄ dx,∀ϕ ∈ D(∆Dir).

This implies that q−divE is orthogonal to the range of (ελ(λ+ γ) + ε0ω
2
p)Id−β2∆, since in that

case this range is the full L2(Ω), we conclude that divE = q, so that divE ∈ H1
0 (Ω).

Now we come back to (2.28) and take test functions E′ ∈ D(Ω)3 to get

(2.29) (ελ(λ+ γ) + ε0ω
2
p)E − (λ+ γ) curlH − εβ2∇ divE = −R+ (λ+ γ)εF in D′(Ω)3.

As divE ∈ H1(Ω), this identity guarantees that H belongs to H(curl; Ω) and since we have
(2.15), H ∈ K(Ω). We can now de�ne J by (2.19). We obtain J ∈ (L2(Ω))2. Furthermore
since divE ∈ H1(Ω) and divF ∈ L2 (since (F,G,R, S) ∈ H), one obtains div J ∈ L2(Ω). Thus

Q :=
1

λ
div J +

1

λ
S is well de�ned. It remains to prove that Q ∈ H1

0 (Ω) and thus we will have

div J = 0 on Γ. Let us consider (2.28) and use the expression of J :∫
Ω

(
(λ+ γ)(−J + curlH + εF ) · Ē′ − (λ+ γ)H · curl Ē′ +

β2

λ
div(−J + εF ) div Ē′

)
dx

+

∫
Ω

ε0ω
2
pE · Ē′ dx =

∫
Ω

(
−R · Ē′ + ε(λ+ γ)F · Ē′

)
dx,∀E′ ∈ XN (Ω).

This gives∫
Ω

(
− (λ+ γ)J · Ē′ − β2

λ
div J div Ē′ +

εβ2

λ
divF div Ē′

)
dx+

∫
Ω

ε0ω
2
pE · Ē′ dx

= −
∫

Ω

R · Ē′ dx,∀E′ ∈ XN (Ω).

But since
1

λ
div J = Q− 1

λ
S,∫

Ω

(
− (λ+ γ)J · Ē′ − β2(Q− 1

λ
S) div Ē′ +

εβ2

λ
divF div Ē′

)
dx+

∫
Ω

ε0ω
2
pE · Ē′ dx

= −
∫

Ω

R · Ē′ dx,∀E′ ∈ XN (Ω).

Using the divergence constraint in the space H, we get∫
Ω

(
− (λ+ γ)J · Ē′ − β2Qdiv Ē′

)
dx+

∫
Ω

ε0ω
2
pE · Ē′ dx

= −
∫

Ω

R · Ē′ dx,∀E′ ∈ XN (Ω).(2.30)

Thus in the sense of distributions

−(λ+ γ)J + β2∇Q+ ε0ω
2
pE = −R.

This shows that Q ∈ H1(Ω) and as a result we also show that Q ∈ H1
0 (Ω) (by integration by parts

in (2.30)). The constraint is recovered from (2.21) and the de�nition of J . The surjectivity of
λI −A is proved.

We continue by the study of the kernel of A.
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Lemma 2.3 One has
kerA := {0}.

Proof. U = (E,H,P,Q)> ∈ D(A) belongs to kerA if and only if

curlH − J = 0,(2.31)

curlE = 0,(2.32)

β2∇Q+ ε0ω
2
pE − γJ = 0,(2.33)

div J = 0.(2.34)

Taking into account (2.33), (2.34) implies that∫
Ω

(β2∇Q · ∇Q+ ε0ω
2
pE · ∇Q− γJ · ∇Q) dx = 0.

Integrating by parts, and reminding that εdivE = −Q, we get∫
Ω

(β2|∇Q|2 +
ε0

ε
ω2
p|Q|2) dx = 0,

consequently Q = 0 and therefore divE = 0. Since curlE = 0 and E ∈ XN (Ω), we deduce that
E = 0 (recalling that Ω is supposed to be simply connected and Proposition 3.14 of [1]). This then
gives that J = 0.

For H, we notice that (2.31) implies that H is curl free. As it is already in K(Ω), we deduce
that H = 0 as for E.

We de�ne the energy of (2.11) in H by

(2.35) E =
1

2

∫
Ω

(ε|E|2 + µ|H|2 +
1

ε0ω2
p

|J |2 +
β2

ε0ω2
p

|Q|2) dx, on ]0,+∞[.

From the above computations (dissipativeness of A), we deduce that

Proposition 2.4 The solution (E,H, J,Q) of (2.11) with initial datum in D(A) satis�es

d

dt
E = − γ

ε0ω2
p

∫
Ω

|J |2 dx on ]0,+∞[.

Therefore the energy is non increasing.

2.3.2 The case of magnetic boundary conditions

In a similar manner, we can prove an existence and uniqueness result for the operator with magnetic
boundary conditions. Since the proof are quite similar, we choose not to reproduce it here in details.

The model (2.37) can be rewritten in the form (2.11) with A de�ned by (2.10). The �rst
di�erence is the Hilbert space H de�ned here by

H = {(E,H,P,Q)> ∈ H(div,Ω)× Ĵ(Ω)×H(div; Ω)× L2(Ω)3|div(εE + P ) = 0 in Ω},
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but equipped with the same inner product (2.8). The second di�erence is the domain of the
operator A:

D(A) :=
{

(E,H,P,Q)> ∈ H|E ∈ XN (Ω), H ∈ XT (Ω),divE,divP ∈ H1
0 (Ω),(2.36)

and Q ∈ H(div,Ω)
}
.

(2.37)



ε0εL∂tE − curlH = −J in O,

µ∂tH + curlE = 0 in O,

∂tJ − β2∇Q = ε0ω
2
pE − γJ in O,

∂tQ− div J = 0 in O.

E · n = 0, H × n = 0, J · n = 0,∇Q · n = 0 on Σ,

E(., 0) = E0(.), H(., 0) = H0(.), J(., 0) = J0(.), Q(., 0) = Q0(.) in Ω,

Theorem 2.5 The operator A de�ned by (2.10) with domain (2.36) generates a C0-semigroup
(T (t))t≥0 on H.

3 Stability results

Our stability results are based on a frequency domain approach. Recall that the polynomial decay
of the energy can be obtained by using the next result stated in Theorem 2.4 of [5] (see also [2, 3, 20]
for weaker variants and [27, 14] for exponential decay):

Lemma 3.1 A C0 semigroup etL of contractions on a Hilbert space satis�es

||etLU0|| ≤ C t−
1
l ||U0||D(L), ∀U0 ∈ D(L), ∀t > 1,

as well as
||etLU0|| ≤ C t−1||U0||D(Ll), ∀U0 ∈ D(Ll), ∀t > 1,

for some constant C > 0 and for some positive integer l if

(3.1) ρ(L) ⊃ iR,

and

(3.2) lim sup
|ξ|→∞

1

ξl
‖(iξ − L)−1‖ <∞,

hold.

3.1 Electric boundary conditions

In order to check the assumptions of Lemma 3.1 for A, we �rst analyze the assumption (3.1).

Lemma 3.2 We have

0 ∈ ρ(A) := {λ ∈ C|λId−A is densely de�ned and has a continuous inverse} .
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Proof. Let (F,G,R, S)> ∈ H, we look for U = (E,H, J,Q)> ∈ D(A) such that

(3.3) AU = (F,G,R, S)>.

According to (2.10) this is equivalent to

curlH − J = εF,(3.4)

− curlE = µG,(3.5)

β2∇Q+ ε0ω
2
pE − γJ = R,(3.6)

div J = S.(3.7)

Suppose for a moment that such a U = (E,H, J,Q)> ∈ D(A) exists. One has by (3.6),

(3.8) β2

∫
Ω

∇Q · ∇ψ̄dx+ ε0ω
2
p

∫
Ω

E · ∇ψ̄dx− γ
∫

Ω

J · ∇ψ̄dx =

∫
Ω

R · ∇ψ̄dx, for all ψ ∈ H1
0 (Ω).

This gives

(3.9) β2

∫
Ω

∇Q ·∇ψ̄dx−ε0ω
2
p

∫
Ω

divE · ψ̄dx+γ

∫
Ω

div J · ψ̄dx =

∫
Ω

R ·∇ψ̄dx, for all ψ ∈ H1
0 (Ω).

Since ε divE = −Q and (3.7), we �nd

(3.10) β2

∫
Ω

∇Q · ∇ψ̄dx+
ε0

ε
ω2
p

∫
Ω

Q · ψ̄dx = −γ
∫

Ω

S · ψ̄dx+

∫
Ω

R · ∇ψ̄dx, for all ψ ∈ H1
0 (Ω).

We now go back to the problem (3.3). Let us introduce the sesquilinear continuous coercive
form ã on H1

0 (Ω) as:

(3.11) ∀(ϕ,ψ) ∈ H1
0 (Ω), ã(ϕ,ψ) = β2

∫
Ω

∇ϕ · ∇ψ̄dx+
ε0

ε
ω2
p

∫
Ω

ϕ · ψ̄dx

and the conjugate linear form F̃ :

(3.12) ∀ψ ∈ H1
0 (Ω), F̃ (ψ) = −γ

∫
Ω

S · ψ̄dx+

∫
Ω

R · ∇ψ̄dx.

Thanks to Lax Milgram theorem, there exists Q ∈ H1
0 (Ω) such that

(3.13) ã(Q,ψ) = F (ψ),∀ψ ∈ H1
0 (Ω).

Then, let us denote by ϕ ∈ H1
0 (Ω) the unique solution to the following variational problem

(3.14)
∫

Ω

∇ϕ · ∇ϕ̄′dx =

∫
Ω

Q

ε
ϕ̄′, ∀ϕ′ ∈ H1

0 (Ω).

Furthermore, we introduce the following variational problem: Find ξ ∈ XT (Ω) ∩ K(Ω) such that,

(3.15)
∫

Ω

curl ξ · curl ϕ̄′dx = −
∫

Ω

µGϕ̄′dx, ∀ϕ′ ∈ XT (Ω) ∩ K(Ω).
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This variational problem has a unique solution thanks to Lax Milgram lemma applied on XT (Ω)∩
K(Ω) embedded with the ‖ · ‖X(Ω)(= ‖ curl ·‖L2(Ω)) norm. Let us denote ξ ∈ XT (Ω) ∩ K(Ω) the
unique solution of this problem.

We then de�ne E := curl ξ +∇ϕ. We thus have

(3.16)
∫

Ω

E · ∇ϕ̄′dx =

∫
Ω

Q

ε
ϕ̄′, ∀ϕ′ ∈ H1

0 (Ω).

Thus

(3.17) divE = −Q
ε

in L2(Ω) and E ∈ H(div,Ω).

Furthermore,

(3.18)
∫

Ω

E · curl ϕ̄′dx = −µ
∫

Ω

Gϕ̄′, ∀ϕ′ ∈ XT (Ω) ∩ K(Ω).

Since any ψ′ ∈ XT (Ω) can be written as

ψ′ = ∇χ′ + ϕ′0,

with χ′ ∈ D(∆Neu) solution of
∆χ′ = divψ′, in Ω,

and then ϕ′0 ∈ XT (Ω) ∩ K(Ω), we deduce that

(3.19)
∫

Ω

E · curl ϕ̄′dx = −µ
∫

Ω

Gϕ̄′, ∀ϕ′ ∈ XT (Ω).

This yields curlE = −µG in L2(Ω) and E × n = 0.

Let us de�ne J = −R
γ

+
β2

γ
∇Q+ ε0ω

2
p

E

γ
in (L2(Ω))3. Using (3.13), we deduce that ∀ψ ∈ H1

0 (Ω),

(3.20)
∫

Ω

J · ∇ψ̄ = − ε0

εγ
ω2
p

∫
Ω

Q · ψ̄dx−
∫

Ω

S · ψ̄dx+
ε0ω

2
p

γ

∫
Ω

E · ∇ψ̄dx

Since we have (3.17), we deduce that

(3.21) div J = S,

which gives that J ∈ H(div,Ω).
Finally, the �rst equation allows to �nd H. Indeed as H has also to be in K̂(Ω), we look for H

in the form H = curlχ with χ ∈ XN (Ω) ∩ K(Ω), the unique solution of∫
Ω

curlχ · curl ψ̄ dx =

∫
Ω

(εF + J) · ψ̄ dx,∀ψ ∈ XN (Ω) ∩ K(Ω).

As εF + J is divergence free, this problem implies that

(3.22)
∫

Ω

curlχ · curl ψ̄ dx =

∫
Ω

(εF − J) · ψ̄ dx,∀ψ ∈ XN (Ω),
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because any ψ ∈ XN (Ω) can be written as

ψ = ∇ϕ+ ψ0,

with ϕ ∈ D(∆Dir) solution of

∆ϕ = divψ in Ω,

and then ψ0 ∈ XN (Ω) ∩ K(Ω). Problem (3.22) then yields that H = curlψ satis�es (3.4). The
continuity of the inverse of A is easily shown by basic estimations coming from the de�nition of
each �elds. The proof is thus complete.

Lemma 3.3 We have
iR ⊂ ρ(A).

Proof. As the previous lemma has shown that 0 ∈ ρ(A), it remains to show that

iω ∈ ρ(A),∀ω ∈ R \ {0}.

This means that for ω ∈ R, ω 6= 0 and an arbitrary W = (F,G,R, S)> ∈ H, we look for U =
(E,H, J,Q)> ∈ D(A) such that

(3.23) (iω −A)U = W,

that means solution of (2.13) with λ = iω. Hence the arguments of Theorem 2.2 lead �rst to
the problem (2.25) with λ = iω (with aλ and Fλ de�ned respectively by (2.26) and (2.27)). This
problem is equivalent to

(3.24) eiθaiω(E,E′) = eiθFiω(E′),∀E′ ∈ XN (Ω),

forall θ ∈ R. Hence we look for one θ such that eiθaiω is coercive on XN (Ω), i.e., such that

<(eiθaiω(E,E)) & ‖E‖2XN (Ω),∀E
′ ∈ XN (Ω).

Simple calculations show that this property holds if

cos θ > 0,
γ

ω
tan θ + 1 > 0,

−ωγε tan θ + ε0ω
2
p − εω2 > 0.

For ω > 0, these conditions are equivalent to

cos θ > 0,−ω
γ
< tan θ <

ε0ω
2
p − εω2

ωγε
,

and therefore it su�ces to choose
θ ∈ (θ0, θ1),

with θ0 = − arctan(ωγ ) and θ1 = arctan(
ε0ω

2
p−εω

2

ωγε ).
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On the contrary for ω < 0 these conditions are equivalent to

cos θ > 0,
ε0ω

2
p − εω2

ωγε
< tan θ < −ω

γ

and therefore it su�ces to chose
θ ∈ (θ1, θ0).

With this choice, problem (3.24) has a unique solution E ∈ XN (Ω) and the arguments of the proof
of Theorem 2.2 yield U = (E,H,P,Q)> ∈ D(A) solution of (3.23). The fact that U belongs to H
comes from the property W ∈ H.

Now we need to analyze the behaviour of the resolvent on the imaginary axis.

Lemma 3.4 The resolvent of the operator of A satis�es condition (3.2) with l = 2, i.e.

(3.25) lim sup
|ξ|→∞

1

ξ2
‖(iξ −A)−1‖ <∞.

Proof. We use a contradiction argument, i.e., we suppose that (3.2) is false with l = 2. Then there
exist a sequence of real numbers ξn → +∞ and a sequence of vectors Zn = (En, Hn, Jn, Qn)> in
D(A) with ‖Zn‖H = 1 such that

(3.26) ξ2
n ‖(iξn −A)Zn‖H → 0 as n→∞.

By (2.10), this is equivalent to

ξ2
n‖iεξnEn − curlHn + Jn‖Ω → 0,(3.27)

ξ2
n‖iµξnHn + curlEn‖Ω → 0,(3.28)

ξ2
n‖iξnJn − β2∇Qn − ε0ω

2
pEn + γJn‖Ω → 0,(3.29)

ξ2
n‖iξnQn − div Jn‖Ω → 0,(3.30)

as n→ +∞.
We now notice that

(3.31) < ((iξn −A)Zn, Zn)H ≤ ‖(iξn −A)Zn‖H ‖Zn‖H = ‖(iξn −A)Zn‖H

and that, by dissipativity of A:

(3.32) < ((iξn −A)Zn, Zn)H = <
(
iξn‖Zn‖2 −

(
AZn, Z̄n

)
H

)
=

γ

ε0ω2
p

‖Jn‖2.

From (3.26) we get

ξ2
n

∫
Ω

|Jn|2 dx→ 0, as n→ +∞.

This means that

(3.33) ξnJn → 0, in L2(Ω)3, as n→ +∞.

This property and (3.29) imply that

‖β2∇Qn + ε0ω
2
pEn‖ → 0,(3.34)
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One has that (En) is bounded in (L2(Ω))3, so (3.34) implies that ∇Qn is bounded in (L2(Ω))3.
Moreover,

(3.35) |
∫

Ω

(
β2∇Qn + ε0ω

2
pEn

)
· ∇Qn| ≤ ‖β2∇Qn + ε0ω

2
pEn‖‖∇Qn‖.

This implies that

(3.36)
[
β2‖∇Qn‖2 + ε0ω

2
p‖Qn‖2

]
→ 0,

where we used that ε divEn = −Qn. We thus deduce that

(3.37) Qn → 0,

in H1
0 (Ω). As a consequence,

(3.38) En → 0,

in L2(Ω). Using that εdivEn = −Qn, we have that divEn → 0 in L2(Ω).
From (3.27) and the above results:

(3.39) ξ−1
n curlHn → 0,

in (L2(Ω))3.
Since ∫

Ω

curlEn · H̄n dx =

∫
Ω

En · curl H̄n dx,

we get

(3.40) ξ−1
n

∫
Ω

curlEn · H̄n dx = o(1).

Now by (3.28) and the fact that ‖Hn‖ = 0(1), we have

ξ−1
n

∫
Ω

(iµξnHn + curlEn) · H̄n dx = o(1),

and by (3.40) we get

(3.41) Hn → 0, in L2(Ω)3.

In conclusion, we have shown that
Zn → 0, in H,

which contradicts ‖Zn‖H = 1.
The previous Lemmas allow to check the hypotheses of Lemma 3.1 and then lead to the next

stability results.

Theorem 3.5 Problem (2.11) is polynomially stable in H, more precisely there exists a positive
constant C such that

(3.42) E(t) ≤ C t−1||U0||2D(A),∀t > 0,

for all U0 ∈ D(A).
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3.2 Magnetic boundary conditions

Comparing subsections 2.3 and 2.3.2, we see that it mainly su�ces to exchange the role of XT (Ω)
and XN (Ω), of ∆Neu and ∆Dir, of H0(div; Ω) and H(div; Ω) etc... Hence the arguments of the
previous subsection can be adapted to prove that Lemmas 3.2, 3.3 and 3.4 hold. By Lemma 3.1,
Theorem 3.5 is valid for system (2.37).

4 Optimal energy decay rate

4.1 A general result

The optimality of the decay is based on the next general principle, see [26, Le 5.1] or [19, 34].

Lemma 4.1 Consider a C0-semigroup T (t) acting on a complex Hilbert space H with in�nitesimal
generator A. Assume that the two points below hold.

(i) For all k ∈ N∗, we assume given a family of eigenvalues λk of A of the form λk = −σk+ iτk
(repeated according to their multiplicities) with σk, τk ∈ R and c1

kδ
< σk <

c2
kδ
, where 0 < c1 < c2

and δ > 0 are independent of k.
(ii) The eigenvectors φk, k ≥ 1 associated with the eigenvalues λk are orthonormal, in the sense

that
(φk, φk′)H = δk,k′ ,∀(k, k′) ∈ (N∗)2.

Let u0 ∈ H be such that

(4.1) u0 =
∑
k≥1

akφk, with |ak| =
1

kq
and q >

1

2
.

Then there exists a constant c > 0 depending on u0 such that

‖T (t)u0‖H ≥
c

t(q−1/2)/δ
, ∀t > 1.

4.2 Electric boundary conditions

Recall [22] that the operator AN de�ned by

D(AN ) = {E ∈ H(curl,Ω)|divE = 0 in Ω, curl curlE ∈ L2(Ω)3 and E×n = 0, curlE·n = 0 on Γ},

and
ANE = curl curlE,∀E ∈ D(AN ),

is a positive selfadjoint operator in L2(Ω)3 with a compact resolvent. Let us denote by {λ2
N,k}k∈N∗

the eigenvalues of its discrete spectrum repeated according to their multiplicity. It consists of an
increasing sequence that tends to +∞ as k → +∞.

If U0 ∈ D(A), we de�ne the optimal rational decay rate ω(U0) by
(4.2)

ω(U0) = sup{α ∈ R : ∃c > 0, E(t) =
1

2
‖U(t)‖2H ≤

c

tα
,∀t ≥ 0, with U the solution of (2.11)}.
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Lemma 4.2 For system (2.7), there exists k0 large enough such that A has eigenvalues λ±k , for
all k ≥ k0 satisfying

(4.3) λ±k = ±i(εµ)−1/2λN,k ± i
√
µ

ε

ε0ω
2
p

2λN,k
−
γε0ω

2
pµ

2λ2
N,k

+ o

(
1

λ2
N,k

)
,∀k ≥ k0.

Its associated eigenvector U±k is in the form

(4.4) U±k = c±k


ϕN,k

− 1

λ±k µ
curlϕN,k

−ελ±k ϕN,k −
1

λ±k µ
λ2
N,kϕN,k

0

 ,

where ϕN,k is the eigenvector of the Maxwell operator AN associated with the eigenvalue λ2
N,k and

c±k 6= 0 is a normalization factor chosen such that

‖U±k ‖H = 1.

Proof. From the de�nition of A, if U = (E,H, J,Q)> ∈ D(A) is an eigenvector of the operator
A of eigenvalue λ ∈ C \ {0}, it satis�es

AU = λU,

i.e.

(4.5)


ελE − curlH + J = 0
λµH = − curlE,
λJ − β2∇Q− ε0ω

2
pE + γJ = 0,

λQ = div J,

From the second equation of (4.5), we deduce that curl curlE ∈ L2(Ω). Furthermore, we thus have

(4.6)



H = − 1

λµ
curlE

J = −ελE − 1

λµ
curl(curl(E))

Q =
1

λ
div J

−
(
ελ(λ+ γ) + ε0ω

2
p

)
E − λ+ γ

µλ
curl(curl(E)) + εβ2∇ divE = 0

We try to take advantage of the spectral properties of AN . Let us study the equation for
k ∈ N∗:

(4.7) (λ+ γ)λ2εµ+ µε0ω
2
pλ = −(λ+ γ)λ2

N,k.

(4.7) is equivalent to

(4.8) pk(λ) = 0,
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with pk the polynomial given by pk(λ) := (λ+ γ)
(
λ2εµ+ λ2

N,k

)
+ µε0ω

2
pλ.

For each k ∈ N∗, there exists three complex roots that are di�erent from−γ. One has pk(0) = γλ2
N,k

and pk(−γ) = −µε0ω
2
pγ < 0, so that there exists one real root −γ < rk < 0.

We have that rk + γ = −
µε0ω

2
prk

r2
kεµ+ λ2

N,k

. Since −γ < rk < 0, we deduce that

(4.9) 0 < rk + γ <
µε0ω

2
pγ

λ2
N,k

.

So that rk → −γ as k → +∞. Moreover there exists k0 ∈ N∗ such that for k ≥ k0, pk is strictly
increasing. Therefore for k ≥ k0, the two other roots are complex conjugates. Let us then denote
by λ±k these two complex eigenvalues and U±k the vector

(4.10) U±k =


ϕN,k

− 1

λ±k µ
curlϕN,k

−ελ±k ϕN,k −
1

λ±k µ
λ2
N,kϕN,k

0

 .

For k ≥ k0, (λ±k , U
±
k ) are eigenvalue-eigenvector pairs since, by construction, each verify (4.6) and

thus (4.5). We have that ϕN,k ∈ D(AN ) and we deduce that U±k ∈ D(A). Let us now study the
asymptotic of these eigenvalues. Introduce, for the clarity of the reading κ := εµ and δ := µε0ω

2
p.

pk thus rewrite

(4.11) pk(λ) = (λ+ γ)
(
κλ2 + λ2

N,k

)
+ δλ.

For k ≥ k0, we write λ
±
k = αk±iζk, with ζk > 0. We have the two following equations corresponding

to the real and imaginary part of the equation pk(λ) = 0, where for the sake of clarity we dropped
the superscript ± and consider for the moment the case of λ+ (the case of λ− would be treated
similarly),

(αk + γ)
(
(α2
k − ζ2

k)κ+ λ2
N,k

)
− 2αkζ

2
kκ+ δαk = 0,(4.12)

ζk
(
2(αk + γ)αkκ+ (α2

k − ζ2
k)κ+ λ2

N,k + δ
)

= 0.(4.13)

Since ζk 6= 0, we obtain

(4.14) 3α2
kκ+ 2γαkκ− ζ2

kκ+ λ2
N,k + δ = 0.

This equation has a real solution αk if and only of its discriminant is non negative, this yealds:

(4.15) γ2κ2 − 3κ(λ2
N,k + δ − ζ2

kκ) ≥ 0.

In other words, ζ2
k ≥
−γ2κ2 + 3κλ2

N,k + 3κδ

3κ2
. Thus

ζ2
k → +∞, as k → +∞.
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Let us then study more precisely αk. (4.13) gives

(4.16) (α2
k − ζ2

k)κ+ λ2
N,k = −δ − 2(αk + γ)αkκ.

Plugging this expression in (4.12), we �nd

(4.17) −2αkκ
(
(αk + γ)2 + ζ2

k

)
= δγ.

In other words, αk is a root of qk where

(4.18) qk(α) := 2α3 + 4α2γ + 2α(γ2 + ζ2
k) +

δγ

κ
.

We have that qk(0) =
δγ

κ
> 0. Also

(4.19) qk

(
− δγ

2κζ2
k

)
= − δγ

3

κζ2
k

[
δ2

4κ2ζ4
k

− δ

κζ2
k

+ 1

]
,

so that for k large enough such that
δ

γκζ2
k

<
1

2
, qk

(
− δγ

2κζ2
k

)
< 0. Furthermore, for k large enough,

q′k(α) > 0 and qk is strictly increasing. Thus αk is unique and −
δγ

2κζ2
k

< αk < 0. This gives αk < 0

and αk → 0 as k → +∞.

We can use more sophisticated qk to �nd an asymptotic expansion of αk. Denote η :=
δγ

κ
and

�x ξ > 0 such that ξ >
ηγ2

2
. We denote by ψk the real quantity ψk := − η

2ζ2
k

+
ξ

ζ4
k

. Some easy

manipulations gives, if χ := 2ξ − γ2η,

(4.20) qk(ψk) =
χ

ζ2
k

[1 + ϕk] ,

where ϕk :=
(
η2γ + 2ξγ2

) 1

χζ2
k

+

(
−η

3

4
− 4ηξγ

)
1

χζ4
k

+

(
3η2ξ

2
+ 4ξ2γ

)
1

χζ6
k

− 3ηξ2

χζ8
k

+
2ξ3

χζ10
k

.

Since ζk → +∞ as k → +∞, we deduce that for k su�ciently large: |ϕk| <
1

2
, so that since

the choice of ξ gives χ > 0, we �nd qk(ψk) > 0. Thus

(4.21) − η

2ζ2
k

< αk < −
η

2ζ2
k

+
ξ

ζ4
k

.

We conclude that

(4.22) αk = − η

2ζ2
k

+O

(
1

ζ4
k

)
.

Reusing (4.12), we �rst deduce that

(4.23) ζk ∼
λN,k√
κ
.
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Then using (4.22) in (4.12), we obtain the following asymptotic expansion

(4.24) ζk =
λN,k√
κ

+
δ

2
√
κλN,k

+ µk,

with µk = O

(
1

λ3
N,k

)
. We thus conclude that

(4.25) λ+
k = −

µε0ω
2
pγ

2λ2
N,k

+ i
λN,k√
εµ

+ i

√
µ

ε

ε0ω
2
p

2λN,k
+O

(
1

λ3
N,k

)
.

Due to this lemma, we can prove the optimal energy decay rate for our system (2.7).

Theorem 4.3 For system (2.7), we have

(4.26) inf
u0∈D(A)

ω(u0) = 1.

Proof. The proof is the same as the one of Theorem 5.5 of [26] since the eigenvectors U+
k are

orthonormal in H and the asymptotic behavior of the λ+
k is the same as the one from Lemma 5.4

of [26].

4.3 Magnetic boundary conditions

Here we need the operator AT de�ned by

D(AT ) = {E ∈ H(curl,Ω)|divE = 0 in Ω, curl curlE ∈ L2(Ω)3 and E · n = 0 on Γ},

and
ATE = curl curlE,∀E ∈ D(AN ),

that is a positive selfadjoint operator in L2(Ω)3 with a compact resolvent [22]. It is well known
that AT has the same discrete spectrum than AT , that we previously denote by {λ2

T,k}k∈N∗ , and
that ϕT,k is an associated eigenvector corresponding to AT if and only if curlϕT,k is an associated
eigenvector corresponding to AT .

Clearly we can prove the

Lemma 4.4 For system (2.37), there exists k0 large enough such that A has eigenvalues λ±k , for
all k ≥ k0 satisfying

(4.27) λ±k = ±i(εµ)−1/2λT,k ± i
√
µ

ε

ε0ω
2
p

2λT,k
−
γε0ω

2
pµ

2λ2
N,k

+ o

(
1

λ2
T,k

)
,∀k ≥ k0.

Its associated eigenvector U±k is in the form

(4.28) U±k = c±k


ϕT,k

− 1

λ±k µ
curlϕT,k

−ελ±k ϕT,k −
1

λ±k µ
λ2
T,kϕT,k

0

 ,
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where ϕT,k is the eigenvector of the Maxwell operator AT associated with the eigenvalue λ2
T,k and

c±k 6= 0 is a normalization factor chosen such that

‖U±k ‖H = 1.

This Lemma directly leads to the optimality of the decay rate.

Theorem 4.5 The optimal rational decay rate (4.26) holds for system (2.37).

5 A high order Discontinuous Galerkin numerical framework

In this section we consider the discretization of the linearized Hydrodynamic dispersive model
(2.7), with a space discretization based on a Discontinuous Galerkin (DG) method.

Initially proposed by Reed and Hill [28] in the context of neutron transport problems, DG
methods have become very popular and have been applied to a vast �eld of computational physics
and engineering. DG methods have already been successfully used in the context of nanophotonics,
see e.g. [7] and [30, 17, 29] (in the context of the study of (2.7)). In a more academic context,
one can cite [32], [18]. Indeed, one can clearly bene�t from the �exibility of DG methods to deal
with complex and heterogeneous structures such as the one encountered in nanophotonics. The
cost of the added unknowns resulting from the broken continuity at the interface is reduced by an
appropriate parallel computing environment.

In the following, we �rst detail the scheme that will be used and propose a uni�ed framework
allowing to deal with several schemes at the same time. We �st recall the semi-discrete stability
estimates presented in [29]. We moreover add a constraint weak preservation result. Then, we
establish fully discrete stability estimates using energy techniques and keep track of the physical
parameters and polynomial order in the constants. Our results extend the preliminary results
obtained in [29] in this direction. We furthermore provide explicit CFL condition with respect to
physical parameters and polynomial order. The generality of the framework will open the route to
a more thorough stability analysis as a discrete analogue of the �rst part of this work. This will
be part of a future work.

5.1 The semi-discrete setting

The classical Discontinuous Galerkin approximation relies on the choice of a non conforming space
to approximate the unknown leading to a local weak formulation on each element of the mesh.
The communication at the interfaces of cells is recovered via the de�nition of numerical �uxes (in
the same spirit as �nite volumes approximations).

We introduce a tetrahedral mesh of the domain Ω (that we will assume for simplicity to be
convex polyhedral in this section) : Ω =

⋃
i∈NΩ

Ωi, NΩ being the set of indices of the mesh elements.

We furthermore suppose that the mesh is quasi-uniform with quasi-uniformity constant η > 0.
We will denote the mesh size by h > 0. Furthermore, for all i ∈ NΩ, NΩi will denote the set of
indices of the neighboring elements of Ωi (having a face in common) and Fiq = Ωi ∩Ωq, ∀q ∈ NΩi ,
the internal faces. We also denote by F the set of all faces of the mesh. We de�ne the �nite
dimensional non-conforming approximation space as

(5.1) Vph :=
{
v ∈ L2(Ω), v|Ωi ∈ Pp(Ωi),∀i ∈ NΩ

}
,
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where Pp(Ωi) is the space of polynomials of maximum degree p ∈ N on Ωi. We also denote
Wp
h = (Vph)10.

For ϑ ∈ Vph, and i ∈ NΩ, we denote by ϑi the restriction of V on Ωi.

The semi-discrete DG formulation write as follows: �nd (Eh, Hh, Jh, Qh) ∈ Wp
h, such that for

all i ∈ NΩ, ∀(ϕh, ψh, ξh, ζh) in Wp
h∫

Ωi

µ0(Hh)t · ψhdx = −
∫

Ωi

Eh · curlψhdx−
∫
∂Ωi

(n× E∗h) · ψhds,∫
Ωi

ε0ε∞(Eh)t · ϕhdx =

∫
Ωi

(Hh · curlϕh − Jh · ϕh)dx+

∫
∂Ωi

(n×H∗h) · ϕhds−
∫

Ωi

Jh · ϕhdx,∫
Ωi

(Jh)t · ξhdx = −
∫

Ωi

β2Qh div ξhdx+

∫
∂Ωi

β2Q∗hξh · nds+

∫
Ωi

(ε0ω
2
pEh · ξh − γJh · ξh)dx,∫

Ωi

(Qh)tζhdx = −
∫

Ωi

Jh · ∇ζhdx+

∫
∂Ωi

J∗h · nζhds.

The ∗ quantities refer to the �ux at the interface that one has to de�ne. Several choices are available
for these �uxes that will a�ect the di�erent properties of the scheme such as e.g. dispersion or
dissipation. We will work with two basic �uxes, namely the centered and upwind ones, that can
be put in the following abstract form. Let i ∈ NΩ and l ∈ NΩi , then on Fil, we set

(5.2) E∗h =
1

2
({Eh}il + αZn× JHhKil) , H∗h =

1

2
({Hh}il − αY n× JEhKil) ,

with Y =
√

ε
µ and Z =

√
µ

ε
,

(5.3)
Q∗h =

1

2

(
{Qh}il − α

1

β
n · JJhKil

)
,

n · J∗h =
1

2
(n · {Jh}il − αβJQhKil) ,

with α ∈ {0, 1}, n the outward normal to the considered face and for all ϑ ∈ Vph(Ω), {ϑ}il = ϑi+ϑl,
JϑKil = ϑi − ϑl, ∀(i, l) ∈ NΩ ×NΩi . The case α = 0 is referred to as centered �ux, while the case
α = 1 is referred to as upwind �ux.

To ease the reading, we introduce several discrete forms ah, bh,α, k1
h, k

2
h, cα,h from Wp

h ×Wp
h to
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R as

(5.4)



ah(ϑ,ϑ′) = − (Eh, curlψh)h + (Hh, curlϕh)h

− β2

ε0ω2
p

(Qh,div ξh)h −
β2

ε0ω2
p

(Jh,∇ζh)h ,

bh,α(ϑ,ϑ′) = −〈(n× {Eh}), JψhK〉h − αZ〈n× JHhK, n× JψhK〉h
+ 〈(n× {Hh}), JϕhK〉h − αY 〈n× JEK, n× JϕhK〉h

+
β2

ε0ω2
p

〈{Qh} , JξhK · n〉h − α
β

ε0ω2
p

〈JJhK · n, JξhK · n〉h

+
β2

ε0ω2
p

〈{Jh} · n, JζhK〉h − α
β3

ε0ω2
p

〈JQhK, JζhK〉h,

k1
h(ϑ,ϑ′) = − (Jh, ϕh)h + (Eh, ξh)h ,

k2
h(ϑ,ϑ′) = − γ

ε0ω2
p

(Jh, ξh)h ,∀(ϑ,ϑ
′) ∈Wp

h ×Wp
h,

and �nally cα,h = ah + bα,h + k1
h + k2

h. Here curl, div and ∇ have to be understood as respectively
piecewise curl, divergence and gradient operator (on each Ωi, i ∈ NΩ). Furthermore, for all
(ϑ,ϑ′) ∈ ϑph × ϑ

p
h, (

ϑ,ϑ′
)
h

=
∑
i∈NΩ

(ϑi,ϑ
′
i)L2(Ωi),

〈ϑ,ϑ′〉F =
∑
F∈F

(ϑi,ϑ
′
i)L2(F ),

with the associated respective norms ‖ · ‖h, ‖ · ‖F .
If there is no ambiguity, we will denote ‖| · ‖|H, the norm of linear and bilinear forms on either

(L(H,C), ‖ · ‖H) and (B(H×H,C), ‖ · ‖H).
Finally, | · |S is de�ned for ϑ ∈Wp

h,

|ϑ|2S :=

10∑
j=1

δj‖JϑjK‖2F

with for j ∈ {1, 2, 3}, δj = cε, for j ∈ {4, 5, 6}, δj = cµ, for j ∈ {7, 8, 9}, δj = β
ε0ω2

p
, and δ10 = β3

ε0ω2
p
,

with c =
1
√
εµ

.

Thus, the global semi-discrete weak formulation can be written as follows.
Find ϑh ∈Wp

h such that ∀ϑ′h ∈Wp
h,

(5.5)
(
∂ϑh
∂t

,ϑ′h

)
H

= cα,h(ϑh,ϑ
′
h).

One can easily prove that there exists a unique solution in C1(0, T,Wp
h) with initial conditions

ϑ0
h = πh(ϑ0), where πh is the corresponding L2 orthogonal projector on Wp

h.

Inverse inequalities and quasi-uniformity of the mesh (with related parameter η) give
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Proposition 5.1 There exits C > 0 such that for all h > 0, and for all ϑ ∈ Vph,

‖ curl(ϑ)‖h ≤ Cηp2h−1‖ϑ‖h,
‖∇ϑ‖h ≤ Cηp2h−1‖ϑ‖h,
‖ divϑ‖h ≤ Cηp2h−1‖ϑ‖h,
‖JϑK‖F ≤ Cηph−1/2‖ϑ‖h,
‖ {ϑ} ‖F ≤ Cηph−1/2‖ϑ‖h.

In the following, we give some continuity estimates on these bilinear forms that will help us
later to complete the stability study.

Proposition 5.2 Let α ∈ [0, 1]. There exists Cα > 0 such that

(5.6) |||ah + bh,α|||H ≤ Cαp2h−1η,

|||k1
h|||H ≤

ωp√
ε∞

,

|||k2
h|||H ≤ γ.

Similarly
|||bα,h|||H ≤ Cαηp2h−1,

and �nally ∀(ς, ξ) ∈Wp
h ×Wp

h,

|bα,h(ς, ξ)| ≤ Cαηph−
1
2 ‖ς‖|ξ|S .

One has the following result:

Proposition 5.3 [29] Let α ∈ [0, 1]. For all ϑ ∈Wp
h, it holds

ah(ϑ,ϑ) + bα,h(ϑ,ϑ) = −α|ϑ|2S .

Furthermore, for all ϑ ∈Wp
h, we easily see that

k1
h(ϑ,ϑ) = 0,(5.7)

k2
h(ϑ,ϑ) = − γ

ε0ω2
p

9∑
j=7

‖(ϑ)j‖2.(5.8)

In the following we will need the canonical projectors p : Wp
h → Wp

h : ϑ = (F,G,R, S) →
(F, 0, 0, S), q : Wp

h → Wp
h : ϑ = (F,G,R, S) → (0, G,R, 0), pM : Wp

h → Wp
h : ϑ = (F,G,R, S) →

(F,G, 0, 0), pH : Wp
h →Wp

h : ϑ = (F,G,R, S)→ (0, 0, R, S). One immediately sees that q = id−p.

Proposition 5.4 Let s ∈ {p, q, pM , pH} and d ∈ {ah, b0,h, k1
h}, for all (ϑ,ϑ′) ∈Wp

h×Wp
h, we have

(ϑ, s(ϑ)))H = (s(ϑ), s(ϑ)))H ,

d(ϑ, p(ϑ)) = d(q(ϑ), p(ϑ)),

d(ϑ, q(ϑ)) = d(p(ϑ), q(ϑ)),

d(q(ϑ), p(ϑ′)) + d(p(ϑ′), q(ϑ)) = d(p(ϑ′) + q(ϑ), p(ϑ′) + q(ϑ)).
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As a consequence, for all ϑ ∈Wp
h, we have

d(q(ϑ), p(ϑ)) + d(p(ϑ), q(ϑ)) = d(ϑ,ϑ).

Furthermore, for all (ϑ,ϑ′) ∈Wp
h ×Wp

h, we have

k2
h(ϑ′, p(ϑ)) = 0,

k2
h(ϑ′, q(ϑ)) = k2

h(q(ϑ′), q(ϑ)).

We do not detail the proof since it is straightforward.

We also have the following estimate.

Proposition 5.5 Let d ∈ {ah, b0,h}, for all ϑ ∈Wp
h, we have

|d(ϑ, p(ϑ))| ≤ Ccηp2h−1‖pM (ϑ)‖2H + Cβηp2h−1‖pH(ϑ)‖2H,

with c =
1
√
εµ

and C a generic positive constant. More generally, for all (ϑ,ϑ′) ∈Wp
h ×Wp

h,

|ah(ϑ,ϑ′)| ≤ Ccηp2h−1‖pM (ϑ)‖H‖pM (ϑ′)‖H + Cβηp2h−1‖pH(ϑ)‖H‖pH(ϑ′)‖H,

and for all α ∈ [0, 1],

|bα,h(ϑ,ϑ′)| ≤ Ccηp2h−1‖pM (ϑ)ϑ‖H‖pM (ϑ′)‖H+Cβηp2h−1‖pH(ϑ)‖H‖pH(ϑ′)‖H+Cηαph−
1
2 |ϑ|S‖ϑ′‖H,

and
|k1
h(ϑ,ϑ′)| ≤ ωp√

ε∞

(
‖pM (ϑ)‖H‖pM (ϑ′)‖H + ‖pH(ϑ)‖H‖pH(ϑ′)‖H

)
.

Proof. We only detail how to obtain the �rst inequality since the other inequalities are obtained
similarly.

For all ϑ ∈Wp
h,

|ah(ϑ, p(ϑ))| ≤ c
√
ε‖F‖h

√
µ‖ curl(G)‖h + β

β
√
ε0ωp

‖R‖h
1

√
ε0ωp

‖∇S‖h.

Using Proposition 5.1, we �nd that

|ah(ϑ, p(ϑ))| ≤ Ccηp2h−1
√
ε‖F‖h

√
µ‖G‖h + Cβηp2h−1 β√

ε0ωp
‖R‖h 1√

ε0ωp
‖S‖h

≤ Ccηp2h−1‖pM (ϑ)‖2H + Cβηp2h−1‖pH(ϑ)‖2H.

Combining all the previous propositions, we easily obtain the following result.

Proposition 5.6 One has for all (ϑ,ϑ′) ∈Wp
h ×Wp

h,

|ch,α(ϑ,ϑ′)| ≤
(

2Ccηp2h−1 +
ωp√
ε∞

)
‖pM (ϑ)‖H‖pM (ϑ′)‖H +(

2Cβηp2h−1 +
ωp√
ε∞

+ γ

)
‖pH(ϑ)‖H‖pH(ϑ′)‖H + Cηαph−

1
2 |ϑ|S‖ϑ′‖H.
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All these estimates will serve in proving the stability of the fully discrete schemes that we will
consider.

First, we focus on the semi-discrete stability. To this end, we de�ne the energy of the semi-
discrete problem by

(5.9) Eh =
1

2
(ϑh,ϑh)H, on ]0, T [.

One has

Proposition 5.7 [29] For α ∈ {0, 1},

Eh(t) = Eh(0)− γ

ε0ω2
p

‖Jh‖2 − α|ϑh|2S ,

with ϑh = (Eh, Hh, Jh, Qh).

Proof. This result easily follows from Proposition 5.3, (5.7), (5.8) and the regularity (in time) on
the solution.

Remark 5.8 The previous Proposition means that we are using a semi-discretization that con-
verges and that adds (if α 6= 0) numerical dissipation to the system, (i.e., the term |ϑh|2S). The

dissipation term coming from the continuous setting, i.e., the term − γ

ε0ω2
p

‖Jh‖2 is itself unchanged.

As mentioned in [29], a direct combination of the arguments used in [17] allows to conclude to
the convergence of the semi-discrete schemes, with classical orders (i.e. p if α = 0 and p + 1

2 , if
α = 1). We will not reproduce the proof here.

Last, we can prove that the constraint is preserved at the semi-discrete level.

Proposition 5.9 Let Yph ⊂ H1
0 (Ω) be the space of piecewise continuous polynomials of degree p

with zero trace on the boundary. If ϑh = (Eh, Hh, Jh, Qh) ∈Wp
h is the solution of (5.5), and if at

the initial time,
−〈εEh(0, ·),∇ph〉+ (Qh(0, ·), ph)H〉 = 0,∀ph ∈ Yph,

then for all t ∈ [0, T ],

−〈εEh(t, ·),∇ph〉+ 〈Qh(t, ·), ph〉 = 0,∀ph ∈ Yph,

i.e. one has a weak (and discrete) preservation of the constraint div(εE) +Q = 0.

Proof. Let ph ∈ Yph. Due to the continuity of ph, ∇ph has no tangential jump at the element
interfaces and has zero tangential trace at the boundary of the domain. Now, we consider the weak
formulation (5.5) and choose ϑ′h = (− β2

ε0ω2
p
∇ph, 0, 0, ph), with ph ∈ Yph. One thus has, using the

tangential continuity of ∇ph and ph at interfaces and the zero boundary condition,

−ε β2

ε0ω2
p

〈∂tEh,∇ph〉+
β2

ε0ω2
p

〈∂tQh, ph〉 = − β2

ε0ω2
p

〈Jh,∇ph〉+
β2

ε0ω2
p

〈Jh,∇ph〉

= 0.

This shows that −〈Eh,∇ph〉 + 〈Qh, ph〉 is constant in time. Thus, if it is zero at the initial
time, it will remain zero at all positive time.
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5.2 Time discretization

We will now focus on the time integration scheme. We will discretize in time by using three time
integration schemes: a Leap-frog scheme of order 2 (LF2) and two explicit Runge-Kutta schemes
(RK2 of order 2 and RK4 of order 4). We will review the stability properties of these scheme
in our precise context. In [29], the stability of the LF2 (with α = 0) and RK4 (with α = 1)
schemes were quickly sketched. Proving the stability of these schemes relies on a generalization of
the arguments used in [17], where the focus was put on RK4 schemes. Here, we choose to go more
into details, especially by detailing the stability proofs for LF2 and RK2 and giving explicitly the
stability constant in terms of the physical parameters.

In this prospect, we introduce a uniform subdivision of the time interval [0, T ], with (tn)n∈J0,NK, N ∈

N∗ with time step ∆t =
T

N
.

5.2.1 The Leap-Frog scheme of order 2 (LF2)

The LF2 scheme shall preserve the dissipative properties of the semi-discrete scheme. It writes as

follows: For n ∈ J0, NK, �nd ϑnh = (Enh , H
n+ 1

2

h , J
n+ 1

2

h , Qnh) ∈ Wp
h such that for all i ∈ NΩ and all

(ϕh, ψh, ξh, ζh) ∈Wp
h,

(5.10)
(
ϑn+1
h − ϑnh

∆t
,ϑ′h

)
H

= ah(ϑ̃
n

h,ϑ
′
h) + bα,h(ϑ̃

n

h,ϑ
′
h) + k1

h(ϑ̃
n

h,ϑ
′
h) +

1

2
k2
h(ϑnh + ϑn+1

h ,ϑ′h).

with ϑ̃
n

h = (En+1
h , H

n+ 1
2

h , J
n+ 1

2

h , Qn+1
h ).

Remark 5.10 If α = 0, then the scheme can be easily written in an explicit form. However, if
α 6= 0, the upwind part of the �ux is implicit. Doing so, we loose the �exibility of the locality of
DG method combined with a Leap-frog type approximation. we will therefore only concentrate on
the case of Leap-frog scheme with centered �uxes (i.e. α = 0).

We focus on energy techniques to prove stability. In [12], the stability of a centered DG scheme
with LF2 time integration for Maxwell's equation with absorbing boundary conditions is studied.
Following modi�ed energy technique used in the latter, we could investigate the stability of the
upwind scheme (α = 1) combined to the LF2 time discretization. However, we will not include
this case in the following proofs, since we will not use LF2 scheme with upwind �uxes (see previous
remark).

First, we point out some straightforward properties that will be used in the sequel. One has

(5.11) p(ϑ̃
n

h) = p(ϑn+1
h ),

(5.12) q(ϑ̃
n

h) = q(ϑnh).

We then de�ne the fully discrete energy as:

(5.13) En+ 1
2

h :=
1

2

(
ϑnh, ϑ̃h

n
)
H
.
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We remark that this energy can be rewritten using the projectors p and q as:

(5.14) En+ 1
2

h :=
1

2
(q(ϑnh), q(ϑnh))H +

1

2

(
p(ϑn+1

h ), p(ϑnh)
)
H .

This energy is not necessarily positive, but one has the

Proposition 5.11 Let α = 0. If ∆t
(
Ccηp2h−1 +

ωp√
ε∞

)
< 1 and ∆t

(
Cβηp2h−1 +

ωp√
ε∞

)
< 1,

then the energy is positive de�nite.

Proof. Let i ∈ NΩ. One has

En+ 1
2

h =
1

2

(
ϑnh, ϑ̃h

n
− ϑnh + ϑnh

)
H

=
1

2
(ϑnh,ϑ

n
h)H +

1

2

(
ϑnh, ϑ̃h

n
− ϑnh

)
H
.

Using that ϑ̃h
n
−ϑnh = (En+1

h −Enh , 0, 0, Q
n+1
h −Qnh), we easily see that for all ϑ′h = (F ′, G′, R′, S′) ∈

Wp
h, we have

(5.15)
(
ϑ̃h

n
− ϑnh,ϑ

′
h

)
H

=
(
ϑn+1
h − ϑnh, p(ϑ′h)

)
H ,

with p(ϑ′h) = (F ′, 0, 0, S′)). Then the scheme (5.10) gives:

En+ 1
2

h =
1

2
(ϑnh,ϑ

n
h)H +

∆t

2

[
ah(ϑ̃

n

h, p(ϑnh)) + b0,h(ϑ̃
n

h, p(ϑnh)) + k1
h(ϑ̃

n

h, p(ϑnh)) +
1

2
k2
h(ϑnh + ϑn+1

h , p(ϑnh))

]
=

1

2
(ϑnh,ϑ

n
h)H +

∆t

2

[
ah(q(ϑnh), p(ϑnh)) + b0,h(q(ϑnh), p(ϑnh)) + k1

h(ϑ̃
n

h, p(ϑnh))
]
,

since 1
2k

2
h(ϑnh + ϑn+1

h , p(ϑnh)) = 0.
We furthermore have

k1
h(ϑ̃

n

h, p(ϑnh)) = −(J
n+1/2
h , Enh )h,

so that

|k1
h(ϑ̃

n

h, p(ϑnh))| ≤ ωp√
ε∞

(
1

ε0ω2
p

‖Jn+ 1
2

h ‖2 + ε‖Enh‖2
)
.

Combining this last estimate with estimates of Proposition 5.5, we �nally obtain:

En+ 1
2

h ≥ 1

2
(ϑnh,ϑ

n
h)H −

C

2
η∆tp2h−1

[
c‖pM (V )‖2H + Cβ‖pH(V )‖2H

]
−∆t

2

ωp√
ε∞

(
1

ε0ω2
p

‖Jn+ 1
2

h ‖2 + ε‖Enh‖2
)
.

Thus

En+ 1
2

h ≥ 1

2

[
(1− Ccη∆tp2h−1)µ‖Hn+1/2

h ‖2 + (1− Ccη∆tp2h−1 − ωp√
ε∞

∆t)ε‖Enh‖2

+(1− Cβη∆tp2h−1 − ωp√
ε∞

∆t)
1

εω2
p

‖Jn+1/2
h ‖2 + (1− Cβη∆tp2h−1)

β2

εω2
p

‖Qnh‖2
]
,

which gives the result.
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Remark 5.12 If ωp and β are zero, we recover Maxwell's equations and the classical CFL con-
dition. If β = 0, we recover the so-called Drude model. From the estimate, we see that one has
also to re�ne the time-step accordingly to the plasma frequency ωp, which is physically coherent.
Finally, if all parameters are non-zero, since, physically, the speed of the hydrodynamic wave (β
here) is always less that the speed of light (c here), the most constrained CFL condition remains

the one associated to Maxwell's equations alone (i.e., ∆t
(
Ccηp2h−1 +

ωp√
ε∞

)
< 1).

Proposition 5.13 One has the following energy principle,

(5.16) En+ 1
2

h − En−
1
2

h = − γ

ε0ω2
p

∥∥∥∥∥Jn−1/2
h + J

n+1/2
h

2

∥∥∥∥∥
2

.

Proof. Using the scheme at di�erent times and with di�erent test functions, one obtains(
ϑnh − ϑ

n−1
h

∆t
, q(
ϑnh + ϑn−1

h

2
) +

1

2
p(ϑnh)

)
H

= ah(ϑ̃
n−1

h , q(
ϑnh + ϑn−1

h

2
) +

1

2
p(ϑnh))

+b0,h(ϑ̃
n−1

h , q(
ϑnh + ϑn−1

h

2
) +

1

2
p(ϑnh))

+k1
h(ϑ̃

n−1

h , q(
ϑnh + ϑn−1

h

2
) +

1

2
p(ϑnh))

+
1

2
k2
h(ϑn−1

h + ϑnh, q(
ϑnh + ϑn−1

h

2
) +

1

2
p(ϑnh)),

and

(
ϑn+1
h − ϑnh

∆t
,

1

2
p(ϑnh)

)
H

= ah(ϑ̃
n

h,
1

2
p(ϑnh)) + b0,h(ϑ̃

n

h,
1

2
p(ϑnh)) + k1

h(ϑ̃
n

h,
1

2
p(ϑnh))

+
1

2
k2
h(ϑnh + ϑn+1

h ,
1

2
p(ϑnh)).

Summing the two equations, we obtain for the left hand side

(
ϑnh − ϑ

n−1
h

∆t
, q(
ϑnh + ϑn−1

h

2
) +

p(ϑnh)

2

)
H

+

(
ϑn+1
h − ϑnh

∆t
,
p(ϑnh)

2

)
H

=

(
q(
ϑnh − ϑ

n−1
h

∆t
), q(

ϑnh + ϑn−1
h

2
)

)
H

+

(
p(ϑn+1

h )− p(ϑn−1
h )

∆t
, p(ϑnh)

)
H
.

Using (5.14), we �nd

(5.17)
(
ϑnh − ϑ

n−1
h

∆t
, q(
ϑnh + ϑn−1

h

2
) +

1

2
p(ϑnh)

)
H

+

(
ϑn+1
h − ϑnh

∆t
,

1

2
p(ϑnh)

)
H

= En+1/2
h − En−1/2

h

For the right hand side, let us group similar terms. Let d ∈ {ah, b0,h}, we have

29



d(ϑ̃
n

h,
1

2
p(ϑnh)) + d(ϑ̃

n−1

h , q(
ϑnh + ϑn−1

h

2
) +

1

2
p(ϑnh)) = d(ϑ̃

n

h + ϑ̃
n−1

h ,
1

2
p(ϑnh)) + d(ϑ̃

n−1

h , q(
ϑnh + ϑ̃

n−1

h

2
))

Furthermore, using Proposition 5.5, (5.11) and (5.12),

d(ϑ̃
n

h + ϑ̃
n−1

h ,
1

2
p(ϑnh)) = d(q(

ϑ̃
n
h+ϑ̃

n−1
h

2 ), p(ϑnh))(5.18)

= d(q(
ϑnh+ϑn−1

h

2 ), p(ϑnh))(5.19)

Similarly,

d(ϑ̃
n−1

h , q(
ϑnh + ϑ̃

n−1

h

2
)) = d(p(ϑ̃

n−1

h ), q(
ϑnh+ϑ̃

n−1
h

2 ))(5.20)

= d(p(ϑnh), q(
ϑnh+ϑ̃

n−1
h

2 ))(5.21)

= d(p(ϑnh), q(
ϑnh+ϑn−1

h

2 ))(5.22)

Finally, from Proposition 5.4 and Proposition 5.3, one �nds

d(ϑ̃
n

h,
1

2
p(ϑnh)) + d(ϑ̃

n−1

h , q(
ϑnh + ϑn−1

h

2
) +

1

2
p(ϑnh)) = d(q(

ϑnh+ϑn−1
h

2 ), p(ϑnh)) + d(p(ϑnh), q(
ϑnh+ϑn−1

h

2 ))

= d(p(ϑnh) + q(
ϑnh+ϑn−1

h

2 ), p(ϑnh) + q(
ϑnh+ϑn−1

h

2 ))

= 0.

Moreover, by using Propositions 5.4, (5.7) and (5.8), one gets

k1
h(ϑ̃

n−1

h , q(
ϑnh + ϑn−1

h

2
) +

p(ϑnh)

2
) + k1

h(ϑ̃
n

h,
p(ϑnh))

2
= k1

h(ϑ̃
n−1

h , q(
ϑnh + ϑn−1

h

2
))

+k1
h(ϑ̃

n−1

h + ϑ̃
n

h,
1

2
p(ϑnh))

= k1
h(p(ϑ̃

n−1

h ), q(
ϑnh + ϑn−1

h

2
))

+k1
h(q(

ϑ̃
n−1

h + ϑ̃
n

h

2
), p(ϑnh))

= k1
h(p(ϑnh), q(

ϑnh + ϑn−1
h

2
))

+k1
h(q(

ϑn−1
h + ϑnh

2
), p(ϑnh))

= k1
h(p(ϑnh) + q(

ϑnh + ϑn−1
h

2
), p(ϑnh) + q(

ϑnh + ϑn−1
h

2
))

= 0.
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and

1

2
k2
h(ϑn−1

h + ϑnh, q(
ϑnh + ϑn−1

h

2
) +

1

2
p(ϑnh)) +

1

2
k2
h(ϑnh + ϑn+1

h ,
1

2
p(ϑnh))

= k2
h(
ϑn−1
h + ϑnh

2
, q(
ϑnh + ϑn−1

h

2
))

= k2
h(q(

ϑn−1
h + ϑnh

2
), q(

ϑnh + ϑn−1
h

2
))

= − γ

ε0ω2
p

∥∥∥∥∥Jn−1/2
h + J

n+1/2
h

2

∥∥∥∥∥
2

.

Combining all these equalities, we �nd the result.
Finally, we establish the fully discrete weak constraint preservation property.

Proposition 5.14 If for n ∈ {0, .., N}, ϑn
h = (Enh , H

n+1/2
h , J

n+1/2
h , Qnh) ∈ Wp

h is the solution of
(5.10), and if at the initial time,

−〈εE0
h,∇ph〉+ 〈Q0

h, ph〉 = 0,∀ph ∈ Yph,

then for all n ∈ {0, · · · , N},

−〈εEnh ,∇ph〉+ 〈Qnh, ph〉 = 0,∀ph ∈ Yph,

i.e. one has a weak (and discrete) preservation of the constraint div(εE) +Q = 0.

Proof. The strategy is analogous to the semi-discrete case. Let Yph ⊂ H1
0 (Ω) being the space of

piecewise continuous polynomial of degree p with zero trace on the boundary. Let ph ∈ Yph. Due to
the continuity of ph, ∇ph has no tangential jump at the element interfaces and has zero tangential
trace at the boundary of the domain. Now, we consider the weak formulation (5.10) and choose
ϑ′h = (− β2

ε0ω2
p
∇ph, 0, 0, ph), with ph ∈ Yph. One thus has, ∀ph ∈ Yph, using the tangential continuity

of ∇ph and ph at interfaces and the zero boundary condition,

−ε β2

ε0ω2
p

〈
En+1
h − Enh

∆t
,∇ph〉 +

β2

ε0ω2
p

〈
Qn+1
h −Qnh

∆t
, ph〉

= − β2

ε0ω2
p

〈Jn+1/2
h ,∇ph〉+

β2

ε0ω2
p

〈Jn+1/2
h ,∇ph〉 = 0.

This gives the result using the hypothesis on the initial conditions.

5.2.2 Explicit Runge Kutta schemes of order 2 and 4.

As mentioned above, the use of upwind �uxes in the case of a Leap-frog discretization is ruining
all the advantages and �exibilities of the approach.

The use of upwind �uxes is more appropriate to explicit Runge-Kutta discretization. We focus
on explicit Runge Kutta scheme of order 2 (RK2) and explicit Runge-Kutta scheme of order 4
(RK4). We investigate stability results in this context. Mimicking the strategy of [6] and [17],
one can establish stability results for both RK2 and RK4 1. The situation and properties of the

1stability for RK4 was brie�y envisaged in [29], without detailing the computations
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discrete operators are more general than [6] and [17]. We here choose to present the details of the
computations for RK2 to emphasize the energy technique and, in particular, the resulting CFL
condition (explicit in physical parameters and polynomial order).

Explicit RK2 schemes can be easily re-written in our context. For all n ∈ {1, . . . , N}, �nd
ϑnh ∈Wp

h with (Ln1 ,ϑ
n+1/2
h , Ln2 ) ∈Wp

h ×Wp
h ×Wp

h de�ned as follows: for all ϑ′h ∈Wp
h,(

Ln1 ,ϑ
′
h

)
H = cα,h(ϑnh,ϑ

′
h),(

ϑ
n+1/2
h ,ϑ′h

)
H

=
(
ϑnh,ϑ

′
h

)
H + ∆t

(
Ln1 ,ϑ

′
h

)
H ,(

Ln2 ,ϑ
′
h

)
H = cα,h(ϑ

n+1/2
h ,ϑ′h),

and then for all ϑ′h ∈Wp
h,

(5.23)
(
ϑn+1
h ,ϑ′h

)
H =

(
ϑnh,ϑ

′
h

)
H +

∆t

2

((
Ln1 ,ϑ

′
h

)
H +

(
Ln2 ,ϑ

′
h

)
H

)
.

In other words, for all n ∈ {1, . . . , N}, �nd ϑnh ∈Wp
h with ϑn+1/2

h ∈Wp
h de�ned as follows: for

all ϑ′h ∈Wp
h, (

ϑ
n+1/2
h ,ϑ′h

)
H

=
(
ϑnh,ϑ

′
h

)
H + ∆t

(
cα,h(ϑnh,ϑ

′
h)
)
,(5.24)

(
ϑn+1
h ,ϑ′h

)
H =

1

2

(
ϑnh + ϑ

n+1/2
h ,ϑ′h

)
H

+
∆t

2

(
cα,h(ϑ

n+1/2
h ,ϑ′h)

)
.

In the case of RK schemes, we simply de�ne the fully discrete energy as

(5.25) Enh :=
1

2
(ϑnh,ϑ

n
h)H .

The following results give a stability result under a CFL condition.

Proposition 5.15 The scheme is stable under a 4/3-CFL condition given as υ3 < 0, υ4 < 0,
υ5 < 0, υ1 < 1 and υ2 < 1, with

υ1 := 4∆t3
(

2Ccηp2h−1 +
ωp√
ε∞

)4

,

υ2 := 4∆t3
(

2Cβηp2h−1 +
ωp√
ε∞

+ γ

)4

,

υ3 := α

(
4C2∆t2η2αp2h−1

(
2Ccηp2h−1 +

ωp√
ε∞

)2

+ C2∆t2η2αp2h−1

(
2Cβηp2h−1 +

ωp√
ε∞

+ γ

)2

+C2∆tη2αp2h−1 − 1
)
,

υ4 := C2∆tη2αp2h−1 − 1,

υ5 := 10γ∆t− 1.
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Proof. Testing the �rst equation of (5.24) with ϑnh and the second with 2ϑ
n+1/2
h gives:

(
ϑ
n+1/2
h ,ϑnh

)
H

= (ϑnh,ϑ
n
h)H + ∆tcα,h(ϑn

h ,ϑ
n
h).(

ϑn+1
h , 2ϑ

n+1/2
h

)
H

=
(
ϑnh + ϑ

n+1/2
h ,ϑ

n+1/2
h

)
H

+∆tcα,h(ϑ
n+1/2
h ,ϑ

n+1/2
h ).

Summing the two equations and using that
(
ϑn+1
h , 2ϑ

n+1/2
h

)
H

= ‖ϑn+1
h ‖2H + ‖ϑn+1/2

h ‖2H −

‖ϑn+1
h − ϑn+1/2

h ‖2H, we �nd that

(5.26) ‖ϑn+1
h ‖2H − ‖ϑ

n
h‖2H − ‖ϑ

n+1
h − ϑn+1/2

h ‖2H = ∆tcα,h(ϑn
h ,ϑ

n
h) + ∆tcα,h(ϑ

n+1/2
h ,ϑ

n+1/2
h )

Writing the variation of the energy over one time step, one has an estimate for ‖ϑn+1
h −

ϑ
n+1/2
h ‖2H.
Indeed

(
ϑn+1
h − ϑn+1/2

h ,ϑ′h

)
H

=
1

2

(
ϑ
n+1/2
h − ϑnh,ϑ

′
h

)
H

+
∆t

2
cα,h(ϑ

n+1/2
h ,ϑ′h)−∆tcα,h(ϑnh,ϑ

′
h).

Then using the �rst equation of (5.24), one �nds

(
ϑn+1
h − ϑn+1/2

h ,ϑ′h

)
H

=
∆t

2
cα,h

(
ϑnh,ϑ

′
h

)
+

∆t

2
cα,h(ϑ

n+1/2
h ,ϑ′h)−∆tcα,h(ϑnh,ϑ

′
h).

Thus

(5.27)
(
ϑn+1
h − ϑn+1/2

h ,ϑ′h

)
H

=
∆t

2
cα,h

(
ϑ
n+1/2
h − ϑnh,ϑ

′
h

)
.

Let us de�ne gnh := ϑ
n+1/2
h − ϑnh ∈Wp

h.
One can thus rewrite (5.27) as

(5.28)
(
ϑn+1
h − ϑn+1/2

h ,ϑ′h

)
H

=
∆t

2
cα,h

(
gnh ,ϑ

′
h

)
.

One has

(5.29)
(
gnh ,ϑ

′
h

)
H = ∆tcα,h

(
ϑnh,ϑ

′
h

)
.

Now we use the estimate on cα,h given in proposition 5.6. We obtain,

‖gnh‖2H ≤ ∆t

(
2Ccηp2h−1 +

ωp√
ε∞

)
‖pM (ϑh)‖H‖pM (gnh)‖H +

∆t

(
2Cβηp2h−1 +

ωp√
ε∞

+ γ

)
‖pH(ϑh)‖H‖pH(gnh)‖H + C∆tηαph−

1
2 |ϑh|S‖gnh‖H.
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‖pM (gnh)‖2H ≤ ∆t

(
2Ccηp2h−1 +

ωp√
ε∞

)
‖pM (ϑh)‖H‖pM (gnh)‖H +

+C∆tηαph−
1
2 |ϑh|S‖pM (gnh)‖H.

‖pH(gnh)‖2H ≤ ∆t

(
2Cβηp2h−1 +

ωp√
ε∞

)
‖pH(ϑh)‖H‖pH(gnh)‖H

+C∆tηαph−
1
2 |ϑh|S‖pH(gnh)‖H + γ∆t‖(ϑnh)j∈{7,..,9}‖H.

This gives,

‖gnh‖H ≤ ∆t

(
2Ccηp2h−1 +

ωp√
ε∞

)
‖pM (ϑh)‖H +

∆t

(
2Cβηp2h−1 +

ωp√
ε∞

)
‖pH(ϑh)‖H + C∆tηαph−

1
2 |ϑh|S + γ∆t‖(ϑnh)j∈{7,..,9}‖H,

‖pM (gnh)‖H ≤ ∆t
(

2Ccηp2h−1 +
ωp√
ε∞

)
‖pM (ϑh)‖H +

C∆tηαph−
1
2 |ϑh|S ,

and

‖pH(gnh)‖H ≤ ∆t
(

2Cβηp2h−1 +
ωp√
ε∞

)
‖pH(ϑh)‖H + C∆tηαph−

1
2 |ϑh|S + γ∆t‖(ϑnh)j∈{7,..,9}‖H.

Furthermore,

(5.30)
(
ϑn+1
h − ϑn+1/2

h ,ϑn+1
h − ϑn+1/2

h

)
H

=
∆t

2
cα,h

(
gnh ,ϑ

n+1
h − ϑn+1/2

h

)
.

We thus conclude that

(
ϑn+1
h − ϑn+1/2

h ,ϑn+1
h − ϑn+1/2

h

)
H
≤ ∆t

(
2Ccηp2h−1 +

ωp√
ε∞

)
‖pM (gnh)‖H‖pM (ϑn+1

h − ϑn+1/2
h )‖H +

∆t

(
2Cβηp2h−1 +

ωp√
ε∞

)
‖pH(gnh)‖H‖pH(ϑn+1

h − ϑn+1/2
h )‖H

+C∆tηαph−
1
2 |gnh |S‖ϑ

n+1
h − ϑn+1/2

h ‖H
+γ∆t‖(pH(gnh))j∈{7,..,9}‖H‖pH(ϑn+1

h − ϑn+1/2
h )‖H.

This implies

‖ϑn+1
h −ϑn+1/2

h ‖H ≤ (∆t2
(

2Ccηp2h−1 +
ωp√
ε∞

)2

‖pM (ϑh)‖H+C∆t2ηαph−
1
2

(
2Ccηp2h−1 +

ωp√
ε∞

)
|ϑh|S)

+ (∆t2
(

2Cβηp2h−1 +
ωp√
ε∞

)2

‖pH(ϑh)‖H + C∆t2ηαph−
1
2

(
2Cβηp2h−1 +

ωp√
ε∞

+ γ

)
|ϑh|S)

+ C∆tηαph−
1
2 |gnh |S + γ∆t‖(pH(gnh))j∈{7,..,9}‖H.
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Finally,

‖ϑn+1
h − ϑn+1/2

h ‖2H ≤ 5(∆t4
(

2Ccηp2h−1 +
ωp√
ε∞

)4

‖pM (ϑnh)‖2H

+ 5C2∆t4η2α2p2h−1

(
2Ccηp2h−1 +

ωp√
ε∞

)2

|ϑnh|2S)

+5(∆t4
(

2Cβηp2h−1 +
ωp√
ε∞

+ γ

)4

‖pH(ϑnh)‖2H+C2∆t4η2α2p2h−1

(
2Cβηp2h−1 +

ωp√
ε∞

)2

|ϑnh|2S)

+ C2∆t2η2α2p2h−1|ϑnh|2S + C2∆t2η2α2p2h−1|ϑn+1/2
h |2S + 5γ2∆t2‖(pH(gnh))j∈{7,..,9}‖2H.

En+1
h − Enh ≤ υ1∆t‖pM (ϑnh)‖2H + υ2∆t‖pH(ϑnh)‖2H + υ3∆t|ϑnh|2S + υ4∆t|ϑn+1/2

h |2S

− γ∆tυ5

9∑
i=7

‖(ϑnh)j‖2H − γ∆tυ5

9∑
i=7

‖(ϑn+1/2
h )j‖2H.

with υi, i = 1, . . . , 5 de�ned before. Hence if υ3 < 0, υ4 < 0, υ5 < 0, υ1 < 1 and υ2 < 1, then

(5.31) En+1
h − Enh ≤ ∆tEnh ,

and the conclusion follows using Grönwall's inequality.

Remark 5.16 In the previous Proposition, the dominant CFL condition is a 4/3-CFL condition
(namely v2 < 1) and is independent of the upwinding parameter α.

Finally, we study the fully discrete weak constraint preservation property.

Proposition 5.17 If for n ∈ {0, . . . , N}, ϑn
h = (Enh , H

n
h , J

n
h , Q

n
h) ∈Wp

h is the solution of (5.24)-
(5.25), and if at the initial time,

−〈εE0
h,∇ph〉+ 〈Q0

h, ph〉 = 0,∀ph ∈ Yph,

then for all n ∈ {0, . . . , N},

−〈εEnh ,∇ph〉+ 〈Qnh, ph〉 = 0,∀ph ∈ Yph,

i.e. one has a weak (and discrete) preservation of the constraint div(εE) +Q = 0.

Proof. The strategy is analogous to the semi-discrete case and to the case of Leap frog scheme.
Let Yph ⊂ H1

0 (Ω) being the space of piecewise continuous polynomial of degree p with zero trace
on the boundary. Let ph ∈ Yph. Due to the continuity of ph, ∇ph has no tangential jump at the
element interfaces and has zero tangential trace at the boundary of the domain. Now, we consider
in the weak formulation of the RK2 scheme (5.24)-(5.25) and choose ϑ′h = (− β2

ε0ω2
p
∇ph, 0, 0, ph),

with ph ∈ Yph. One thus has, ∀ph ∈ Yph, using the tangential continuity of ∇ph and ph at interfaces
and the zero boundary condition in (5.24)

−ε β2

ε0ω2
p

〈
E
n+1/2
h − Enh

∆t
,∇ph〉 +

β2

ε0ω2
p

〈
Q
n+1/2
h −Qnh

∆t
, ph〉(5.32)

=
1

2

(
− β2

ε0ω2
p

〈Jnh ,∇ph〉+
β2

ε0ω2
p

〈Jnh ,∇ph〉
)

= 0.
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Using (5.25), we �nd,

− β2ε

ε0ω2
p

〈En+1
h ,∇ph〉+

β2

ε0ω2
p

〈(Qn+1
h , ph〉 = − β2

2ε0ω2
p

〈ε
(
E
n+1/2
h + Enh ,∇ph〉 − 〈Q

n+1/2
h +Qnh, ph〉

)
+

1

2

(
− β2

ε0ω2
p

〈Jn+1/2
h ,∇ph〉+

β2

ε0ω2
p

〈Jn+1/2
h ,∇ph〉

)
= 0.

And thus from (5.32), one deduces that

−ε〈En+1
h ,∇ph〉+ 〈Qn+1

h , ph〉 = −ε〈Enh ,∇ph〉+ 〈Qnh, ph〉.

This gives the result using the hypothesis on the initial conditions.
In the remainder of this paragraph, we brie�y consider the case of the explicit RK4 scheme.
It writes, for all n ∈ {1, . . . , N}, �nd ϑnh ∈Wp

h with (ϑ
n+1/4
h ,ϑ

n+1/2
h ,ϑ

n+3/4
h ) ∈ (Wp

h)3 de�ned
as follows: for all ϑ′h ∈Wp

h,

(
ϑ
n+1/4
h ,ϑ′h

)
H

=
(
ϑnh,ϑ

′
h

)
H + ∆t

(
cα,h(ϑnh,ϑ

′
h)
)
,(5.33) (

ϑ
n+1/2
h ,ϑ′h

)
H

=
1

2

(
ϑnh + ϑ

n+1/4
h ,ϑ′h

)
H

(5.34)

+
∆t

2

(
cα,h(ϑ

n+1/4
h ,ϑ′h)

)
,(

ϑ
n+3/4
h ,ϑ′h

)
H

=
1

3

(
ϑnh + ϑ

n+1/4
h + ϑ

n+1/2
h ,ϑ′h

)
H

(5.35)

+
∆t

3

(
cα,h(ϑ

n+1/2
h ,ϑ′h)

)
,(

ϑn+1
h ,ϑ′h

)
H =

1

4

(
ϑnh + ϑ

n+1/4
h + ϑ

n+1/2
h + ϑ

n+3/4
h ,ϑ′h

)
H

(5.36)

+
∆t

4

(
cα,h(ϑ

n+3/4
h ,ϑ′h)

)
.

(5.37)

We de�ne for n ∈ {0, .., N}, the fully discrete energy as

(5.38) Enh :=
1

2
(ϑnh,ϑ

n
h)H .

Even though not presented in this paper (because the arguments are similar to a combination
of extra long computations of [17] and the strategy adopted here for RK2), one could obtain with
lengthy computations that under a 4/3-CFL condition, the RK4 scheme is stable. Similarly, we
can prove a constraint weak preservation property, since for any (ζh, ph) ∈Wp

h × Yph,

cα,h(ζh, ξh) = 0,

if ξh = (− β2

ε0ω2
p
∇ph, 0, 0, ph).
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5.2.3 Some remarks on convergence estimates

Using the stability results developed in last sections and consistency estimates, one can obtain
convegence results. We choose not to detail the proof here, but on shall obtain an estimate such
as

(5.39) max
n∈{0,...,N}

‖ϑnh − ϑ(tn)‖ ≤ CThmin (s,p)

6 Numerical results

Based on our analysis, we numerically investigate the stability of the given schemes. In this paper,
we concentrate on giving �rst 2D numerical results and postpone 3D results and a more thorough
analysis of the discrete stability properties of the schemes to a future work.

Numerical setting. We consider a 3D setting that is invariant in the z direction (domain and
solution) and we focus on a transverse mode i.e. Hx = Hy = Ez = Jz = 0. As such, the 3D problem
is reduced to a 2D Maxwell Hydrodynamic problem with unknowns (Ex, Ey, Hz, Jx, Jy, Q).

The convergence of the schemes presented in the last section has been previously assessed
numerically, hence we do not reproduce these academic convergence tests (see e.g. [29] for these
results for RK4 and LF2 in particular). Let us mention that the empirically found CFL condition
for LF2 follows the theoretical predictions of the previous section. For Runge-Kutta schemes, one
could numerically obtain the classical CFL condition ∆t . h.

Remark 6.1 This discrepancy between theoretically predicted CFL and e�ective one is due to the
energy technique proof.

We consider the square domain Ω = [0, 1] × [0, 1]. The physical quantities, variables and
unknowns are adimensioned using the speed of light in vacuum c0 = 3e8m.s−1.

In order to test the long time behavior of the numerical solution, we choose several test cases
with di�erent initial conditions U0 ∈ D(A), mesh parameters and order of approximation (P1 to
P4).

Academic constants. We �x the adimensioned physical parameters to unitary values (with
respect to the speed of light in vacuum c0). In other words, εL = 1, ε0 = 8.85e-12F.m−1, µ = 4πe-
7H.m−1 (and c0 = 1√

ε0µ
), ωp = c0, γ = c0 and β = c0.

First, we rely on the theory developed in section 4, especially Lemma 4.2. For k ∈ N∗, we de�ne

(6.1) Uk = ck


Ek

− 1

λkµ
curlEk

−ελkEk −
1

λkµ
λ2
N,kE

k

0


ck 6= 0 is a normalization factor chosen such that

‖Uk‖H = 1,
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k 5 10 15 20 30 40 50 60 70 80

k−2 0.04 0.01 4.4e-3 2.5e-3 1.11e-3 6.25e-4 4e-4 2.77e-4 2.04e-4 1.56e-4
Decay 0.014 0.011 5.59e-3 3.25e-3 1.49e-3 8.34e-4 5.27e-4 3.58e-4 2.567e-4 2.05e-4
rate

Power - −0.33 −1.72 −1.81 −1.97 −2.02 −2.05 −2.11 −2.17 −1.65
decay

rate

Table 1: Numerical exponential rate of decay of the energy for LF2 scheme with centered �uxes
and total adimensioned simulation time T = 1000 (physical time 3 ∗ 10−5s).

k 5 10 15 20 30 40 50 70 80

k−2 0.04 0.01 4.4e-3 2.5e-3 1.11e-3 6.25e-4 4e-4 2.04e-4 1.56e-4
Decay 0.40 0.58 0.60 5.5e-3 3.2e-3 0.18 0.65 2.76 4.86
rate

Power - 0.54 0.11 −16.35 4.39 5.92 5.83 4.28 4.23
decay

rate

Table 2: Numerical exponential rate of decay of the energy for RK2 scheme with upwind �uxes
and total adimensioned simulation time T = 1000 (physical time 3 ∗ 10−5s).

where Ek = (Ekx , E
k
y ).

Ekx : (x, y) 7→ cos(kπL x) sin(kπL y),

Eky : (x, y) 7→ − sin(kπL x) cos(kπL y).

The latter is an eigenvector of AN for the eigenvalue λ2
N,k = 2 (kπ)

2. We also denote λk =

i(εµ)−1/2λN,k + i
√

µ
ε

ε0ω
2
p

2λN,k
− γε0ω

2
pµ

2λ2
N,k

.

Doing so, we expect to observe an exponential decay rate of the energy (i.e. the energy decays
as exp(−νt), with ν the decay rate) proportional to k−2 for k large enough . For LF2 and centered
�uxes, the numerical results con�rm the expected exponential decay. Furthermore, we can have
a numerical estimation of the approximate energy decay rate. We observe that the rate of expo-
nential decay decreases as k increases, with an asymptotic power decay of k−2 that corresponds
to theoretical predictions (see table 1). This is in accordance with the fact that this scheme is
energy preserving (in the sense that it preserves the continuous discrete energy principle at the
discrete level) i.e. the scheme is non-dissipative. On the contrary, for Runge-Kutta schemes with
upwind �uxes, this conclusion does not hold (see table 2). As expected, the introduction of nu-
merical dissipation, due to upwind �uxes, changes the rate of decay. Same conclusions hold for
RK4 scheme with upwind �uxes, other mesh discretization parameters and polynomial orders (we
do not reproduce the detailed results here).

Then for a second type of numerical tests, we propose to use several initial conditions with
various degrees of smoothness. As a simple example of initial condition we choose:

Ex : (x, y) 7→ cos(πx) sin(πy),

Ey : (x, y) 7→ sin(πx) cos(πy),

Hz : (x, y) 7→ cos(πx) sin(πy).

We de�ne Q using the constraint:

Q = −div(εE)(6.2)
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Then we consider several expressions for (Jx, Jy). In particular, we investigate the case of
smooth initial data to initial data that do not belong to D(A). As smooth initial data (S), we
simply choose

JSx : (x, y) 7→ δ cos(πx) sin(πy),

JSy : (x, y) 7→ δ sin(πx) cos(πy),

with δ a given positive constant. Secondly, we also consider a continuous piecewise linear initial
data (CPL).

JCPLx : (x, y) 7→ 1.0, if x ≤ 1/3,

1− 3(x− 1/3), if 1/3 < x < 2/3,

0.0, if x ≥ 2/3,

JCPLy : (x, y) 7→ 1.0, if x < 1/3,

1− 3(x− 1/3), if 1/3 ≤ x < 2/3,

0.0, if x ≥ 2/3.

The results are summarized in �gures 1 and 2. In �gures 1a and 2a, we represent the evolution
over time of the relative energy. In �gures 1b and 2b, we represent the evolution over time
t 7→ log(E(t)/‖U0‖2). In both cases, we observe an exponential decay with saturation due to
discretisation error.

(a) Discrete energy over time (b) Representation of log( E
‖U0‖2

) over time.

Figure 1: Energy plots for smooth initial data with T = 2 ∗ 10−7s, h = 10−2m and ∆t ≈ 10−11s.

In order to test an initial data (NS) that does not belong to D(A), we choose

JNSx : (x, y) 7→ log(
√

(x− υx)2 + (y − υy)2),

JNSy : (x, y) 7→ log(
√

(x− υx)2 + (y − υy)2),

with a given value of (υx, υy) ∈]0, 1[×]0, 1[. Here we choose (υx, υy) = (1
4 ,

1
4 ).

In �gures 3a, 3b and 3c, we represent the evolution over time of respectively the energy, t 7→
tE(t) and t 7→ log(E(t)) in this precise case. We do not observe any exponential convergence, but
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(a) Discrete energy over time (b) Representation of log( E
‖U0‖2

).

Figure 2: Energy plots for continuous and piecewise initial data over time with T = 2 ∗ 10−7s,
h = 10−2m and ∆t ≈ 10−11s.

polynomial decay. We observe that up to a given time T̂ < T the quantity t 7→ tE(t) is bounded.
However, we observe a linear growth after this critical time T̂ . This behavior is due to discretisation
error. Indeed, the discrete energy can be (non optimally) bounded by a sum of two contributions:
‖U‖H and ‖U −Uh‖H. The latter term can be estimated using (5.39). Therefore, for a �xed mesh
size h if t is big enough, the (at least) linear growth will dominate over the stability decay of tE(t).

Physical values of the parameters One could also perform the same numerical experiments
with physical values of the parameters. As typical values, one can use a silver medium model
e.g. εL = 1, ε0 = 8.85e-12F.m−1, µ = 4πe-7H.m−1, ωp = 1.24e16 rad.s−1, γ = 7.4e14Hz and
β = 1.35e06m.s−1. Interestingly, in this case and for all tested initial data, one numerically
observes an exponential decay of −γ. As an example, we represent in Figure 4 the value of the log
of the relative energy v.s. time for smooth initial data. Same plots could be obtained for other
type of initial data (including data of type (6.1)). The curves show a clear exponential decay. In
table 3, we computed the curves' slope for all the test cases and several discretisation parameters.
The results con�rm a decay rather close to exp(−γt) (i.e. a decay rate close to γ). This can be
understood as the physical decay since the polarization current is predominant due the respective
ranges of the physical parameters. Let us point out, that, in particular, in the predicted asymptotic
behavior in Lemma 4.2, the respective ranges of the physical parameters have not yet been taken
into account and could impact the higher order terms.
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