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Abstract. This paper introduces a systematic approach for estimating
the number of solutions of cardinality constraints. A main difficulty of
solutions counting on a specific constraint lies in the fact that it is, in
general, at least as hard as developing the constraint and its propaga-
tors, as it has been shown on alldifferent and gcc constraints. This
paper introduces a probabilistic model to systematically estimate the
number of solutions on a large family of cardinality constraints includ-
ing alldifferent, nvalue, atmost, etc. Our approach is based on their
decomposition into range and roots, and exhibits a general pattern
to derive such estimates based on the edge density of the associated
variable-value graph. Our theoretical result is finally implemented within
the maxSD search heuristic, that aims at exploring first the area where
there are likely more solutions.

Keywords: Cardinality constraints · Counting · Random graphs

1 Introduction

Dealing with a combinatorial problem often leads to the natural question of
computing or estimating its number of solutions. Such a question arises, for
instance, in several works on probabilistic reasoning and machine learning [8,9],
or when exploring the structure of the solution space [17]. Counting solutions has
indeed been an active research topic in Constraint Programming, in particular on
global constraints [13]. Unfortunately, designing an efficient counting algorithm
for a specific constraint is as hard as the constraint development itself. Hence,
solution counting methods require customized counting algorithms for bounding,
or estimating, the number of solutions for each global constraint. We propose
here a systematic method to estimate the number of solutions of most of the
cardinality constraints.
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This article focuses on ten of them: alldifferent, nvalue, atmostNValues,
atleastNValues, occurrence, atmost, atleast, among, uses, disjoint. They
all constrain the number of occurrences of certain values or the number of dif-
ferent values in a solution. They can be mathematically modelled with bipartite
graphs. In [13], the problem of counting solutions for alldifferent and gcc
is transformed into counting matchings in these graphs. Solving such problems
is very hard: they often belong to the #P-complete complexity class. This is
why counting-based search, as presented in [13], are not based on exact counting
but on estimations or upper bounds. In this article, we introduce a probabilistic
approach to compute such an estimation.

In [2], the authors introduce two new global constraints range and roots,
that can be used to specify many cardinality constraints. In other words, for
almost every cardinality constraint, there is an equivalent model using only the
more primitive range and roots constraints (and some arithmetic constraints).
This equivalent model is called the decomposition of the initial cardinality con-
straint. We show how to use the range and roots decomposition for counting
solutions. More precisely, we develop a probabilistic approach to estimate the
number of solutions on a range and on a roots constraint and we derive from it a
systematic method to estimate the number of solutions on many cardinality con-
straints. Compared to [13], we obtain an estimation instead of an upper bound,
and we propose a method that can be generalized to a large set of cardinality
constraints without redesigning a dedicated model.

Outline: The paper is organized as follows. Section 2 gives an introduction to the
range and roots constraints and some materials to understand the associated
bipartite graph model. In Sect. 3, we detail how to count exactly the number
of solutions on range and roots and then we apply a probabilistic model to
develop an estimation of the true number of solutions. In Sect. 4, we give the
range and roots decomposition and an estimation of the number of solutions
for several cardinality constraints, and we synthesize our estimators under a
general formula. In Sect. 5, we experiment our probabilistic estimators within
the counting-based strategy maxSD.

2 Preliminaries : Introduction to range and roots

In all the article, we will use the following notations. Let X = {x1, . . . , xn}, the
set of variables. For each variable xi ∈ X, we note Di its domain, Y =

⋃n
i=1 Di =

{y1, . . . , ym} the union of the domains and D = D1 × . . . × Dn, the Cartesian
product of the domains. We note di = |Di|, the size of the domain of xi. Given
a constraint C on variables X, we write SC(X) the set of solutions of C for X
and we write #C(X) the number of tuples allowed by C for X.

Cardinality constraints restrict the number of occurrences of particular values
taken by set of variables, or the number of values or variables meeting some con-
ditions. Among them, we can list alldifferent, gcc, nvalue, atleast, atmost.
We will come back and define properly these constraints one by one in Sect. 4.



Most of the time, these constraints can be modelled with a bipartite graph, in
which we are looking for some mathematical structures, such as matchings for
example.
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(b) Sub-Value Graph GX′,Y ′

Fig. 1. Value graph and sub-value graph of Examples 1 and 2.

Definition 1 (Value Graph). Let GX,Y = G(X ∪ Y,E), the graph on nodes
X∪Y , with edges E = {(xi, yj) | yj ∈ Di}. GX,Y is a bipartite graph representing
the domain of each variable. There is an edge between xi and yj iff yj ∈ Di.

Example 1. Let X = {x1, x2, x3, x4, x5} with D1 = {1, 2, 4}, D2 = {2, 3}, D3 =
{1, 2, 3, 5}, D4 = {4, 5} and D5 = {2, 4, 5}. We obtain the value graph GX,Y

depicted on Fig. 1a.

We also define the sub-value graph induced by two subsets X ′ ⊆ X and
Y ′ ⊆ Y , as the value graph restricted to the considered subset of nodes.

Definition 2 (Sub-Value Graph induced by subsets of X and Y ). Let
GX′,Y ′ = G(X ′ ∪ Y ′, E), the value graph of X ′ with E = {(xi, yj) | yj ∈ D′

i =
Di ∩Y ′}. GX′,Y ′ is a bipartite graph representing the sub-domain induced by Y ′

of each variable. There is an edge between xi and yj iff yj ∈ D′
i.

We will also note di(Y ′) = |D′
i| the size of the domain of xi restricted to

the values of Y ′. Example 2 illustrates a sub-value graph of the value graph
presented in Example 1.

Example 2. Let X ′ = {x2, x3, x4} ⊆ X and Y ′ = {3, 5} ⊆ Y . the sub-value
graph induced by X ′ and Y ′ is represented in Fig. 1b.

The range and roots constraints [2] are two auxiliary constraints that can
help decomposing a lot of cardinality constraints. In this study, we will use these
decomposition to count solutions on cardinality constraints. As the authors wrote
in [2], “range captures the notion of image of a function and roots captures
the notion of domain”. In this paper, we use alternative definitions for these
constraints, equivalent to those of [2] and better suited to our needs.



Definition 3 (range). Let X ′ ⊆ X and Y ′ ⊆ Y . The constraint range
(X,X ′, Y ′) holds if the values assigned to variables of X ′ covers exactly Y ′

and not more. Formally:

Srange(X,X′,Y ′) = {(v1, . . . , vn) ∈ D | {vi|xi ∈ X ′} = Y ′} (1)

Definition 4 (roots). Let X ′ ⊆ X and Y ′ ⊆ Y . The constraint roots
(X,X ′, Y ′) holds if the variables that are assigned to values of Y ′ covers exactly
X ′ and not more. Formally:

Sroots(X,X′,Y ′) = {(v1, . . . , vn) ∈ D | {xi|vi ∈ Y ′} = X ′} (2)

Example 3. Let’s take the value graph given in Example 1a.

– The tuple (2, 2, 3, 4, 5) is allowed by the constraint range(X, {x1, x2, x3},
{2, 3}).

– The tuple (2, 2, 3, 4, 5) is allowed by the constraint roots(X, {x1, x2, x3},
{2, 3}).

Note that range and roots are not exactly reciprocal because every variable
must be assigned to a value, but a value is not necessarily assigned to a variable.

3 Counting Solutions on the range and roots Constraints

As developed in [13], counting solutions on cardinality constraints requires ded-
icated counting algorithm for each constraint. In this section we are interested
by computing the number of solutions on the range and the roots constraints.
The idea is then to only use the decomposition of cardinality constraints into
these more primitive constraints and to reuse the counting method on range
and roots to count solutions on cardinality constraints.

3.1 Exact Solutions Counting on range and roots

In this subsection, we are interested by exactly computing the number of allowed
tuples for a range constraint and a roots constraint.

Proposition 1. Let X ′ ⊆ X and Y ′ ⊆ Y . We note X ′, the complement of X ′

in X, such that X ′ ∪ X ′ = X and X ′ ∩ X ′ = ∅. Then, the number of tuples
allowed by range(X,X ′, Y ′) is

#range(X,X ′, Y ′) = #range(X ′,X ′, Y ′) ·
∏

xi∈X′

di (3)

Proof. On one side, we must consider every possible assignment for the vari-
ables of X ′ that are not constrained:

∏

xi∈X′
di. And on the other side, we must

count every tuples allowed for variables of X ′, that are constrained, that is
simply #range(X ′,X ′, Y ′). The number of tuples is thus the product of these
quantities. '(



Proposition 1 reduces the problem of counting allowed tuples for every vari-
able in X to only counting tuples for the constrained variables X ′. We thus have
reduced the problem to counting the number of allowed tuples in the case where
every variable and value is constrained.

Proposition 2.

#range(X,X, Y ) =
∏

xi∈X

di −
∑

Y ′!Y

#range(X,X, Y ′) (4)

Proof. Inside GX,Y , we must count every possible assignment of variables of X
such that every value of Y is covered. To do that, we first count the number of
every possible assignment of variables of X in GX,Y (without considering the
range constraint): ∏

xi∈X

di

And then, we withdraw, one by one, the assignment of X such that Y is not
fully covered, that is, for every subset Y ′ ! Y , the solutions of range(X,X, Y ′):

∑

Y ′!Y ′

#range(X,X, Y ′)

Indeed, for two different subsets Y ′
1 *= Y ′

2 ! Y , the sets of allowed tuples
Srange(X,X,Y ′

1 )
and Srange(X,X,Y ′

2 )
are necessarily disjoint: there is a value yj ∈ Y

such that yj ∈ Y ′
1 and yj /∈ Y ′

2 (or yj ∈ Y ′
2 and yj /∈ Y ′

1), so the value yj must be
assigned to one of the variable of X to satisfy range(X,X, Y ′

1) but none of the
variable of X must be assigned to yj to satisfy range(X,X, Y ′

2) (or vice-versa).
A solution of range(X,X, Y ′

1) cannot be a solution of range(X,X, Y ′
2) and vice-

versa. No solution are counted twice in
∑

Y ′!Y
#range(X,X, Y ′). We have:

#range(X,X, Y ) =
∏

xi∈X

di −
∑

Y ′!Y

#range(X,X, Y ′)

'(

Remark 1. Proposition 2 can be used in Proposition 1 and we obtain:

#range(X,X ′, Y ′) =
∏

xi∈X′

di ·




∏

xi∈X′

di(Y ′) −
∑

Y ′′!Y ′

#range(X ′,X ′, Y ′′)





This formulae requires to recursively sum and evaluate terms over a
exponential-size set and is not tractable in practice (we believe that it is a
#P−complete problem). In next subsection, we will give an approximation which
is much faster to compute. We now deal with the roots constraint.



Proposition 3. Let X ′ ⊆ X and Y ′ ⊆ Y . We note X ′, the complement of X ′

in X and Y ′ the complement of Y ′ in Y . Then, the number of tuples allowed by
roots(X,X ′, Y ′) is

#roots(X,X ′, Y ′) =
∏

xi∈X′

di(Y ′) ·
∏

xi∈X′

di(Y ′) (5)

Proof. In order to satisfy roots(X,X ′, Y ′), every variable from X ′ must take a
value in Y ′ and no value from Y ′ must be assigned to a variable from X ′, that
is every variable from X ′ must be assigned to values from Y ′:

–
∏

xi∈X′
di(Y ′) represents the number of ways of assigning every variable of X ′

–
∏

xi∈X′
di(Y ′) represents the number of ways of assigning every variable of X ′

'(

The formula given by Proposition 3 is polynomial to compute. In practice,
the formula depends on the subsets X ′ and Y ′. Applying the Erdos-Renyi model
on roots allows the estimation of #roots(X,X ′, Y ′) using only the sizes of X ′

and Y ′, with a linear complexity.
In Sect. 4, we compose these constraints to count solutions on other cardi-

nality constraints.

3.2 Probabilistic Model Applied to range and roots

This subsection presents a probabilistic model for cardinality constraints based
on the work of Erdős and Renyi In [5]. The idea is to randomize the domain of
the variables. Then, we use this model to get a computable estimation of the
number of solutions on range and roots.

Erdős-Renyi Model Applied to CSP. In [5], Erdős and Renyi studied the
existence and the number of perfect matchings on random graphs. Expressed in
the vocabulary we introduced above, the idea is to randomize the domain of each
variable such that: for all xi ∈ X and for all yj ∈ Y , the event {yj ∈ Di} happens
with a predefined probability p ∈ [0, 1] and all such events are independent:

P ({yj ∈ Di}) = p ∈ [0, 1] (6)

Erdős-Renyi Model Applied to range Constraint. We will study the
expectancy of the number of solutions of a range constraint within these ran-
dom graphs. In the case where every variable of X and every value of Y are
constrained, the expectancy of #range(X,X, Y ) is a function of n,m and p (as
a reminder, |X| = n and |Y | = m). More precisely:

Proposition 4. In the case where every variable of X and every value of Y are
constrained, there exists a coefficient an,m such that:

E (#range(X,X, Y )) = an,m · pn (7)



where E (#range(X,X, Y )) is the expectancy of #range(X,X, Y ) under the
hypothesis of the Erdős-Renyi Model.

Proof. To prove this result, we simply reason with a mathematical induction on
|Y | = m. Let |X| = n ∈ N.

Base Case: Let Y = {y} be a singleton. In this particular case, an instance
range(X,X, Y ) have one allowed tuple, if y is inside every domain Di, and have
zero allowed tuple otherwise. Then,

E (#range(X,X, {y})) = 0 ∗ P ({range(X,X, {y}) have no solution})
+ 1 ∗ P ({range(X,X, {y}) have one solution})

= P ({range(X,X, {y}) have one solution})
= P ({∀xi ∈ X, y ∈ Di})

=
n∏

i=1

P ({y ∈ Di}) ,by hypothesis of independence

= pn

We thus set an,1 = 1, which proves the result.

Inductive Step. We assume that the property is true for all |Y | = k ∈
{1, . . . ,m − 1}: ∀Y, such that 1 ≤ |Y | = k ≤ m − 1,∃an,k ∈ N,

E (#range(X,X, Y )) = an,k · pn.

We want to prove that, under this assumption, for a set Y with |Y | = m,
there exists an,m such that E (#range(X,X, Y )) = an,m · pn

According to Proposition 2, we have:

E (#range(X,X, Y ))

= E
(

∏

xi∈X

di

)
−

∑

Y ′⊂Y

E (#range(X,X, Y ′)) , by linearity of the operator E (.)

= E
(

∏

xi∈X

di

)
−

m−1∑

k=1

(
m

k

)
an,k · pn, by hypothesis of induction.

=
∏

xi∈X

E (di) −
m−1∑

k=1

(
m

k

)
an,k · pn, by hypothesis of independence

= (mp)n −
m−1∑

k=1

(
m

k

)
an,k · pn, because ∀xi ∈ X,E (di) = mp

=

(
mn −

m−1∑

k=1

(
m

k

)
an,k

)
· pn



We have identified the coefficient an,m:

an,m = mn −
m−1∑

k=1

(
m

k

)
an,k (8)

'(

Remarking that
(m
m

)
= 1, we can rewrite 8 as follows:

mn =
m∑

k=1

(
m

k

)
an,k (9)

Also, ∀n ∈ N+, an,1 = 1. These coefficients are referenced as the “triangles
of numbers” in OEIS.1 The coefficients an,m corresponds to the number of pos-
sible surjections from a set of cardinal n into a set of cardinal m.2 There is
a non-recursive formula to compute these coefficients. The following results is
admitted here. An intuition of the proof is that this results is an application of
the inclusion-exclusion principle, see Sect. 1.9. The Twelvefold Way of [18].

Proposition 5. For 0 < m ≤ n,

an,m =
m∑

k=0

(−1)k
(
m

k

)
(m − k)n (10)

Proposition 6 is a property of triangle of numbers and will be used to make
some simplifications for future mathematical developments.

Proposition 6.
an,n = n! (11)

Proof. an,n is the number possible surjections from a set of cardinality n into a
set of cardinality n, which is actually the number of bijections in that specific
case. '(

We can now extend Proposition 4 to the case where the range constraint
only concerns subsets X ′ ⊆ X and Y ′ ⊆ Y :

Proposition 7. Let X ′ ⊆ X and Y ′ ⊆ Y . We note |X ′| = n′ and |Y ′| = m′.

E (#range(X,X ′, Y ′)) = an′,m′ ·mn−n′
· pn (12)

1 https://oeis.org/A019538.
2 an,m is actually equal to m! · S2(n,m), where S2(n,m) is the stirling number of
second kind. More information about it can be found in Sect. 1.9 of [18].

https://oeis.org/A019538


Proof. According to Propositions 1 and 4 and by hypothesis of independence:

E (#range(X,X ′, Y ′)) = E (#range(X ′,X ′, Y ′)) · E




∏

xi∈X′

di





= an′,m′ · pn
′
·

∏

xi∈X′

E (di)

= an′,m′ · pn
′
· (mp)n−n′

= an′,m′ ·mn−n′
· pn

'(

Erdős-Renyi Model Applied to roots Constraint. We study now the
expectancy of the number of solutions of a roots constraint.

Proposition 8. Let X ′ ⊆ X and Y ′ ⊆ Y . We note |X ′| = n′ and |Y ′| = m′.

E (#roots(X,X ′, Y ′)) = m′n′
· (m − m′)n−n′

· pn (13)

Proof. According to Proposition 3 and by hypothesis of independence:

E (#roots(X,X ′, Y ′)) = E
(

∏

xi∈X′

di(Y ′)

)
· E




∏

xi∈X′

di(Y ′)





=
∏

xi∈X′

E (di(Y ′)) ·
∏

xi∈X′

E
(
di(Y ′)

)

= (m′p)n
′
· ((m − m′)p)n−n′

= m′n′
· (m − m′)n−n′

· pn

'(

The parameter p corresponds to the density of edges in the value graph. To
use the estimators in practice, we need to estimate p: we will later set p to the
division of the sum of domains size by the total number of possible edges: n ·m.

4 Generalization to Cardinality Constraints

This section details, in a systematic way, how to count solutions for many cardi-
nality constraints thanks to their range and roots decompositions. Due to space
limitations, only four constraints are given in detail. For the other six constraints
to which our method applies, a synthesis then summarises all the formulae as
well as the general computation pattern. Each subsection first recalls the defi-
nitions of the considered constraint, then details its decomposition as extracted
from [2] and finally provides the formula for the expectancy of its number of
solution in our model.



4.1 alldifferent [16]

Definition 5. A constraint alldifferent(X) is satisfied iff each variable xi ∈
X is instantiated to a value of its domain Di and each value yj ∈ Y is chosen
at most once. We define formally the set of allowed tuples:

Salldifferent(X) = {(v1, . . . , vn) ∈ D | ∀i, j ∈ {1, ..., n}, i *= j ⇔ vi *= vj} (14)

A decomposition of alldifferent with a range constraint is given by the
following:

alldifferent(X) ⇔ range(X,X, Y ′) ∧ |Y ′| = n

From this decomposition, we can deduce a formula for the expectancy of the num-
ber solutions on an alldifferent constraint, within the Erdős-Renyi Model.

Proposition 9.

E (#alldifferent(X)) =
m!

(m − n)!
· pn (15)

Proof. According to the decomposition of alldifferent.

#alldifferent(X) =
∑

Y ′⊆Y, |Y ′|=n|

#range(X,X, Y ′)

Then,

E (#alldifferent(X)) =
∑

Y ′⊆Y, |Y ′|=n|

E (#range(X,X, Y ′))

=
(
m

n

)
· an,n · pn =

m!
(m − n)!

· pn
'(

4.2 nvalue [11]
Definition 6. The constraint nvalue(X,N) holds if exactly N values from Y
are assigned to the variables. Formally:

Snvalue(X,N) = {(v1, . . . , vn) ∈ D| N = |{yj ∈ Y |∃i ∈ {1, . . . , n}, vi = yj}|} (16)

A decomposition of nvalue with a range constraint is given by the following:

nvalue(X,N) ⇔ range(X,X, Y ′) & |Y ′| = N

From this decomposition, we can deduce a formula to estimate solutions on
a nvalue constraint, within the Erdős-Renyi Model.

Proposition 10. Let N ∈ N,

E (#nvalue(X,N)) =
(
m

N

)
· an,N · pn (17)

Proof. The proof is the same as Proposition 9. '(
We can generalize Proposition 9 to the case where N is a variable. The set

of solutions for two different values of N are disjoints, then we can simply sum
this estimates on the domain of N to compute an estimate in the general case.



4.3 among [1]

Definition 7 (among). Let Y ′ ⊆ Y . The constraint among(X,Y ′, N) holds iff
exactly N variables are assigned to value from Y ′.

Samong(X,Y ′,N) = {(v1, . . . , vn)|N = |{xi|vi ∈ Y ′}|}

The decomposition of among is given by the following equivalence:

among(X,Y ′, N) ⇔ roots(X,X ′, Y ′) ∧ |X ′| = N

Proposition 11. Let m′ = |Y ′| and N ∈ N,

E (#among(X,Y ′, N)) =
(
n

N

)
m′N (m − m′)n−N · pn (18)

Proof. According to the decomposition of among, we can write:

#among(X,Y ′, N) =
∑

X′⊆X,|X′|=N

#roots(X,X ′, Y ′)

Indeed, for two different subsets X ′
1,X

′
2 ⊆ X, the sets of solutions of

roots(X,X ′
1, Y

′) and roots(X,X ′
2, Y

′) have an empty intersection, then no
solution is counted twice. And:

E (#among(X,Y ′, N)) =
∑

X′⊆X,|X′|=N

E (#roots(X,X ′, Y ′))

=
∑

X′⊆X,|X′|=N

m′m′
(m − m′)n−|X′| · pn,by Proposition 8

=
(
n

N

)
m′m′

(m − m′)n−N · pn

'(

In the same way as for nvalue, we can generalize Proposition 11 to the case
where N is a variable.

4.4 occurrence [4]

Definition 8 (occurrence). Let y ∈ Y , the constraint occurrence(X, y,N)
holds iff exactly N variables are assigned to value y.

Soccurrence(X,y,N) = {(v1, . . . , vn)|N = |{xi|vi = y}|}

The decomposition of occurrence is given by the following equivalence:

occurrence(X, y,N) ⇔ roots(X,X ′, {y}) ∧ |X ′| = N



Table 1. Counting formulae extracted from range and roots reformulation

Constraint Formula with |X| = n, |X1| = n1, |X2| = n2, |Y | = m and
|Y ′| = m′

alldifferent(X) m!
(m−n)! · p

n

among(X,Y ′, N)
(
n
N

)
m′N (m − m′)n−N · pn

nvalue(X,N)
(
m
N

)
· an,N · pn

atmostNValues(X,N)
∑N

k=1

(
m
k

)
an,k · pn

atleastNValues(X,N)
∑n

k=N

(
m
k

)
an,k · pn

occurrence(X, y,N)
(
n
N

)
(m − 1)n−N · pn

atmost(X, y,N)
∑N

k=1

(
n
k

)
(m − 1)n−k · pn

atleast(X, y,N)
∑n

k=N

(
n
k

)
(m − 1)n−k · pn

uses(X,X1, X2) mn−n1−n2 ·
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Proposition 12. Let N ∈ N,

E (#occurrence(X, y,N)) =
(
n

N

)
(m − 1)n−N · pn (19)

Proof. The proof is the same as Proposition 11 in the case where Y ′ = {y} is a
singleton. '(

Proposition 12 can also be generalized to the case where N is a variable.

4.5 Synthesis

We report the estimators of the number of solutions in Table 1 for several car-
dinality constraints. We observe a pattern in all these formulae: the estimation
of the number of allowed tuples is always pn multiplied by the number of tuples
allowed by the constraint if every domain were equal to the set of values Y (if
the value graph were complete). This remark leads to the following Proposition.

Proposition 13. Let C be a constraint over X with |X| = n, Y be the union
of the domains and p the edge density in the value graph GX,Y , then:

E (#C) = #C∗ · pn (20)

with #C∗ the number of allowed tuples if GX,Y were complete.

Proof. Let SC∗ be the set of allowed tuples if GX,Y were complete. For each
s ∈ SC∗ , let Zs be the random variable such that, Zs = 1 if s is in the set of
allowed tuples SC of C, and Zs = 0 otherwise. A solution s is an instantiation
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Fig. 2. Performances of maxSD ER, maxSD PQZ, dom/wdeg, ibs and abs on 40 hard Latin
Square instances, in number of backtracks (left) and time (right).

of every variable, then, in the Erdős-Renyi Model, P ({Zs = 1}) = E (Zs) = pn.
Then,

E (#C) = E




∑

s∈SC∗

Zs



 =
∑

s∈SC∗

E (Zs) = #C∗ · pn

'(

In Sect. 3, we have shown how to count solutions on a range and a roots
constraints and in Sect. 4, how to use the range and roots/decomposition to
estimate the number of solutions on many cardinality constraints. Proposition 13
highlights a general pattern for such estimates. In Sect. 5, we experiment these
probabilistic estimators within counting-based heuristics on some problems using
cardinality constraints.

5 Experimental Analysis

In this section, we present two problems, on which we have run different heuris-
tics: maxSD [13], dom/wdeg [3], abs (activity-based search) [10] and ibs (impact-
based search) [15]. This benchmark has been chosen by taking the problems
in XSCP, CSPLib, MiniZinc which matched our testing needs: no COP, with
cardinality constraints at the core of the problem but no gcc. Also, the lack of
knowledge on how to use maxSD on problems with several constraints restricts a
lot the practical use of the heuristic. These conditions restricted our benchmark
to Latin Squares and Sports Tournament Scheduling.

maxSD consists in choosing a pair variable/value based on the estimation of
the number of remaining solutions. More precisely, for each constraint, and for
each pair variable/value in this constraint, we compute an estimation of the
number of remaining allowed tuples and we associated with each pair a solu-
tion density. maxSD chooses the pair variable/value that maximizes the solution
density among every constraint.



We actually do not run maxSD as presented in [13], but a slightly different
version. It consists in re-computing the ordering of the variables only when the
product of the domains size have decreased enough, as suggested in [6]. Here, we
set a threshold at 20%. Also, the coefficients an,m, the binomial coefficients and
the factorials are computed in advance. The computation of the approximations
is thus made in linear time in n.

We first introduce the problem and the cardinality constraints that are used
in the model and then compare their efficiency in terms of solving time and
number of required backtracks. The instances and the strategies are implemented
in Choco solver [14] and we run them on a 2.2GHz Intel Core i7 with 2.048GB.

5.1 Latin Square Problem

A Latin Square problem is defined by a n ∗ n grid whose squares each contain
an integer from 1 to n such that each integer appears exactly once per row and
column [12]. The model uses a matrix of integer variables and an alldifferent
constraint for each row and each column. We tested on the 40 hard instances
used in [13] with n = 30 and 42% of holes (corresponding to the phase transition),
generated following [7]. For these instances, we also compare our probabilistic
estimator (maxSD ER) with the estimator that is proposed in [13] (maxSD PQZ)
for alldifferent. We set a time limit to 10min.

Figures 2 represent the percentage of solved instances in function of the
number of required backtracks, and of the solving time. The strategies maxSD
(for both estimators maxSD ER and maxSD PQZ) and abs performed better than
dom/wdeg and ibs. abs solved more instances than the two versions of maxSD,
but required more backtracks. maxSD seems to perform better on the easiest
instances (in term of number of backtracks). maxSD PQZ has slightly better per-
formances than maxSD ER on the medium instances and have very comparable
performances on the hardest ones.

5.2 Sports Tournament Scheduling Problem

This problem is taken from [19] and is presented as follows: the problem is to
schedule a tournament of n teams over n− 1 weeks, with each week divided into
n/2 periods, and each period divided into two slots. A tournament must satisfy
the following three constraints: every team plays once a week; every team plays
at most twice in the same period over the tournament; every team plays every
other team. The first and the third constraint are modeled with an alldifferent
constraint and the second one is modeled with an atmost constraints. We run
this problem with the different settings: n ∈ {6, 8, 10, 12, 14}.

In Table 2, we report the number of backtracks required (and the time
required) to solve the problem for different values of n with four different heuris-
tics. Here maxSD PQZ cannot be used as there is no estimator for atmost in the
previous work of [13]. Consequently, we only focused on our approach maxSD ER.
We fixed a time limit to 5min. We observe that maxSD ER outperforms abs and



dom/wdeg. For n ∈ {6, 8, 10}, maxSD ER and ibs have similar performances but
ibs could not find a solution in less than 5min for n = 12 and n = 14.

Table 2. Number of backtracks (time in s) for different settings of n

n n = 6 n = 8 n = 10 n = 12 n = 14

maxSD ER 60 (0.239) 10 (0.707) 1056 (3.587) 74168 (92.396) 37883 (128.272)

ibs 3 (0.172) 214 (0.648) 1232 (1.865) TO TO

abs 101 (0.077) 3081 (0.692) 246767 (24.207) TO TO

dom/wdeg 89380 (3.829) TO TO TO TO

We have shown that our probabilistic estimator for alldifferent gives very
comparable result than the estimator given in [13] on the Latin Square instances.
Also our estimators within maxSD ER gives better results than ibs, abs and
dom/wdeg on the Sport Tournament Scheduling problem.

6 Conclusion

In this paper, we have presented a method to estimate the number of solutions of
the range and roots constraints with a probabilistic Erdős-Renyi Model. We can
estimate the number of solutions of ten cardinality constraints using their range
and roots decompositions. We detailed our method on alldifferent, nvalue,
among and occurrence and we report our estimators with atmostNValues,
atleastNValues, atmost, atleast, uses and disjoint. We highlighted a gen-
eral formula to compute such an estimation on cardinality constraints. We have
implemented the heuristic maxSD ER with these new probabilistic estimators and
compare their efficiency to dom/wdeg, abs, and ibs.

We think that the main asset of this approach is its systematic nature. We
have shown here an application of counting solutions for counting based search.
Such an approach could also be used, for example, for uniform random instances
generation, probabilistic reasoning or search space structure analysis.

We did not study the gcc constraint in this article, as its decomposition
involves several non-disjoint subsets of the variables. Further research includes
extending our approach to the case where several range and roots constraints
may apply to a common set of variables. This will lead us to estimators of
the number of solutions for conjunctions of cardinality constraints, or gcc con-
straints.

References

1. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Com-
put. Modell. 20(12), 97–123 (1994). https://doi.org/10.1016/0895-7177(94)90127-
9. http://www.sciencedirect.com/science/article/pii/0895717794901279

https://doi.org/10.1016/0895-7177(94)90127-9
https://doi.org/10.1016/0895-7177(94)90127-9
http://www.sciencedirect.com/science/article/pii/0895717794901279


2. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Range and roots: two
common patterns for specifying and propagating counting and occurrence con-
straints. Artif. Intell. 173(11), 1054–1078 (2009). https://doi.org/10.1016/j.artint.
2009.03.001

3. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
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