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INTRODUCTORY PARAGRAPH 

Trillions of microorganisms inhabit the human gut and are regarded as potential key factors 

for health1,2. Characteristics such as diet, lifestyle or genetics can shape the composition of the 

gut microbiota2–6 and are usually shared by individuals from comparable ethnic origin. So far, 

most studies assessing how ethnicity relates to the intestinal microbiota compared small 

groups living at separate geographical locations7–10. 

Here we show, using fecal 16S rRNA gene sequencing in 2084 participants of the HELIUS 

study11,12, that individuals living in the same city tend to share similar gut microbiota 

characteristics with others of their ethnic background. Ethnicity contributed to explain the 

inter-individual dissimilarities in gut microbiota composition, with 3 main poles primarily 

characterized by OTUs classified as Prevotella (Moroccans/Turks/Ghanaians), Bacteroides 

(African Surinamese/ South-Asian Surinamese) and Clostridiales (Dutch). The Dutch 

exhibited the greatest gut microbiota alpha-diversity and the South-Asian Surinamese the 

smallest, with corresponding enrichment/depletion in numerous OTUs. Ethnic differences in 

alpha-diversity and inter-individual dissimilarities were independent of metabolic health and 

only partly explained by ethnic-related characteristics including sociodemographics, lifestyle 

or diet. Hence, the ethnic origin of individuals may be an important factor to consider in 

microbiome research and its potential future applications in ethnic-diverse societies. 
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MAIN 

The gut microbiota composition is unique to every individual but shaped by common factors 

including diet, lifestyle, medication, early-life determinants, environment and genetics2–5, 

most of these likely influenced by ethnicity. To date, variations in gut microbiota composition 

across ethnicities were observed in small groups, mostly comparing individuals living in 

different geographical areas with marked lifestyle differences7,13,14. We therefore aimed to 

depict the fecal microbiota composition in individuals with varied ethnic backgrounds but 

living in the same city. This has not previously been studied in such a large cohort of 

adults7,8,10. 

The HELIUS study enrolled ~25,000 adults from the six largest ethnic groups living in 

Amsterdam, NL12. We included 2084 participants who donated a feces sample at inclusion: 

439 Dutch, 367 Ghanaians, 280 Moroccans, 197 Turks, 443 African Surinamese and 358 

South-Asian Surinamese (Methods, Supplementary Table 1). The fecal microbiota 

composition was profiled by sequencing the 16S rRNA gene, V4 region (Methods). 

We found that ethnicity significantly contributed to the inter-individual dissimilarities in 

OTU-level gut microbiota composition (beta-diversity; Bray-Curtis index, PERMANOVA, 

P=0.001). Main variations were visualized using principal coordinate analysis (PCoA) 

(Figure 1). Although no clear separation was observed, individuals sharing the same ethnicity 

tended to group together, suggesting that they shared a more similar gut microbiota. In this 

respect, Dutch, South-Asian Surinamese and Moroccans were the most discriminant groups 

(three main poles), while Ghanaians appeared more spread over the graph, probably resulting 

from similarities with Moroccans/Turks or African Surinamese, likely echoing similarities in 

diet and ancestries (Supplementary Figure 1). 

Similarly, gut microbiota alpha-diversity differed between ethnic groups (ANOVA, richness: 

R²=0.19, Shannon index: R²=0.13, Faith’s PD: R²=0.17, all P<2.2x10-16, Supplementary 
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Table 3A) and was greatest in the Dutch and smallest in the South-Asian Surinamese, while 

Ghanaians, Turks and African Surinamese ranked in between (Figure 2). Moroccans 

exhibited high richness and phylogenetic diversity but an uneven distribution of OTUs 

(intermediate Shannon index). 

Analyses of features characterizing the gut microbiota across ethnicities showed that 

Firmicutes was the most abundant phylum in all groups, followed by Bacteroidetes, 

Actinobacteria and Proteobacteria. Firmicutes and Bacteroidetes were enriched and depleted, 

respectively, in the Dutch, while Actinobacteria was enriched in the South-Asian Surinamese 

(Supplementary Table 2C). Prevotella, Faecalibacterium and Bacteroides were the 

dominant genera overall (Supplementary Figure 3, Supplementary Table 2B.1-2). 

Bacteroides and Prevotella were respectively enriched and depleted in Surinamese, while we 

observed the reverse in Moroccans and Turks, and comparable proportions in the Dutch. In 

line, the top two contributive OTUs to inter-individual dissimilarities (Figure 1, 

Supplementary Table 2A.1), Otu1_Prevotella copri (R²=0.23) and Otu5_Bacteroides 

(R²=0.11), exhibited clear gradients in opposite directions (Supplementary Figure 4). 

Overall, 21 OTUs were shared by more than 95% of individuals (“core”), irrespective of their 

ethnicities. These OTUs pertained to 10 genera previously identified as “core”5 and support 

the idea of a shared and conserved gut microbiota for all individuals. Nevertheless, when 

defined separately for each ethnic group, the 95% core OTUs exhibited ethnic-specific 

profiles (Figure 3).  

Ethnicity was a significant factor in the variation of the relative abundance of 559/744 OTUs 

(Kruskal-Wallis tests, Bonferroni correction, P<6.7x10-5). Consistent with observations made 

for dissimilarities and alpha-diversity, Dutch, Moroccans and South-Asian Surinamese 

exhibited more differentially abundant OTUs (Wilcoxon-Mann-Whitney tests, Bonferroni 

correction, P<3.2x10-6; Supplementary Table 2A.1-2), with a majority of enriched OTUs in 
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Dutch (266/287) and Moroccans (142/185), and of depleted OTUs in South-Asian Surinamese 

(189/215). 

We then explored several characteristics potentially underlying the ethnicity-gut microbiota 

associations. With a primary focus on diet, we used detailed information collected through 

food frequency questionnaires on ~50% participants (n=1032), except Ghanaians 

(Supplementary Table 1B, Supplementary Figure 5), and derived four dietary patterns 

(DPs) from unconstrained principal component analysis. Participants adherence to three of 

these patterns related to ethnicity: DP1-Moroccans/Turks (e.g. red meat, olive oil, fast foods, 

sweets), DP2-Surinamese (e.g. chicken, rice/noodles, sugary drinks), DP4-Dutch (e.g. 

processed meat, coffee, alcohol), while adherence to DP3, a “prudent/healthy” pattern (e.g. 

fish, fruits, vegetables, legumes), was similarly distributed across ethnicities (Supplementary 

Table 5A-B-C). Gut microbiota alpha-diversity was higher with higher scores for DP1 and 4 

(univariate ANOVA), and DP3 (ethnicity-adjusted ANOVA), and lower with higher scores 

for DP2 (univariate and ethnicity-adjusted ANOVA). All patterns were determinants of gut 

microbiota beta-diversity, with significant but weakened contributions when ethnicity-

adjusted (PERMANOVA, Supplementary Table 3B). Specifically, the most representative 

DP (DP with the highest score across the 4 DPs) resulted in similar groupings as ethnicity on 

the PCoA plot (Supplementary Figures 5-6), but with a lower contribution to inter-

individual dissimilarities (PERMANOVA, DP: R²=0.026, ethnicity: R²=0.059). In addition to 

diet, we considered sex, age, education, BMI, alcohol, smoking, physical activity, area of 

residence, collection season, collection site and sequencing run. All these factors were 

associated with ethnicity in our study (Supplementary Tables 1A-B) and showed 

associations with gut microbiota (Supplementary Tables 3A-B), even though most were 

weakened (or disappeared) when ethnicity-adjusted (e.g. alcohol, education, area of 

residence). No factor individually reached the effect size observed for ethnicity and ethnicity 
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remained the strongest determinant of gut microbiota alpha- and beta-diversity in all models 

including non-dietary and/or dietary factors. The combination of all factors but ethnicity 

(including the most representative DP) explained less variability in gut microbiota alpha-

diversity (richness/Shannon/PD: R²=0.13/0.14/0.11) and inter-individual dissimilarities 

(R²=0.083) than the same combination including ethnicity (R²=0.23/0.19/0.21 and 0.091).  

Markers for metabolic health differed between ethnic groups: e.g. compared to the Dutch, 

higher prevalence of type-2 diabetes (DM2) and metabolic syndrome in South-Asian 

Surinamese and of obesity in Moroccans. Considering the proposed associations between the 

gut microbiota and these metabolic diseases15, we next investigated whether the observed 

ethnicity-gut microbiota associations would merely reflect metabolic health-gut microbiota 

associations. We thus repeated our analyses on a restricted sample of 646 participants without 

prevalent DM2, metabolic syndrome or excessive body fat (Supplementary Table 1C) and 

obtained similar ethnic patterns in alpha- and beta-diversity (Supplementary Figure 7). 

Our study is one of the few to compare the gut microbiota composition between Western and 

non-Western individuals living in the same city. Previous results usually displayed a lower 

gut microbiota alpha-diversity in Western vs. non-Western populations, however likely 

confounded by lifestyle (urban Western vs. traditional/rural non-Western)7,16,17. Here, the 

Dutch exhibited the highest gut microbiota alpha-diversity, a proposed marker for a 

“healthier” gut microbiome15,16,18,19, and enrichments in many OTUs (Supplementary Table 

2A.1-B.1). Among these, we highlight a particular set classified as Oscillospira, 

Christensenellaceae, Mogibacteriaceae and Rikenellaceae, conversely particularly depleted in 

the South-Asian Surinamese. These features have been previously associated with leanness 

and metabolic health6,18,20–22. Consistently, some OTUs highlighted above (Otu15-53-103-

117-173-309_Oscillospira; Otu89_Christensenellaceae; Otu257_Mogibacteriaceae; Otu57-

158-383_Rikenellaceae) were decreased in participants with metabolic syndrome, even 
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though differences were small and above the multiple-testing correction threshold in 

ethnicity-adjusted models. In contrast, ethnic groups having migrated from non-Western 

countries exhibited a lower gut microbiota alpha-diversity and enrichments in features 

reportedly associated to unhealthy states. Notably, the South-Asian Surinamese gut 

microbiota was enriched in Otu291_Eggerthella lenta, previously associated with DM223, and 

in Blautia OTUs, Otu6 being also increased in metabolic syndrome (although above the 

multiple-testing correction threshold), consistent with published associations of Blautia with 

increased central adiposity18 and impaired lipid and glucose metabolism24. The Ghanaians 

showed enrichment for Otu81_Haemophilus parainfluenzae and Otu105_Veillonella, 

previously associated to lipopolysaccharides (LPS), an inflammation-driving marker25. Other 

OTUs found to be differentially abundant both across ethnicities and metabolic syndrome 

status (all decreased in metabolic syndrome, although not always significant after multiple-

testing correction in ethnicity-adjusted models) mostly followed the same trend: enrichment in 

the Dutch (some also enriched in Moroccans/Turks), depletion in the other groups (mainly 

South-Asian Surinamese). These OTUs included Otu13_Faecalibacterium prausnitzii, 

Otu34_Akkermansia muciniphila, Otu42-256-276-277_Firmicutes, Otu212-461_Clostridia, 

Otu350_Clostridiales, Otu41_Clostridiaceae, Otu80-116-120-130_Lachnospiraceae, Otu77-

215-250_Ruminococcaceae, Otu193-510_Ruminococcus, Otu107_Coprococcus. All OTUs 

highlighted above remained differentially abundant between ethnic groups after adjustment 

for confounding factors (although not always below the multiple-testing correction threshold). 

It is therefore tempting to speculate that individuals from ethnicities with no or limited 

exposure to Western lifestyle are more sensitive to environmental and dietary exposures in 

Western societies. 

One main distinctive feature of gut microbiota composition in our population was the typical 

“trade-off” between abundances of Prevotella OTUs (mainly P. copri; higher in Moroccans, 
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Turks and Ghanaians) and Bacteroides OTUs (higher in Surinamese)7, completed by a third 

‘Clostridiales’ direction (Oscillospira, Ruminococcus bromii, Coprococcus; higher in Dutch), 

previously coined “enterotypes”26,27. Prevotella species are usually associated with plant-

based diets rich in dietary fibers7,28,29, while Bacteroides abundance is usually seen as an 

indicator of Western/urbanized diets, rich in fat, animal proteins and sugars7,28. While fiber 

intake was indeed higher in Moroccans/Turks and lower in Surinamese, fat intake was 

inconsistently lower in Surinamese and higher in Moroccans/Turks (Supplementary Table 

5C). Still, we observed a functional enrichment for bile acid biosynthesis (PICRUSt inferred, 

Methods) in South-Asian Surinamese and corresponding depletion in Moroccans/Turks 

(Supplementary Table 6), consistent with Bacteroides high capacity to deconjugate bile 

acids30 and bile acid toxicity to Prevotella31. Importantly, the average abundance of 

Prevotella in Moroccans/Turks (23.6%) and Bacteroides in South-Asian Surinamese (12.5%) 

ranked in between countries with characteristically high abundance of Prevotella (Malawi 

32%) or Bacteroides (USA, 38%), exhibiting respectively more marked plant-based or high-

fat diets7. 

The sole contribution of ethnicity to inter-individual dissimilarities in gut microbiota 

composition was ~6% (2.5-3% when multi-adjusted, including for diet), which is relatively 

large compared to the reported 16.4% and 18.7% (7.6% in non-redundant models) overall 

contribution of classical determinants of inter-individual differences in gut microbiota 

composition, found in recent large studies in Caucasians4,5. Ethnicity comprises many 

different aspects – genetics, cultural habits, migration (e.g. socioeconomic status, health 

care/antibiotics use, early-life environment) – which may all contribute to shape the gut 

microbiota in specific fashion (nutrients/xenobiotics exposure, immune system regulation, 

initial/further microbial colonization)7,11,32,33. None of the characteristics we studied as 

potential major confounders entirely accounted for ethnicity, nor were they as strong 
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predictors as ethnicity alone. The additional explaining effect of ethnicity in the models 

suggest the involvement of other factors than those studied, notably genetics in our population 

from distinct ancestries (Methods). Although the influence of genetics is likely low (2-8% 

heritability10) compared to environmental factors, especially diet7,10, it may participate in 

building diverse profiles of gut microbiota that would be further refined by the 

environment6,16,22. Supporting an involvement of genetics, ethnic-specific abundances were 

observed for Christensenellaceae OTUs (Dutch: enrichment, South-Asian Surinamese: 

depletion) and Otu4_Bifidobacterium (South-Asian Surinamese: enrichment, Dutch: 

depletion). Christensenellaceae is a highly heritable family associated with higher alpha-

diversity and likely causally associated with leanness6,18,22. In line, we found inverse 

associations with BMI and positive associations with alpha-diversity, even when ethnicity-

adjusted (ANOVA, BMI: F=6.1, P=0.01; richness/Shannon/PD: F=375.8/308.5/356.7, all 

P<2.2x10-16). Bifidobacterium abundance may result from an interaction between the host 

ability to digest lactose (LCT gene: lactase persistence selected in traditional milk-consuming 

communities34) and dairy consumption, with lower abundances of the lactose-consuming 

Bifidobacterium following lower amounts of lactose reaching the large intestine in lactase 

persisters (Dutch) compared to non-persisters after dairy consumption (Supplementary 

Table 5C). 

Finally, ethnicity and metabolic health are likely in complex (and bidirectional) interactions 

with gut microbiota. However, here, we found that the influence of ethnicity on alpha- and 

beta-diversity went beyond current metabolic health. Different gut microbiota profiles may 

reflect specific adaptations to environmental conditions14. Most non-Dutch participants were 

first generation migrants (94%) who arrived in the Netherlands in adulthood35 (arrival dates 

linked to their country of origin, Supplementary Table 1). Despite sharing the same 

environment for a long period, our participants showed ethnic-specific gut microbiota 
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profiles, probably reflecting the composition they acquired before migration (no robust 

association between gut microbiota and age at migration or residence duration, but these 

strongly correlated to ethnicity: Supplementary Table 3A, Supplementary Figure 8). 

Changes accompanying migration (e.g. food supply/consumption, lifestyle, bacterial/chemical 

environment) may not have been sufficient to trigger major modifications in the resilient gut 

microbiome15, potentially leading to a lack of adaptation to its environment. 

Our results thus show that within a single urban population, the ethnic origin of individuals 

could be a marker for differences in fecal microbiota composition. This and other reports of 

ethnic-specific microbiota composition at other body sites7,36, suggest that ethnicity may be an 

important factor to consider in future investigations relating microbiota profiles to health 

(particularly when designing interventions), especially considering the health disparities 

observed in ethnic-diverse societies11. 
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FIGURE LEGENDS 

Figure 1: Dissimilarities in gut microbiota composition in the multi-ethnic HELIUS 

study (n=2084 participants), represented by unconstrained Principal Coordinate 

Analysis (Multidimensional scaling – PcoA/MDS) with Bray-Curtis index calculated on 

unscaled OTU relative abundances. Ethnicity explained 5.7% of the dissimilarities in gut 

microbiota composition (PERMANOVA, P=0.001). The centroids of each ethnic group are 

featured as the group name on the graph (vegan::envfit). The top 20 contributive OTUs to the 

dissimilarities in gut microbiota composition (determined with R² from PERMANOVA, 

Supplementary Table 2A.1) are displayed as arrows, with a length proportional to the 

correlation between the variable and the PCoA ordination (vegan::envfit): clockwise from 

bottom left to bottom right – Otu1_Prevotella copri, Otu27_Prevotella, Otu308_Prevotella 

copri, Otu550_Prevotella copri, Otu10_Dialister, Otu15_Oscillospira, Otu7_Ruminococcus 

bromii, Otu37_Coprococcus, Otu21_Coprococcus, Otu16_Bacteroides uniformis, 

Otu92_Clostridiaceae_Clostridium, Otu11_Lachnospiraceae, Otu2_Faecalibacterium 

prausnitzii, Otu4_Bifidobacterium, Otu9_Blautia, Otu5_Bacteroides, Otu12_Bacteroides, 

Otu14_Coprococcus, Otu6_Blautia, Otu3_Roseburia faecis. The first PCoA axis (MDS1) 

represented 18.4% of variability. The second PCoA axis (MDS2) represented 6.3%. Similar 

ethnic grouping patterns were observed in PCoA performed with Bray-Curtis dissimilarities 

calculated on scaled/unscaled genus or scaled OTU relative abundances (Supplementary 

Figure 2A-C), in PCoA constrained for ethnicity (Bray-Curtis index, unscaled OTU relative 

abundances, Supplementary Figure 2D) or when excluding participants who declared 

probiotics (n=110 participants), antibiotics (n=198 participants), oral diabetes medication 

(n=200 participants), PPI medication (n=256 participants) or diarrhea (n=202 participants) 

[data not shown]. 

 

Figure 2: Richness, Shannon index and Faith’s phylogenetic diversity index at the OTU 

level across ethnic groups, HELIUS study (n=2084 participants). D: Dutch, G: Ghanaian, 

M: Moroccan, AS: African Surinamese, SAS: South-Asian Surinamese, T: Turkish. Box-plots 

feature the median (center line), the upper and lower quartiles (box limits), 1.5x the 

interquartile range (whiskers) and outliers (points). P-values from two-sided pairwise t-tests 

between the 6 ethnic groups are shown in Supplementary Table 4. Similar results were 

observed when excluding participants who declared probiotics (n=110 participants), 

antibiotics (n=198 participants), oral diabetes medication (n=200 participants), PPI 

medication (n=256 participants) or diarrhea (n=202 participants ) [data not shown]. 

 

Figure 3: Overall and ethnic-specific 95% core OTUs, HELIUS study (n=2084 

participants). Colors indicate the median relative abundance of the OTUs found in more than 

95% of individuals overall and within each ethnic group (group-specific medians) from dark 

red: maximum value in the table to dark green: minimum value in the table. Exact median 

values and corresponding 25th and 75th percentiles can be found in Supplementary Table 2A.1. 

Blank cells indicate that this OTU is not part of the 95% core of the group considered. 
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ONLINE METHODS  

Study population: the HELIUS study 

This work was carried out on a subsample from the prospective HELIUS study (HEalthy LIfe 

in an Urban Setting, www.heliusstudy.nl). Details of the rationale, recruitment and data 

collection have been previously published11,12. Briefly, the HELIUS study was set up to 

investigate the causes of the unequal burden of disease across ethnic groups and includes 

participants belonging to the six largest ethnic groups living in Amsterdam, The Netherlands: 

(i) Dutch: Northwestern European ancestry, (ii) Ghanaian: Western African ancestry, (iii) 

Moroccan: Northern African, Mediterranean and Middle Eastern ancestries, (iv) African 

Surinamese: ‘Creoles’ descending from former slaves, mixed Western African and Dutch 

ancestries, (v) South-Asian Surinamese: ‘Hindustanis’ descending from workers arriving to 

the Suriname post slavery, South-Asian/Indian ancestry, and (vi) Turks: Mediterranean, 

Caucasus and Middle Eastern ancestries11,12,37. Participants aged 18-70 years were randomly 

sampled, stratified by ethnic origin, through the municipal registry of Amsterdam (MRA) 

between 2011 and 2015, and a total of nearly 25,000 participants were included at baseline. 

Country of birth was used as a basis to identify the ethnic origin of participants: a person was 

considered as of non-Dutch origin if she/he was born outside the Netherlands and has at least 

one parent who was born outside the Netherlands (first generation); or if she/he was born in 

the Netherlands but both parents were born outside the Netherlands (second generation)38. For 

the Dutch sample, we invited people who were born in the Netherlands and whose parents 

were born in the Netherlands. After inclusion, participants of Surinamese ethnic origin were 

further classified according to self-reported ethnic origin (obtained by questionnaire) into 

‘African’, ‘South-Asian’, or ‘other’. The Surinamese migrated from Suriname (South 

America), a former Dutch colony, in 1975-80 following decolonization and political 

instability. Turks and Moroccans arrived starting the 1960s-1970s through encouraged labor 

http://www.heliusstudy.nl/
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migration. The Ghanaians migrated between 1974 and 1983 (economic reasons) and in the 

early 1990s (drought, political instability)11,12. The HELIUS study has complied with all 

relevant ethical regulations in accordance with the Declaration of Helsinki and was approved 

by the Academic Medical Center (AMC) Medical Ethics Committee and all participants 

provided written informed consent. 

Data collection 

Upon recruitment, participants filled out a questionnaire gathering information on migration-

related variables (e.g. acculturation), socio-demographic characteristics, lifestyle (e.g. 

physical activity, smoking, alcohol use, dietary habits), general quality of life, and personal 

and family history of diseases (e.g. hypertension, cardiovascular diseases, DM2, mental 

health). Participants were invited to undergo a physical examination at a local research site to 

which they were asked to bring all currently used medications. The examination included 

measurements of anthropometric characteristics (e.g. height, weight, waist and hip 

circumferences, body fat percentage using bioelectrical impedance) and blood pressure, and 

collection of fasted blood samples. Samples of EDTA whole blood and heparin plasma were 

transported directly to the AMC Clinical Chemistry Laboratory for determination of 

hemoglobin, HbA1c, glucose, lipid profile, and creatinine levels. The remaining samples were 

transported to the AMC Biobank, where samples were checked, registered, and stored at -

80°C. 

Feces sample collection 

Feces samples were collected on a subset of voluntary participants who gave permission for 

storage of body material. They were given a feces collection tube and a safety bag (for 

transport) either (i) through mail prior to the physical examination visit or (ii) at the end of the 

visit if they agreed to. They were asked to bring a “fresh” stool sample within six hours after 

collection to the research location (on the morning of their physical examination visit or later 
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on if they received the collection kit during their physical examination visit). If not possible, 

they were instructed to keep the stool sample in their freezer overnight and to bring it in 

frozen state to the research location the next morning. At the research location, the samples 

were temporarily stored at -20°C until daily transportation to the AMC, where the samples 

were checked by a study nurse and stored at -80°C. No information was recorded on whether 

samples arrived either frozen or fresh at the research location. During the physical 

examination, participants who handed over or agreed upon handing over a stool sample were 

additionally asked if (i) they used probiotics (frequency, type), (ii) they used antibiotics in the 

past 3 months, (iii) they had diarrhea in the past week. About 6000 stool samples were 

collected.  

Three research locations were used for the physical examination and feces sample collection, 

situated in three Amsterdam areas, at the convenience of participants: Nieuwlandhof – 

Amsterdam South-East, Noord – Amsterdam North, Slotervaart – Amsterdam West 

(Supplementary Table 1). Standardized procedures were used across the three collection sites 

with the same (written) protocols and the same training of the personnel (with many staff 

members working at all three locations). Quality checks on the staff/procedures were done 

regularly during the entire data collection period. 

HELIUS-Dietary Patterns study 

As described previously39,40, a subsample of ~5200 HELIUS participants (from Dutch, 

Moroccan, Turkish and Surinamese ethnic origin) were also enrolled in the HELIUS-Dietary 

Patterns study, with the objective to collect detailed information on their diet. Habitual dietary 

intakes were assessed using ethnic-specific semi-quantitative food frequency questionnaires 

(FFQs) with a reference period of 4 weeks. These FFQs were adapted from an existing Dutch 

FFQ and comprised about 200 items. Food items were collapsed into 37 food groups based on 

similarity in nutrient profile or culinary use. 
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Profiling of fecal microbiota composition 

Sequencing of the 16S rRNA gene 

The first 2170 feces samples among ~6000 collected were shipped to the Wallenberg 

Laboratory (Sahlgrenska University of Gothenburg, Sweden) for determination of the fecal 

microbiome. Total genomic DNA was extracted from a 150 mg aliquot using a repeated bead 

beating method as previously described41. Fecal microbiota composition was profiled by 

sequencing the V4 region of the 16S rRNA gene on an Illumina MiSeq instrument (llumina 

RTA v1.17.28; MCS v2.5) with 515F and 806R primers designed for dual indexing42 and the 

V2 Illumina kit (2x250 bp paired-end reads). 16S rRNA genes from each sample were 

amplified in duplicate reactions in volumes of 25 μl containing 1x Five Prime Hot Master Mix 

(5 PRIME GmbH), 200 nM of each primer, 0.4 mg/ml BSA, 5% DMSO and 20 ng of 

genomic DNA. PCR was carried out under the following conditions: initial denaturation for 3 

min at 94°C, followed by 25 cycles of denaturation for 45 sec at 94°C, annealing for 60 sec at 

52°C and elongation for 90 sec at 72°C, and a final elongation step for 10 min at 72°C. 

Duplicates were combined, purified with the NucleoSpin Gel and PCR Clean-up kit 

(Macherey-Nagel) and quantified using the Quant-iT PicoGreen dsDNA kit (Invitrogen). 

Purified PCR products were diluted to 10 ng/μl and pooled in equal amounts. The pooled 

amplicons were purified again using Ampure magnetic purification beads (Agencourt) to 

remove short amplification products. Negative controls were included for each sample. The 

absence of detectable PCR products in these negative controls was confirmed with 

electrophoresis gel. Positive controls were not included in these runs but the protocol used to 

analyze the samples has been optimized using mock samples. All analytical procedures were 

blinded for ethnicity (but not randomized). The distribution of ethnic groups across runs of 

16S rRNA sequencing are shown in Supplementary Table 1. 
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Processing of 16S rRNA gene reads and OTU clustering 

The 2170 samples were processed all at once using the following pipeline. Illumina MiSeq 

reads (177,089,775 total raw reads in 2170 samples) were quality checked with FastQC 

(v.0.11.5)43 and processed on a Mothur pipeline (version 1.39.5)44. After merging forward and 

reverse reads, contigs were screened to ensure absence of ambiguous bases and a length 

between 252 and 253 bases. Around 70% of reads survived the merging and quality control 

steps. Contigs were aligned to the Silva reference database (version 128), dereplicated and 

subsequently preclustered (allowing a maximum of 2 differences). Singletons (sequences with 

an abundance of 1 in the entire dataset) were removed (1.7 % of total reads). The remaining 

sequences were chimera-filtered with chimera.vsearch (removing a further 2.8% of total 

reads) and classified using a mothur-formated Greengenes reference (version 13_5_99) with a 

80% confidence cutoff. Sequences classified as mitochondria, cloroplasts, eukaryota, as well 

as un-classified sequences were removed (0.005% of total reads). Remaining sequences 

(65.6% of total initial reads) were clustered using the VSEARCH (v.2.6) implementation of a 

distance-based greedy algorithm (DGC), an open-source alternative to USEARCH45,46. A 

phylogenetic tree was constructed with the “double-precision” build of Fastree 2.1 using the 

abundance-based representative sequences of the OTUs47 (representative sequences of the 

OTUs and corresponding taxonomy classification are shown in Supplementary Table 7). A 

PICRUSt-compatible biom file was created in mothur for PICRUSt analyses. Samples with 

less than 10,000 counts were removed from the dataset (8 samples) and the resulting OTU 

table was rarefied to 10,960 counts per sample (vegan package, R)48. OTUs with a mean 

relative abundance of less than 0.002% (i.e. a mean of less than 1 count per 5 samples) were 

filtered out (phyloseq package, R)49. The final dataset was comprised of 2162 samples and 

744 OTUs. In the main text, when a particular OTU is referred to using taxonomy levels 
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above the species level, it means that this OTU could not be characterized to a lower 

taxonomical level. 

Statistical analyses 

Gut microbiota composition was obtained for 2162 individuals, of which 78 were removed 

because they did not pertain to one of the 6 main ethnic groups under study (30 Javanese 

Surinamese, 42 Other/Unknown Surinamese and 6 Other/Unknown). Three samples were 

defined for the analyses: a full sample including 2084 participants, a “FFQ” sample composed 

of 1032 participants in whom also detailed dietary information was available (enrolled in the 

HELIUS-dietary pattern study) and a “healthy” sample comprising 646 participants resulting 

from the exclusion of participants with prevalent metabolic syndrome, DM2 or with a fat 

percentage indicating obesity (≥35% in women and ≥25% in men). We used the body fat 

percentage to define obesity because BMI may be less accurate to define obesity in South-

Asian populations50. 

All analyses were performed using R (version 3.3.1) and particularly functions embedded in 

the vegan48 and phyloseq49 packages. Statistical tests were two-sided. 

Characteristics of gut microbiota composition 

Relative abundances of features (OTU, genus, family, phylum) were calculated by dividing 

the rarefied number of reads for this OTU by the total number of reads of the individual. 

The dissimilarities in gut microbiota composition between individuals (beta-diversity) were 

assessed with the Bray-Curtis index calculated at the OTU and at the genus levels (R function 

vegan::vegdist). Unscaled and scaled (i.e. divided by standard deviation) relative abundances 

were used. Scaling of the relative abundances allows to obtain the same order of magnitude 

for the features (OTU/genus) relative abundances and their variations (standard deviation 

unit), thus giving less weight to the highly abundant features in the Bray-Curtis index. Bray-

Curtis dissimilarities were plotted using unconstrained principal coordinate analysis (PCoA) 
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allowing to visualize the dimensions explaining most variability in the dissimilarity matrix (R 

function vegan::capscale). The contribution of ethnic origin and features (OTU, genus) to the 

PCoA ordination plots was assessed using the R function vegan::envfit. The obtained R² gives 

the proportion of the main variability (i.e. main dimensions of the ordination) that can be 

attributed to the studied variables. The contribution of ethnic origin and features (OTU, 

genus) to the overall Bray-Curtis dissimilarities in gut microbiota composition was also 

assessed using permutational multivariate analysis of variance models (PERMANOVA, R 

function vegan::adonis, 999 permutations) which decompose the dissimilarity matrix into 

"variance" explained by each covariate. The obtained R² gives the proportion of variability 

observed in the entire dissimilarity matrix that can be attributed to the studied variables.  

The following potential confounders of the association between ethnicity and gut microbiota 

composition were tested using PERMANOVA models assessing the marginal effect of each 

covariate (R function vegan::adonis2, 999 permutations): sex, age, educational level, BMI, 

alcohol consumption (frequency), smoking status, physical activity, area of living, season of 

feces collection, collection site and 16S rRNA sequencing run. 

The alpha-diversity of gut microbiota for each individual was assessed with several indices 

calculated at the OTU level: richness (number of unique OTUs: R function vegan::estimateR), 

richness and evenness of distribution (Shannon index: R function vegan::diversity) and 

phylogenetic diversity (Faith’s PD: R function picante::pd). These indices were compared 

across the 6 ethnic groups using ANOVA (6 groups) and pairwise t-tests with Bonferroni 

correction, after checking assumptions, as appropriate. The following potential confounders of 

the association between ethnicity and alpha-diversity were tested using ANOVA models: sex, 

age, educational level, BMI, alcohol consumption (frequency), smoking status, physical 

activity, area of living, season of feces collection, collection site and 16S rRNA sequencing 

run. 
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The relative abundances of OTU were compared across the 6 ethnic groups using Kruskal-

Wallis rank sum tests (1 test per 744 OTUs) and Wilcoxon-Mann-Whitney tests (6 

comparisons between one group and all others combined and 15 pairwise comparisons 

between the 6 ethnic groups per 744 OTUs) with Bonferroni correction: P<6.72x10-5 (i.e. 

0.05/744) for Kruskal-Wallis rank sum tests and P<3.2x10-6 (i.e. 0.05/((6+15)*744)) for 

Wilcoxon-Mann-Whitney tests. With our large sample size, even small differences were 

observed to be significant. Thus, the probability of concordance (AUC, number of concordant 

pairs/total number of possible pairs) and the effect size (z/√N with N the sample size) were 

computed and used in addition to the OTU prevalence to select the most relevant differences.  

As sensitivity analyses, we adjusted the comparison of OTU relative abundances across ethnic 

groups for sex, age, educational level, BMI, alcohol consumption (frequency), smoking status, 

physical activity, area of living, season of feces collection, collection site, 16S rRNA 

sequencing run with and without additional adjustment for the most representative dietary 

pattern (see below). General linear models with arcsin square root transformation of OTU 

relative abundances were run in a pairwise manner (6 ‘one vs all others’ and 15 ‘one vs one’ 

analyses). Finally, to assess the health relevance of the differentially abundant OTUs across 

ethnic groups, we compared OTU relative abundances across metabolic syndrome status (yes 

vs no) using Wilcoxon-Mann-Whitney tests and ethnicity-adjusted general linear models with 

arcsin square root transformation and Bonferroni correction for multiple testing (P<6.72x10-5, 

i.e. 0.05/744). 

Dietary patterns 

Detailed dietary information from the HELIUS-dietary patterns study were available for 

~50% of our study sample (n=1032). A principal component analysis (PCA) with varimax 

rotation was performed on the consumption (g/day) of 37 food groups (see Supplementary 

Table 5 for the description of the groups, ethnic-specific food groups were not included). This 
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data-driven approach accounts for the correlations between the consumption of several food 

groups and thus leads to the identification of the main dietary patterns in the studied 

population. Intakes of food groups were obtained by collapsing food items assessed in the 

FFQ on the basis of similarity in nutrient profile, culinary use, or ethnic origin. Ethnic-

specific food groups were not included in the analysis in order to derive the dietary patterns 

on a same basis for all ethnic groups. Four components (patterns) were retained, based on the 

observation of the scree plot and the interpretability of the patterns (see Supplementary Table 

5A for the loading of the patterns). Food items were considered to contribute significantly to a 

component if they had an absolute factor loading ≥0.3. A larger factor loading indicates a 

higher correlation of the food group to the respective component. A score was obtained for 

each participant and each component, reflecting the strength of adherence of each individual 

to each of the derived pattern. The maximum positive score across the 4 patterns was used to 

define the pattern that reflected most the individual’s diet. 

The influence of dietary patterns (continuous score, dichotomous variable with 1 if positive 

score and 0 if not, and predominant pattern) and of specific food groups/nutrients was tested 

using ANOVA (alpha-diversity measures) and PERMANOVA (Bray-Curtis dissimilarities) in 

univariate and ethnicity-adjusted models and in models adjusted for ethnicity, sex, age, 

educational level, BMI, alcohol consumption (frequency), smoking status, physical activity, 

area of living, season of feces collection, collection site and 16S rRNA sequencing run. 

PICRUSt 

The functional potential of the gut microbiota community profiled with 16S rRNA gene 

sequencing was assessed using the PICRUSt methodology (phylogenetic investigation of 

communities by reconstruction of unobserved states)51 on the dedicated Galaxy module online 

(https://huttenhower.sph.harvard.edu/galaxy/). Based on the OTU table, we obtained for each 

subject the derived KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, 

https://huttenhower.sph.harvard.edu/galaxy/
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predicting the functional capacities of the gut microbiome. The obtained pathways were 

collapsed to a higher hierarchical level. The relative abundances of hierarchically classified 

pathways were compared using Kruskal-Wallis rank sum test (6 groups) and pairwise 

Wilcoxon-Mann-Whitney tests with Bonferroni correction. 

 

Reporting Summary 

A Life Sciences Reporting Summary is available for this article. 

 

Data Availability 

The 16S rRNA gene sequences and associated metadata (including ethnicity) have been 

deposited at the European Genotyping Agency (www.ebi.ac.uk/ega/)–study no. 

EGAD00001004106. The data that support the findings of this study are available from the 

study coordinator upon reasonable request. 

The HELIUS data are owned by the Academic Medical Center (AMC) in Amsterdam, The 

Netherlands. Any researcher can request the data by submitting a proposal to the HELIUS 

Executive Board as outlined at www.heliusstudy.nl/en/researchers/collaboration. Requests for 

further information and proposals can be submitted to Dr. Marieke Snijder, Scientific 

Coordinator and Data Manager of HELIUS, at m.b.snijder@amc.uva.nl, or to 

info@heliusstudie.nl. The “heliusstudy” website and generic email address will continue to be 

actively managed in the event Dr. Snijder should leave her post. The HELIUS Executive 

Board will check proposals for compatibility with the general objectives, ethical approvals 

and informed consent forms of the HELIUS study, and potential overlap with ongoing work 

affiliated with HELIUS. There are no other restrictions to obtaining the data and all data 

requests will be processed in the same manner.  

http://www.ebi.ac.uk/ega/
http://www.heliusstudy.nl/en/researchers/collaboration
mailto:m.b.snijder@amc.uva.nl
mailto:info@heliusstudie.nl
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