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Hyperquaternions being defined as a tensor product of quaternion algebras (or a subalgebra thereof), they constitute Clifford algebras endowed with an associative exterior product providing an efficient mathematical formalism for differential geometry. The paper presents a hyperquaternion formulation of pseudo-euclidean rotations and the Poincaré groups in n dimensions (via dual hyperquaternions). A canonical decomposition of these groups is developed as an extension of an euclidean formalism and illustrated by a 5D example. Potential applications include in particular, moving reference frames and machine learning.

Introduction

Clifford algebras allow an excellent representation of pseudo-euclidean rotations which are important symmetry groups of physics [START_REF] Ungar | Beyond Pseudo-Rotations in Pseudo-Euclidean Spaces[END_REF][START_REF] Ferreira | Complex Boosts: A Hermitian Clifford Algebra Approach[END_REF][START_REF] Lounesto | Clifford Algebras and Spinors[END_REF][START_REF] Crumeyrolle | Orthogonal and Symplectic Clifford Algebras: Spinor Structures[END_REF]. A decomposition of these groups into orthogonal, commuting planar rotations is called a canonical decomposition. Various canonical decompositions have been developed which deal with either specific rotations or dimensions and are often expressed in terms of matrices [START_REF] Perez-Gracia | On Cayley's Factorization of 4D Rotations and Applications[END_REF][START_REF] Richard | Decomposition of nD-rotations: Classification, properties and algorithm[END_REF]. In a recent paper, we have introduced a hyperquaternion formulation of Clifford algebras and applied them to the unitary and unitary symplectic groups [START_REF] Girard | Hyperquaternions: A New Tool for Physics[END_REF]. Here, we consider pseudo-euclidean rotations and the Poincaré groups in n dimensions (via dual hyperquaternions). A canonical decomposition of these groups is developed within that framework as an extension of an euclidean formalism introduced by Moore [START_REF] Moore | Hyperquaternions[END_REF][START_REF] Moore | Rotations in Hyperspace[END_REF]. After a short presentation of hyperquaternions and multivectors, we derive the pseudo-euclidean rotations and the canonical decomposition. Then we go on to the Poincaré groups and a 5D example. Potential applications are moving reference frames and machine learning [START_REF] Zhu | Changjian Chen Quaternion Convolutional Neural Networks[END_REF] Table 1. Biquaternion Multivector Structure

1 i = e3e2 j = e1e3 k = e2e1 I = e1e2e3 Ii = e1 Ij = e2 Ik = e3
2 Background: Quaternions, Hyperquaternions and Multivectors

In this section, we briefly introduce quaternions, hyperquaternions and multivectors [START_REF] Girard | Hyperquaternions: A New Tool for Physics[END_REF][START_REF] Girard | Differential Geometry Revisited by Biquaternion Clifford Algebra[END_REF][START_REF] Girard | Quaternions, Clifford Algebras and Relativistic Physics[END_REF][START_REF] Girard | Algèbre de Clifford et Physique relativiste[END_REF][START_REF] Girard | Einstein's equations and Clifford algebra[END_REF][START_REF] Girard | The quaternion group and modern physics[END_REF]. The quaternion algebra H which contains R and C as particular cases is constituted by quaternions

a = a 1 + a 2 i + a 3 j + a 4 k (a i ∈ R) (1) 
where i, j, k multiply according to

i 2 = j 2 = k 2 = ijk = -1, ij = -ji = k, etc.. (2) 
The product of two quaternions a, b is given by

ab = (a 1 b 1 -a 2 b 2 -a 3 b 3 -a 4 b 4 ) + (a 1 b 2 + a 2 b 1 + a 3 b 4 -a 4 b 3 ) i (3) + (a 1 b 3 + a 3 b 1 + a 4 b 2 -a 2 b 4 ) j + (a 1 b 4 + a 4 b 1 + a 2 b 3 -a 3 b 2 ) k. (4) 
The conjugate of a quaternion is a c = a 1 -a 2 i -a 3 j -a 4 k with

aa c = a 2 1 + a 2 2 + a 2 3 + a 2 4 , (ab) c = b c a c (5) 
The hyperquaternion algebra (over R) is defined as the tensor product of quaternion algebras (or a subalgebra thereof). Examples of hyperquaternion algebras are the quaternions H, tetraquaternions H ⊗ H and so on H ⊗ H⊗...⊗H; subalgebras are the complex numbers C, biquaternions H ⊗ C, Dirac algebra H⊗H ⊗ C, etc.. Calling (i, j, k) the first quaternionic system, (I, J, K) the second one and (l, m, n) the third one, all systems commuting with each other, one has

i ⊗ i ⊗ i = iIl, i ⊗ j ⊗ k = iJn, etc. (6) 
which uniquely defines the multiplication. Hyperquaternions having n generators e i such that e i e j + e j e i = 0 (i = j), e 2 i = ±1 constitute Clifford algebras C n . The choice of the generators entails a multivector structure as shown, in the case of biquaternions, in Table 1. The 2 n elements of the algebra are composed of scalars, vectors e i , bivectors e i e j , trivectors e i e j e k etc. yielding respectively the multivector spaces V 0 , V 1 , V 2 , V 3 , ...V n . C + is the subalgebra constituted by products of an even number of e i , C -is the rest of the algebra. The multivector structure allows to define basic operations like conjugation, duality and the interior and exterior products.

Considering a general element A of the algebra, the conjugate A c is obtained by replacing the e i by their opposite -e i and reversing the order of the elements

(A c ) c = A, (AB) c = (B c ) (A c ) . (7) 
The dual of A is A * = i d A where i d = e 1 ∧ e 2 ... ∧ e n (to be defined below) and the commutator of two hyperquaternions is

[A, B] = 1 2 (AB -BA) . (8) 
The interior and exterior products of two vectors a, b are obtained as follows.

From the identity 2ab

= λλ -1 [(ab + ba) + (ab -ba)] (9) 
where λ = ±1 is a given coefficient (allowing to eventually change the sign of the metric), one defines

2a.b = λ -1 (ab + ba) , 2a ∧ b = λ -1 (ab -ba) (10) 
which are respectively a scalar and a bivector. A multivector

A p = a 1 ∧a 2 ∧...∧a p (2 ≤ p < n)
where a p are vectors, is then defined by recurrence

2a.A p = λ -p [aA p -(-1) p A p a] ∈ V p-1 (11) 
2a

∧ A p = λ -p [aA 2 + (-1) p A 2 a] ∈ V p+1 (12) 
By definition, we take

A p .a ≡ (-1) p-1 a.A p , A p ∧ a ≡ (-1) p a ∧ A p . (13) 
An important property of the exterior product is its associativity.

Interior and exterior products between multivectors are defined by

A p ∧ B q = a 1 ∧ (a 2 ∧ ... ∧ a p ∧ B q ) (14) A p .B q = (a 1 ∧ ... ∧ a p-1 ) . (a p .B q ) , (p ≤ q) (15) 
with A p .B q = (-1) p(q+1) B q .A p [START_REF] Casanova | L'algèbre vectorielle[END_REF]. In particular, we have the following useful formulas where Bi are bivectors and

V p [A] the multivector part V p of A B 1 B 2 = B 1 .B 2 + B 1 ∧ B 2 + [B 1 , B 2 ] ( 16 
)
B 1 ∧ B 2 = V 4 [B 1 B 2 ] ( 17 
)
B 1 ∧ B 2 ∧ B 3 = V 6 [B 1 (B 2 ∧ B 3 )] (18) B 1 . (B 2 ∧ B 3 ) = V 2 [B 1 (B 2 ∧ B 3 )] (19) (B 1 ∧ B 2 ) . (B 3 ∧ B 4 ∧ B 5 ) = V 2 [(B 1 ∧ B 2 ) (B 3 ∧ B 4 ∧ B 5 )] . (20) 
Hyperquaternions yield all real, complex and quaternionic square matrices as well as the transposition, adjunction and transpose quaternion conjugate via a hyperconjugation defined as H c ⊗H c ⊗...⊗H c as indicated in Table 2.

Table 2. Hyperquaternions and matrices

H ⊗ H m(4, R) Hc⊗H c [m(4, R)] t H ⊗ H ⊗ C m(4, C) Hc⊗H c ⊗C c [m(4, C)] † H ⊗ H ⊗ H m(4, H) Hc⊗H c ⊗H c [m(4, H)] t c . (21) 
3 Pseudo-Orthogonal Rotations

In this section, we derive a hyperquaternion formulation of pseudo-euclidean rotations and develop a canonical decomposition. Historically, the formula of n dimensional euclidean rotations x = axa -1 (a ∈ C + n ) was given by Lipschitz [START_REF] Lipschitz | Principes d'un calcul algébrique qui contient comme espèces particulières le calcul des quantités imaginaires et des quaternions[END_REF] and Moore developed a canonical decomposition thereof [START_REF] Moore | Hyperquaternions[END_REF][START_REF] Moore | Rotations in Hyperspace[END_REF]. In this section we introduce, as an extension of Moore's method, within the hyperquaternion Clifford algebra framework, a canonical decomposition of pseudo-euclidean rotations and the Poincaré groups. After a brief review of the basic definitions and the Cartan theorem, we develop the canonical decomposition.

Definitions and Theorem

Let C p,q be a hyperquaternion algebra having n = p + q generators e i and the quadratic form

x.y = x 1 y 1 + ... + x p y p -(x p+1 y p+1 ... -x p+q y p+q ) (22) = λ -1 (xy + yx) /2 (23) 
where x, y are vectors (x = x i e i ) . A vector x is timelike if x.x > 0, spacelike if x.x < 0 and isotropic if x.x = 0. An orthogonal symmetry with respect to a plane going through the origin and perpendicular to a unit vector a a 2 = ±1 is given by [START_REF] Girard | Quaternions, Clifford Algebras and Relativistic Physics[END_REF][START_REF] Girard | Algèbre de Clifford et Physique relativiste[END_REF] x = ±axa (24)

with x x = (±axa) (±axa) = xx.

Definition 1. The pseudo-orthogonal group O(p, q) is the group of linear operators which leave invariant the form x • y.

Theorem 1. Every rotation of O(p, q) is the product of an even number 2m ≤ n of symmetries.

Definition 2. The special orthogonal group SO + (p, q) is constituted by rotations which preserve the orientation of the space of positive norm vectors and the space of negative norm vectors.

A rotation of SO + (p, q) can thus be expressed as

x = axa c (aa c = 1) (25) 
with a = a 1 a 2 ...a 2m , ∈ C + , where a i are unit vectors (with an even number of timelike and spacelike vectors). Developing the product (with λ = 1)

a i a j = a i .a j + a i ∧ a j (26) 
one sees that it contains a simple plane B = a i ∧ a j such that B 2 = B.B+ B ∧ B is a scalar since B ∧ B = 0. Hence, a rotation involves at most m ≤ n/2 simple planes. A canonical decomposition of rotations is obtained by choosing these simple planes to be orthogonal.

Canonical Decomposition

A rotation of SO + (p, q) can be decomposed as

a = e Φ 1 2 B1 e Φ 2 2 B2 ...e Φm 2 Bm (aa c = 1) (27) 
where B i are m simple orthogonal commuting planes such that

B 2 i = ±1 together for i = j B i .B j = 0, B i B j = B j B i , B i B j = B i ∧ B j ; (28) 
Φ i are the angles of rotation within the planes B i . According to whether

B 2 i = -1 or B 2 i = 1, one has respectively e Φ i 2 Bi = cos Φ i 2 + sin Φ i 2 B i , e Φ i 2 Bi = cosh Φ i 2 + sinh Φ i 2 B i . ( 29 
)
The rotation can be developed as

a = S (1 + b 1 B 1 ) (1 + b 2 B 2 ) ... (1 + b m B m ) ( 30 
)
with b i = tan Φi 2 (or tanh Φi 2 ). Since aa c = 1 one has

S 2 1 + b 2 1 1 -b 2 2 1 -b 2 3 = 1 (31) S = 1 (1 ± b 2 1 ) ... (1 ± b 2 m ) (32)
which shows that S is determined by the b i . Writing

B = b 1 B 1 + b 2 B 2 + b 3 B 3 (33)
one can express a as

a = S 1 + B + B ∧ B 2!S 2 + ... B ∧ B ∧ B ∧ ... (m terms) m!S m (34)
which shows that the bivector B determines completely the rotation. If the scalar is nil, for example if

(Φ 1 = ±π, B 2 1 = -1), then a is proportional to B 1 a = B 1 e Φ 2 2 B2 e Φ 3 2 B3 ; ( 35 
)
one then computes B -1 1 a and comes back to the general expression to evaluate the remaining b i and B i .

To determine the b i and B i , one makes a change of variable

X i = b i B i , x i = X 2 i = ±b 2
i and considers the linear system of equations in X i [9]

P 1 = B = m i=1 X i ( 36 
)
P 2 = (B ∧ B) .B = 2 m i,j=1 X i x j (i = j) (37) 
P 3 = (B ∧ B ∧ B) . (B ∧ B) = 3!2! m i,j,k=1 X i x j x k (i = j, j < k) (38) ...... (39) 
P m = (B ∧ B ∧ ...m factors) . (B ∧ B... (m -1) factors) (40) = m! (m -1)! m i=1 x 1 x 2 ...x i-1 x i+1 ...x m X i . (41) 
The determinant ∆ is the product

∆ = m! [(m -1)!] 2 [(m -2)!] 2 ...1 m i,j=1 (x i -x j ) (i = j, i < j) . (42) 
If ∆ = 0, one obtains the bivectors X i as a function of P m and x i . To determine the x i , one writes the equations

S 1 = P 1 .P 1 = m i=1 x i (43) 
S 2 = P 2 .P 1 = 2! m i,j=1 x i x j (i = j) (44) 
S 3 = P 3 .P 1 = (3!) 2 m i,j,k=1 x i x j x k (i = j, j < k) (45) 
......

S m = P m .P 1 = (m!) 2 (x 1 x 2 ...x m ) . (46) 
The solutions yield

x i = ±b 2 i , thus one obtains b i and B i b i = |x i |, B i = X i b i . (48) 
If ∆ = 0, the equations (36-41) are not independent, the B bivector can nevertheless be decomposed in m mutually orthogonal simple planes but this decomposition is not unique.

4 Poincaré group in n dimensions (via dual hyperquaternions)

Much of physics being covariant with respect to the 4D Poincaré group, we provide here a hyperquaternion representation of the nD Poincaré groups in terms of dual hyperquaternions. Thereby one comes back to a (n + 1)D rotation which one can be decomposed canonically. The procedure is illustrated by a 5D case (for example a color image with 2 spatial and 3 color dimensions) which might be of interest in machine learning [START_REF] Zhu | Changjian Chen Quaternion Convolutional Neural Networks[END_REF]).

General formalism

The Poincaré group of the pseudo-euclidean space associated with the Clifford algebra C p,q (n = p + q) is constituted by the isometries of the metric

ds 2 = dx 2 1 + ... + dx 2 p -dx 2 p+1 + ... + dx 2 p+q . (49) 
It includes the rotations SO + (p, q), translations and reflections (time or spacelike). The reflections having already been dealt with above, we shall focus on the rotations and translations. Consider a hyperquaternion algebra H ⊗ H...⊗H (or a subalgebra thereof) with n + 1 generators e 1 , e 2 , ...e n , e n+1 and let X be a dual vector such that

X = e n+1 + εx (50) 
where x belongs to the vector space V 1 with x = n i=1 e i x i (x i ∈ R) and ε 2 = 0 (ε commuting with e i ) . An nD hyperbolic rotation in V 1 leaves the last variable unchanged. Hence,

X = aXa c = e n+1 + εx (51) 
with x = axa c , x x c = xx c , aa c = 1. A translation in V 1 can be expressed as

X = bXb c (52) with b = e εen+1 t 2 = 1 + εe n+1 t 2 , (t = n i=1 e i t i , t i ∈ R) (53) 
and bb c = 1. Developing Eq. ( 52), one obtains, assuming e 2 n+1 = -1

X = 1 + εe n+1 t 2 (e n+1 + εx) 1 -εe n+1 t 2 (54) = e n+1 + εx -εe n+1 e n+1 t 2 -εe n+1 e n+1 t 2 (55) = e n+1 + ε (x + t) (56) 
which is a translation on the variables 1...n (if e 2 n+1 = 1, one simply takes b = e ε t 2 en+1 ). A combination of an nD rotation and translation gives with f = ab (or ba)

X = f Xf c f f c = 1, f ∈ C + (57) 
which can be viewed as a a particular (n + 1) D rotation. One thus obtains a hyperquaternion representation of the Poincaré groups, distinct from the matrix one. A canonical decomposition leads to simple dual planes as will be illustrated in the following example.

Example: 5D Poincaré group

As application consider a 5D-space (for example a 2D color image) imbedded in the 6D hyperquaternion algebra H⊗H⊗H having six generators (see Appendix) (61) with the same values of Φ 1 , Φ 2 as above and the following simple commuting orthogonal dual planes B 1 , B 2 , X 3

B 1 = 1 √ 2 I (m + n) + ε 1 √ 2 √ 3 2 K (m + n) -iJ (62) 
B 2 = Jl + 2εi 2 √ 3 I -Kl (63) 
X 3 = ε 2 iK (-m + n) . (64) 
with (B 1 ) 2 = (B 2 ) 2 = 1, (X 3 ) 2 = 0.

Conclusion

The paper has given a hyperquaternion representation of pseudo-euclidean rotations and the Poincaré groups in n dimensions, distinct from the matrix one.

A canonical decomposition of these groups was introduced, as an extension of an euclidean formalism, within a hyperquaternion Clifford algebra framework and illustrated by a 5D example. Potential geometric applications include in particular, moving reference frames and machine learning.

e 1 = 2 2 2 3 (= b 1 ) , tanh Φ2 2 = √ 3 2

 12213 kI, e 2 = kJ, e 3 = kKl, e 4 = kKm, e 5 = kKn, e 6 = j (58) with the generic vector X = e 6 + εx (x = 5 i=1 e i x i ). The transformation X = f Xf c with f = e Φ Jl e εi(2I+Kn) e (= b 2 ) is a 5D-Poincaré transform. Applying the canonical decomposition presented above, one obtains
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