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Control issues and linear projection constraints on the control

and on the controlled trajectory∗

Sylvain Ervedoza†

September 2, 2019

Abstract

The goal of this article is to discuss controllability properties for an abstract linear system of the
form y′ = Ay +Bu under some additional linear projection constraints on the control u or / and on
the controlled trajectory y. In particular, we discuss the possibility of imposing the linear projections
of the controlled trajectory and of the control, in the context of approximate controllability, exact
controllability and null-controllability. As it turns out, in all these settings, for being able to impose
linear projection constraints on the trajectory and on the control, we will strongly rely on a unique
continuation property for the adjoint system which, to our knowledge, has not been identified so far,
and which does not seem classical. We shall therefore provide several instances in which this unique
continuation property can be checked.

1 Introduction

The goal of this article is to study controllability issues for an abstract system of the form

y′ = Ay +Bu, for t ∈ (0, T ), y(0) = y0. (1.1)

Let us make precise the functional setting we shall consider in the following:

(H1) A is assumed to generate a C0 semigroup on a Hilbert space H,

(H2) B is the control operator, assumed to belong to L (U ;H), where U is a Hilbert space.

The function y = y(t) is then the state function, y0 is the initial datum, and u is the control function,
assumed to belong to L2(0, T ;U).

Note that, within these assumptions, if y0 ∈ H and u ∈ L2(0, T ;U), the solution y of (1.1) belongs
to C 0([0, T ];H).

In this article, we wish to understand the requirements needed to be able to control the state y solving
(1.1) and to impose the linear projections on y and / or on u and / or y(T ) in some vector spaces. In
particular, we shall consider the following setting:

(H3) G is a closed vector space of L2(0, T ;U), and PG is the orthogonal projection on G in L2(0, T ;U).

(H4) W is a closed vector space of L2(0, T ;H), and PW is the orthogonal projection on W in L2(0, T ;H).

(H5) E is a finite dimensional space of H, and PE is the orthogonal projection on E in H.

We shall then discuss the following properties.
Approximate controllability and linear projection constraints: For y0 ∈ H and y1 ∈ H, ε > 0,
g∗ ∈ G , w∗ ∈ W , can we find control functions u ∈ L2(0, T ;U) such that

PGu = g∗ (1.2)

∗This work has been supported by the Agence Nationale de la Recherche, Project IFSMACS, grant ANR-15-CE40-0010,
and by the CIMI Labex, Toulouse, France, under grant ANR-11-LABX-0040-CIMI.
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and the solution y of (1.1) satisfies
‖y(T )− y1‖H 6 ε, (1.3)

and
PW y = w∗, (1.4)

and
PEy(T ) = PEy1 ? (1.5)

Exact controllability and linear projection constraints: For y0 ∈ H and y1 ∈ H, g∗ ∈ G and
w∗ ∈ W , can we find control functions u ∈ L2(0, T ;U) such that (1.2) holds, and the solution y of (1.1)
satisfies

y(T ) = y1, (1.6)

and (1.4)?
Null controllability and linear projection constraints: For y0 ∈ H, g∗ ∈ G and y∗ ∈ W , can we
find control functions u ∈ L2(0, T ;U) such that (1.2) holds, and the solution y of (1.1) satisfies

y(T ) = 0, (1.7)

and (1.4)?
Of course, the above problems correspond to reinforcements of the classical notions of approximate

controllability, exact controllability and null controllability, for which we refer to the textbook [26]. To
be more precise, the only originality in the above notions lies in the conditions (1.2) and (1.4) on the
respective projections of u on G and y on W . This question appeared to be of interest in some control
problems, for instance in order to ensure insensibility with respect to some parameters, see e.g. the book
[17]. We will come back to these questions later on an example inspired by previous works [21, 19, 20, 10].
In fact, our interest in this question was triggered by our work [5], in which at some part of the proof,
we needed to derive controls satisfying appropriate projection constraints (there, we managed to build
such controls by using some null-controllability results and the structure of the constraints we wanted to
impose), and by the recent work [18] on insensibility with respect to variations of the domain.

Let us start with the problem of approximate controllability and linear projection constraints.

Theorem 1.1 (Approximate controllability with linear projection constraint). Let the hypotheses (H1)–
(H5) be satisfied, and let T > 0.
Assume the following unique continuation property: If, for some zT ∈ H, for some g ∈ G and w ∈ W ,
the solution z of

z′ +A∗z = w, for t ∈ (0, T ), with z(T ) = zT , (1.8)

satisfies
B∗z = g in (0, T ), (1.9)

then
zT = 0, g = 0, and w = 0. (1.10)

Assume moreover that the vector space W is of finite dimension.
Then for any y0 and y1 in H, ε > 0, g∗ ∈ G , and w∗ ∈ W , there exists a control functions u ∈ L2(0, T ;U)
such that (1.2) holds, the solution y of (1.1) satisfies (1.3), and the conditions (1.4) and (1.5).
In other words, one can solve the approximate controllability problem and exactly satisfy the linear pro-
jection constraints (1.2) on u, (1.4) on y, and the constraint (1.5) on y(T ).

Theorem 1.1 is proved in Section 2.
Before going further, several remarks are in order.
First, let us recall that it is well-known (see e.g. [26, Theorem 11.2.1]) that approximate controllability

(that is, the problem of, for any ε > 0, y0 and y1 in H, finding a control function u ∈ L2(0, T ;U) such
that the solution y of (1.1) satisfies (1.3)) is equivalent to the following unique continuation property:

If z ∈ C 0([0, T ];H) satisfies


z′ +A∗z = 0, for t ∈ (0, T ),
z(T ) = zT ,
B∗z = 0, for t ∈ (0, T ),
with zT ∈ H

then zT = 0. (1.11)
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In this sense, the unique continuation property assumed in Theorem 1.1, namely

If z satisfies


z′ +A∗z = w, for t ∈ (0, T ),
z(T ) = zT ,
B∗z = g, for t ∈ (0, T ),
with (zT , g, w) ∈ H × G ×W

then

 zT = 0,
g = 0,
w = 0,

(UC)

is a stronger version of the standard unique continuation property (1.11) for the adjoint equation (1.8).
It is therefore quite natural to ask if the unique continuation property (UC) assumed in Theorem 1.1

is sharp or not. We claim that this is indeed the sharp condition. Indeed, if there exists some non-
zero (zT , g, w) ∈ H × G × W such that (1.8) and (1.9) holds, then one easily checks that, for any
u ∈ L2(0, T ;U), the solution y of (1.1) necessarily satisfies:

0 = 〈y(T ), zT 〉H − 〈y0, z(0)〉H −
∫ T

0

〈y(t), w(t)〉H dt−
∫ T

0

〈u(t), g(t)〉U dt.

In particular, if one wishes to impose PW y = w, PGu = g for a solution y of (1.1) starting from y0 = 0,
we deduce that necessarily,

‖y(T ) + zT ‖H ‖zT ‖H > ‖zT ‖2H + ‖w‖2L2(0,T ;H) + ‖g‖2L2(0,T ;U).

Since the above right hand-side is strictly positive by assumption, this implies that there exists a neigh-
borhood of −zT such that the trajectories y of (1.1) starting from y0 = 0 cannot reach this neighborhood
and satisfy the constraints PW y = w and PGu = g.

It might be surprising at first that the unique continuation property (UC) in Theorem 1.1 does not
depend on the vector space E appearing in condition (1.5). In fact, it was already noticed in [27, 8] in
the case of G = {0} and W = {0}, that the usual unique continuation property is sufficient to solve the
approximate controllability problem with the constraint (1.5). This property strongly relies on the fact
that E is finite dimensional (recall that it is part of assumption (H5)).

The unique continuation property (UC) may not seem easy to check in practice. We will however
give several examples on which this can be checked out, one which is in fact the one in [21, 19, 20], and
another one which is inspired by the one in [5]. The interested reader can go directly to Section 5.

An interesting point is that our approach can in fact be developed as well for the other notions of
controllability stated in the introduction, namely the exact controllability problem with linear projection
constraints and the null-controllability problem with linear projection constraints.

Theorem 1.2 (Exact controllability with linear projection constraints). Let the hypotheses (H1)–(H4)
be satisfied, and let T > 0, and assume the unique continuation property (UC).
We further assume the following observability inequality: there exists a constant C > 0 such that for all
zT ∈ H, the solution z of

z′ +A∗z = 0, for t ∈ (0, T ), z(T ) = zT , (1.12)

satisfies
‖zT ‖H 6 C ‖B∗z‖L2(0,T ;U) . (1.13)

Assume moreover that the vector spaces G and W are of finite dimension.
Then for any y0 and y1 in H, g∗ ∈ G , and w∗ ∈ W , there exists a control functions u ∈ L2(0, T ;U) such
that (1.2) holds, the solution y of (1.1) satisfies (1.6) and the condition (1.4).
In other words, one can solve the exact controllability problem and exactly satisfy the constraints (1.2)
on u and (1.4) on y.

The proof of Theorem 1.2 is given in Section 3.
Note that Theorem 1.2 requires not only the unique continuation property (UC), but also the ob-

servability property (1.13) for solutions of (1.12). This is expected, as the usual exact controllability
property (that is, the problem of, for any y0 and y1 in H, finding a control function u ∈ L2(0, T ;U)
such that the solution y of (1.1) satisfies (1.6)) is equivalent to the observability property (1.13). Here,
since we would like to further impose some projections of u and y, we should further assume the unique
continuation property (UC), similarly as in Theorem 1.1. In fact, the proof of Theorem 1.2 given in
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Section 3 mainly boils down to the proof of the following observability inequality (see Lemma 3.1 and
its proof in Section 3.2): there exists C > 0 such that for all (zT , g, w, f) ∈ H × G ×W × L2(0, T ;H),
the solution z of

z′ +A∗z = f, for t ∈ (0, T ), with z(T ) = zT (1.14)

satisfies

‖(zT , g, w, f)‖H×G×W ×L2(0,T ;H) 6 C
(
‖B∗z + g‖L2(0,T ;U) + ‖f + w‖L2(0,T ;H)

)
. (1.15)

This is actually at this step that we strongly use the fact that the vector spaces G and W are of finite
dimension, which allows to deduce the observability inequality (1.15) for solutions of (1.14) from a
compactness argument based on the unique continuation property (UC) and the observability inequality
(1.13) for solutions of (1.12). In fact, if we consider vector spaces G and W of possibly infinite dimension,
our proof of Theorem 1.2 yields the following result, whose detailed proof is left to the reader as it is a
verbatim copy of Section 3.1:

Corollary 1.3. Let the hypotheses (H1)–(H4) be satisfied, and let T > 0, and assume the observability
inequality (1.15) for solutions of (1.14).
Then for any y0 and y1 in H, g∗ ∈ G , and w∗ ∈ W , there exists a control function u ∈ L2(0, T ;U) such
that (1.2) holds, the solution y of (1.1) satisfies (1.6) and the condition (1.4).

Similarly, when considering null-controllability with linear projection constraints, one should rely on
some kind of observability properties for solutions of (1.14):

Theorem 1.4 (Null controllability with linear projection constraints). Let the hypotheses (H1)–(H4) be
satisfied, and let T > 0.
We further assume the following observability inequality: there exists a constant C > 0 such that for all
(zT , g, w, f) ∈ H × G ×W × L2(0, T ;H), the solution z of (1.14) satisfies

‖(z(0), g, w, f)‖H×G×W ×L2(0,T ;H) 6 C
(
‖B∗z + g‖L2(0,T ;U) + ‖f + w‖L2(0,T ;H)

)
. (1.16)

Then for any y0 in H, g∗ ∈ G , and w∗ ∈ W , there exists a control function u ∈ L2(0, T ;U) such that
(1.2) holds, the solution y of (1.1) satisfies (1.7) and the condition (1.4).
In other words, one can solve the null controllability problem (1.7) and exactly satisfy the constraints
(1.2) on u and (1.4) on y.

The proof of Theorem 1.4 is given in Section 4.1, and is quite similar to the one of Corollary 1.3.
Let us point out that Theorem 1.4 relies on the observability property (1.16) for solutions of (1.14),

which is the counterpart of the observability property (1.15) for Theorem 1.2. Still, as in the case of
exact controllability, one could ask if the observability inequality (1.16) for solutions of (1.14) could be
derived from the observability inequality which is equivalent to null-controllability, namely the following
one: there exists a constant C > 0 such that for all solutions z of (1.12) with zT ∈ H,

‖z(0)‖H 6 C ‖B∗z‖L2(0,T ;U) . (1.17)

It is not clear whether or not the observability inequality (1.16) for solutions of (1.14) can be derived
from the observability inequality (1.17) for solutions of (1.12) and the unique continuation property
(UC). In fact, using a compactness argument, we only managed to obtain the following result, proved
in Section 4.2:

Proposition 1.5. Let the hypotheses (H1)–(H4) be satisfied, and let T > 0, and assume that the vector
spaces G and W are of finite dimension.

We further assume that there exists T̃ ∈ (0, T ] such that

if z satisfies


z′ +A∗z = w, for t ∈ (0, T̃ ),

z(T̃ ) = zT̃ ,

B∗z = g, for t ∈ (0, T̃ ),
with (zT̃ , g, w) ∈ H × G ×W ,

then

 zT̃ = 0,
g = 0,
w = 0,

(1.18)
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and such that there exists a constant C such that any solution z of (1.12) with zT ∈ H satisfies∥∥∥z(T̃ )
∥∥∥
H

6 C ‖B∗z‖L2(0,T ;U) . (1.19)

Then the observability inequality (1.16) holds for all solutions z of (1.14) with (zT , g, w, f) ∈ H × G ×
W × L2(0, T ;H).

In other words, Proposition 1.5 reduces the proof of the observability inequality (1.16) to the existence
of an intermediate time T̃ such that the unique continuation property (1.18) holds and the observability
inequality (1.19) holds for solutions of (1.12). Note that the unique continuation property (1.18) is
slightly stronger than (UC) since the time T̃ is smaller than T . Similarly, the observability inequality
(1.19) is slightly stronger than (1.17) since T̃ > 0. Also note that, if the assumptions of Proposition
1.5 holds for T̃ = T , we are in fact in the setting of Theorem 1.2, so that one can solve the exact
controllability problem with linear projection constraints, and therefore the null-controllability problem
as well.

From the above discussions, it is clear that what plays a key role in our analysis is the unique
continuation property (UC). We shall thus provide some examples in which it can be checked, see
Section 5.

Let us finally mention that, in the cases G = {0} and W = {0}, the assumption (UC) in Theorem 1.1 is
a necessary and sufficient condition for the approximate controllability of (1.1); similarly, the observability
condition (1.13) for solutions of (1.12) in Theorem 1.2 is a necessary and sufficient condition for the exact
controllability of (1.1), and the observability condition (1.16) for solutions of (1.14) in Theorem 1.4 also
is a necessary and sufficient condition for the null controllability of (1.1). We refer, for instance, to the
textbook [26, Theorem 11.2.1] for the proof of these results.

Outline. Section 2 analyzing the approximate controllability problem (1.2)–(1.3)–(1.4)–(1.5) pro-
vides the proof of Theorem 1.1. Our result on exact controllability, namely Theorem 1.2, is proven in
Section 3. Theorem 1.4 and Proposition 1.5 discussing the null-controllability problem (1.2), (1.4) and
(1.7) are then proved in Section 4. In Section 5 we provide several PDE examples in which the crucial
unique continuation property (UC) can be checked. Finally, we give some further comments and open
problems in Section 6.

Acknowledgments. This work benefited from various discussions with colleagues. The author is
particularly indebted to Jean-Pierre Raymond for having pointed out the works [21, 19, 20], to Jérémi
Dardé, Pierre Lissy and Yannick Privat for their strong encouragements and comments, and the warmly
atmosphere of the Pau Toulouse workshop in shape optimization, in which a first version of this work
was presented.

2 Approximate controllability: Proof of Theorem 1.1

2.1 Main steps of the proof of Theorem 1.1

We assume (H1)–(H5), we take T > 0 and assume the unique continuation property (UC). We then set
(y0, y1) ∈ H2, ε > 0, g∗ ∈ G and w∗ ∈ W .

The proof of Theorem 1.1 relies on the introduction of the functional

J(zT , g, w, f) =
1

2

∫ T

0

‖B∗z(t) + g(t)‖2U dt+
1

2

∫ T

0

‖f(t) + w(t)‖2H dt+ 〈y0, z(0)〉H − 〈y1, zT 〉H

+

∫ T

0

〈B∗z(t), g∗(t)〉U dt+

∫ T

0

〈f(t), w∗(t)〉H dt+ ε ‖(I − PE)zT ‖H , (2.1)

defined for
(zT , g, w, f) ∈ H × G ×W × L2(0, T ;H).

where z denotes the solution of (1.14).
Namely, we shall distinguish two main steps. The first step consists in showing that J is coercive, and

the second one in proving that the minimizer provides a solution to the control problem (1.2), (1.3), (1.4)
and (1.5). The corresponding statements are given by the following lemmas, whose respective proofs are
given in the section afterwards.
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Lemma 2.1. The functional J is strictly convex and coercive in H × G ×W × L2(0, T ;H).

Of course, based on Lemma 2.1, the functional J admits a unique minimizer (ZT , G,W,F ) in H ×
G ×W × L2(0, T ;H), which enjoys some nice properties given in the lemma below.

Lemma 2.2. Let (ZT , G,W,F ) denote the unique minimizer of J in H ×G ×W ×L2(0, T ;H). Setting
Z the corresponding solution of

Z ′ +A∗Z = F, t ∈ (0, T ) with Z(T ) = ZT , (2.2)

the functions y and u defined by

y = F +W + w∗, in (0, T ), u = B∗Z +G+ g∗, in (0, T ), (2.3)

satisfy the equation (1.1), and the conditions (1.2), (1.3), (1.4) and (1.5).

We then easily deduce Theorem 1.1 from these two lemmas, whose proofs are done in Section 2.2 and
Section 2.3.

2.2 Proof of Lemma 2.1

As J is the sum of convex functions, it is obvious that J will be strictly convex if one of these functions
is strictly convex. We claim that the functional K defined by

K : (zT , g, w, f) ∈ H × G ×W × L2(0, T ;H) 7→
∫ T

0

‖B∗z(t) + g(t)‖2U dt+

∫ T

0

‖f(t) + w(t)‖2H dt,

where z solves (1.14), is strictly convex. Indeed, according to the unique continuation property (UC), K
obviously defines a strictly positive quadratic form on H × G ×W × L2(0, T ;H), so that this is strictly
convex, thus entailing the strict convexity of J .

Now, to prove the coercivity of J , the difficulty is that K does not correspond in general to a
norm equivalent to H × G × W × L2(0, T ;H). Thus, in order to show that J is strictly coercive on
H × G ×W × L2(0, T ;H), we rather proceed by contradiction and take a sequence (zT,n, gn, wn, fn) ∈
H × G ×W × L2(0, T ;H) indexed by n ∈ N such that

lim
n→∞

ρn = +∞, where ρn = ‖(zT,n, gn, wn, fn)‖H×G×W ×L2(0,T ;H), (2.4)

and S = sup
n→∞

J(zT,n, gn, wn, fn) <∞. (2.5)

As usual, we start by renormalizing the data and introduce

(z̃T,n, g̃n, w̃n, f̃n) =
1

ρn
(zT,n, gn, wn, fn),

so that
∀n ∈ N, ‖(z̃T,n, g̃n, w̃n, f̃n)‖H×G×W ×L2(0,T ;H) = 1. (2.6)

Using (2.5), we obtain that for all n ∈ N,

ρ2
n

(
1

2

∫ T

0

‖B∗z̃n + g̃n‖2U dt+
1

2

∫ T

0

‖f̃n + w̃n‖2H dt

)

+ ρn

(
〈y0, z̃n(0)〉H − 〈y1, z̃T,n〉H +

∫ T

0

〈B∗z̃n(t), g∗(t)〉 dt+

∫ T

0

〈f̃n(t), w∗(t)〉 dt+ ε‖(I − PE)z̃T,n‖H

)
6 J(zT,n, gn, wn, fn) 6 S. (2.7)

Using (2.4) and (2.6), one easily checks that necessarily,

lim
n→∞

(∫ T

0

‖B∗z̃n + g̃n‖2U dt+

∫ T

0

‖f̃n + w̃n‖2H dt

)
= 0. (2.8)

6



Now, since (z̃T,n, g̃n, w̃n, f̃n) are uniformly bounded in H × G ×W ×L2(0, T ;H) according to (2.6), and

since W is a finite-dimensional vector space, there exists (z̃T , g̃, w̃, f̃) ∈ H × G ×W × L2(0, T ;H) such
that

(z̃T,n) ⇀
n→∞

z̃T weakly in H, (2.9)

(g̃n) ⇀
n→∞

g̃ weakly in L2(0, T ;U), (2.10)

(w̃n) →
n→∞

w̃ strongly in L2(0, T ;H), (2.11)

(f̃n) ⇀
n→∞

f̃ weakly in L2(0, T ;H), (2.12)

and ∫ T

0

‖B∗z̃ + g̃‖2U dt+

∫ T

0

‖f̃ + w̃‖2H dt = 0, (2.13)

where z̃ is the solution of (1.14) with initial datum z̃T and source term f̃ . We thus deduce from the
unique continuation property (UC) that

z̃T = 0, g̃ = 0, w̃ = 0, f̃ = 0. (2.14)

The convergences (2.9)–(2.12) then imply that

lim
n→∞

(
〈y0, z̃n(0)〉H − 〈y1, z̃T,n〉H +

∫ T

0

〈B∗z̃n(t), g∗(t)〉 dt+

∫ T

0

〈f̃n(t), w∗(t)〉 dt

)
= 0 (2.15)

Therefore, based on (2.7), we necessarily have

lim
n→∞

‖(I − PE)z̃T,n‖H = 0. (2.16)

Since E is a finite dimensional vector space, with the convergence (2.9), we deduce that

(z̃T,n) →
n→∞

0 strongly in H. (2.17)

Besides, combining the strong convergence (2.11) with (2.8), we also have that

(f̃n) →
n→∞

0 strongly in L2(0, T ;H). (2.18)

The strong convergences (2.17) and (2.18) imply that the solution z̃n of z̃′n + A∗z̃n = f̃n in (0, T ) with
initial datum z̃n(T ) = z̃T,n strongly converges to 0 in L2(0, T ;H), so that B∗z̃n strongly converges to 0
in L2(0, T ;U) and, from (2.8), g̃n strongly converges to 0 in L2(0, T ;U). These strong convergences to 0
contradict condition (2.6). This concludes the proof of Lemma 2.1.

Remark 2.3. As noticed in [6], in fact the above proof shows the following slightly stronger coercivity
property:

lim inf
‖(zT ,g,w,f)‖H×G×W×L2(0,T ;H)→∞

J(zT , g, w, f)

‖(zT , g, w, f)‖H×G×W ×L2(0,T ;H)
> ε.

2.3 Proof of Lemma 2.2

Let (ZT , G,W,F ) denote the unique minimizer of J in H×G ×W ×L2(0, T ;H) and Z the corresponding
solution to (2.2). We will simply write down the Euler-Lagrange equation satisfied by (ZT , G,W,F ), the
only difficulty being the possible lack of regularity of the functional J if ‖(I − PE)ZT ‖H = 0.

We thus start with the case ‖(I − PE)ZT ‖H 6= 0. The functional J is then smooth locally around
(ZT , G,W,F ) and the Euler-Lagrange equation satisfied by (ZT , G,W,F ) yields: for all (zT , g, w, f) ∈
H × G ×W × L2(0, T ;H), denoting by z the corresponding solution of (1.14),

0 =

∫ T

0

〈B∗Z(t)+G(t), B∗z(t)+g(t)〉U dt+
∫ T

0

〈F (t)+W (t), f(t)+w(t)〉H dt+ 〈y0, z(0)〉H−〈y1, zT 〉H

+

∫ T

0

〈B∗z(t), g∗(t)〉U dt+

∫ T

0

〈f(t), w∗(t)〉H dt+ ε

〈
(I − PE)ZT
‖(I − PE)ZT ‖H

, zT

〉
H

. (2.19)
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In particular, taking g = 0 and w = 0 in the above formulation, for all (zT , f) ∈ H × L2(0, T ;H),

0 =

∫ T

0

〈B∗Z(t) +G(t) + g∗(t), B
∗z(t)〉U dt+

∫ T

0

〈F (t) +W (t) + w∗(t), f(t)〉H dt

+ 〈y0, z(0)〉H − 〈y1, zT 〉H + ε

〈
(I − PE)ZT
‖(I − PE)ZT ‖H

, zT

〉
H

.

Now, if we consider ỹ the solution of (1.1) with initial datum y0 and control function u = B∗Z +G+ g∗,
and multiply it by solutions z of (1.14) with zT ∈ H and f ∈ L2(0, T ;H), we get that

0 =

∫ T

0

〈B∗Z(t) +G(t) + g∗(t), B
∗z(t)〉U dt+

∫ T

0

〈ỹ(t), f(t)〉H dt+ 〈y0, z(0)〉H − 〈ỹ(T ), zT 〉H .

Thus, taking zT = 0 and arbitrary f ∈ L2(0, T ;H), one easily checks that

ỹ = F +W + w∗ in (0, T ),

i.e. that ỹ coincides with y given in (2.3). Taking then f = 0 and zT arbitrary in H, we deduce that

y(T ) = y1 − ε
(I − PE)ZT
‖(I − PE)ZT ‖H

,

which of course satisfies
‖y(T )− y1‖ 6 ε and PEy(T ) = PEy1.

We then have to check the properties (1.2) and (1.4). In order to do that, we simply consider (2.19) in
the case zT = 0 and f = 0: for all g ∈ G and w ∈ W ,

0 =

∫ T

0

〈B∗Z(t) +G(t), g(t)〉U dt+

∫ T

0

〈F (t) +W (t), w(t)〉H dt.

Consequently PG (B∗Z +G) = 0 and PW (F +W ) = 0. In view of the definition of y and u in (2.3), we
immediately deduce (1.2) and (1.4), thus concluding the proof of Lemma 2.2 when ‖(I − PE)ZT ‖H 6= 0.

In the case ‖(I − PE)ZT ‖H = 0, the functional J is not regular due to the last term in (2.1).
Still, one easily checks that (ZT , G,W,F ) is the minimizer of J if and only if for all (zT , g, w, f) ∈
H × G ×W × L2(0, T ;H),∣∣∣∣∣
∫ T

0

〈B∗Z(t) +G(t), B∗z(t) + g(t)〉U dt+

∫ T

0

〈F (t) +W (t), f(t) + w(t)〉H dt+ 〈y0, z(0)〉H

−〈y1, zT 〉H +

∫ T

0

〈B∗z(t), g∗(t)〉U dt+

∫ T

0

〈f(t), w∗(t)〉H dt

∣∣∣∣∣ 6 ε‖(I − PE)zT ‖H .

The arguments developed above then allow to conclude that (y, u) given by (2.3) satisfy the equations
(1.1) and that y(T ) satisfies, for all zT ∈ H,

|〈y(T )− y1, zT 〉H | 6 ε‖(I − PE)zT ‖H ,

which implies (1.3) and (1.5). The proofs of (1.2) and (1.4) then follow as before.

2.4 A remark: relaxing the linear constraint (1.4)

If we are interested only in a relaxation of the constraints (1.4) into

‖PW y − w∗‖L2(0,T ;H) 6 ε, (2.20)

this can be done under the conditions (H1)–(H5) and the unique continuation property (UC), even when
W is possibly of infinite dimension. To be more precise, we have the following result:
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Theorem 2.4 (Approximate controllability with linear projection constraints - relaxation of the projec-
tion on W ). Let the hypotheses (H1)–(H5) be satisfied, and let T > 0, and assume the unique continuation
property (UC).
Then for any y0 and y1 in H, ε > 0, g∗ ∈ G , and w∗ ∈ W , there exists a control functions u ∈ L2(0, T ;U)
such that (1.2) holds, the solution y of (1.1) satisfies (1.3), and the conditions (2.20) and (1.5).

Sketch of the proof. The proof of Theorem 2.4 simply consists in minimizing the functional

J̃(zT , g, w, f) =
1

2

∫ T

0

‖B∗z(t) + g(t)‖2U dt+
1

2

∫ T

0

‖f(t) + w(t)‖2H dt+ 〈y0, z(0)〉H − 〈y1, zT 〉H

+

∫ T

0

〈B∗z(t), g∗(t)〉U dt+

∫ T

0

〈f(t), w∗(t)〉H dt+ ε ‖(I − PE)zT ‖H + ε ‖w‖L2(0,T ;H) , (2.21)

defined for
(zT , g, w, f) ∈ H × G ×W × L2(0, T ;H).

where z denotes the solution of (1.14), instead of J in (2.1).
One can then follow the proof of Theorem 1.1, and remark that the only place which uses that W is

of finite dimension is for the proof of the convergence (2.11) in the proof of Lemma 2.1.
But, in fact, with the addition of the term ε ‖w‖L2(0,T ;H) in the functional J̃ , one can prove the

coercivity of J̃ as in Lemma 2.1: with the same notations as in the proof of Lemma 2.1, one can prove
the strong convergence of w̃n to 0 in L2(0, T ;H) similarly as what is done for z̃T,n. The detailed proof
is left to the reader.

Writing then the optimality conditions for the minimizers, similarly as in Lemma 2.2, we easily check
that the optimum of J̃ provides a solution to the control problem (1.2), (1.3), (2.20) and (1.5).

3 Exact controllability: Proof of Theorem 1.2

3.1 Strategy

We assume the hypotheses (H1)–(H4), we let T > 0, and we assume the unique continuation property
(UC), as well as the observability inequality (1.13) for solutions of (1.12).

The first part of the proof of Theorem 1.2 consists in showing the observability inequality (1.15) for
solutions of (1.14), proved in Section 3.2:

Lemma 3.1. Within the above setting, there exists a constant C > 0 such that for all (zT , g, w, f) ∈
H × G ×W × L2(0, T ;H), the solution z of (1.14) satisfies (1.15).

Once this lemma has been obtained, we proceed as in the proof of Theorem 1.1 with the formal choice
ε = 0. To be more precise, we set (y0, y1) ∈ H2, g∗ ∈ G , w∗ ∈ W , and introduce the functional

Jex(zT , g, w, f) =
1

2

∫ T

0

‖B∗z(t) + g(t)‖2U dt+
1

2

∫ T

0

‖f(t) + w(t)‖2H dt+ 〈y0, z(0)〉H − 〈y1, zT 〉H

+

∫ T

0

〈B∗z(t), g∗(t)〉U dt+

∫ T

0

〈f(t), w∗(t)〉H dt, (3.1)

defined for
(zT , g, w, f) ∈ H × G ×W × L2(0, T ;H),

where z denotes the solution of (1.14).
The strict convexity of Jex comes as in the proof of Lemma 2.1, while its coercivity immediately

follows from the observability property (1.15) obtained in Lemma 3.1.
We then consider the unique minimizer (ZT , G,W,F ) of Jex in H×G ×W ×L2(0, T ;H) and proceed

as in Lemma 2.2 to deduce a controlled trajectory y and a control function u which satisfy all the
requirements (in fact, it is even easier here as the functional Jex is differentiable everywhere in H × G ×
W × L2(0, T ;H)). Details of the proof are left to the reader.
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3.2 Proof of Lemma 3.1

For zT ∈ H, we introduce z̃ as the solution of z̃′ +A∗z̃ = 0 in (0, T ) and z̃(T ) = zT .
From the observability property (1.13), we thus get a constant C > 0 such that for all zT ∈ H,

‖zT ‖H 6 C ‖B∗z̃‖L2(0,T ;U) .

We then use that B∗ ∈ L (H,U) and that there exists C > 0 such that for all f ∈ L2(0, T ;H), the
solution z′f +A∗zf = f in (0, T ) and zf (T ) = 0 satisfies

‖zf‖L2(0,T ;H) 6 C ‖f‖L2(0,T ;H) .

Therefore, we easily get a constant C > 0 such that for all zT ∈ H and f ∈ L2(0, T ;H), the solution z
of (1.14) satisfies

‖zT ‖H 6 C ‖B∗z‖L2(0,T ;U) + C ‖f‖L2(0,T ;H) .

Indeed, this can be easily deduced by writing z̃ = z − zf and using the above estimates.
We then deduce the existence of a constant C > 0 such that for all (zT , g, w, f) ∈ H×G×W ×L2(0, T ;H),

‖(zT , g, w, f)‖H×G×W ×L2(0,T ;H)

6 C
(
‖B∗z‖L2(0,T ;U) + ‖f‖L2(0,T ;H) + ‖g‖L2(0,T ;U) + ‖w‖L2(0,T ;H)

)
. (3.2)

Now, we can deduce the observability inequality (1.15) by contradiction. Assume that we have a
sequence (zT,n, gn, wn, fn) ∈ H × G ×W × L2(0, T ;H) such that

∀n ∈ N, ‖(zT,n, gn, wn, fn)‖H×G×W ×L2(0,T ;H) = 1, (3.3)

and lim
n→∞

(
‖B∗zn + gn‖L2(0,T ;U) + ‖fn + wn‖L2(0,T ;H)

)
= 0. (3.4)

From (3.3) and the fact that G and W are of finite dimension, we obtain the following convergences:
there exists (zT , g, w, f) ∈ H × G ×W × L2(0, T ;H) such that

(zT,n) ⇀
n→∞

zT weakly in H, (3.5)

(gn) →
n→∞

g strongly in L2(0, T ;U), (3.6)

(wn) →
n→∞

w strongly in L2(0, T ;H), (3.7)

(fn) ⇀
n→∞

f weakly in L2(0, T ;H), (3.8)

and ∫ T

0

‖B∗z + g‖2U dt+

∫ T

0

‖f + w‖2H dt = 0, (3.9)

where z is the solution of (1.14). It follows from (UC) that zT = 0, g = 0, w = 0 and f = 0. Thus, in
view of the strong convergences (3.6)–(3.7), the condition (3.4) implies that B∗zn strongly converges to
0 in L2(0, T ;U) and fn strongly converges to 0 in L2(0, T ;H), making the condition (3.3) incompatible
with the observability estimate (3.2). This completes the proof of Lemma 3.1.

4 Null controllability: Proofs of Theorem 1.4 and Proposi-
tion 1.5

4.1 Proof of Theorem 1.4

We assume the hypotheses (H1)–(H4), we let T > 0, and we assume the observability inequality (1.16)
for solutions of (1.14).
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We then take y0 ∈ H, g∗ ∈ G , w∗ ∈ W , and introduce the functional

Jn(zT , g, w, f) =
1

2

∫ T

0

‖B∗z(t) + g(t)‖2U dt+
1

2

∫ T

0

‖f(t) + w(t)‖2H dt+ 〈y0, z(0)〉H

+

∫ T

0

〈B∗z(t), g∗(t)〉U dt+

∫ T

0

〈f(t), w∗(t)〉H dt, (4.1)

defined for
(zT , g, w, f) ∈ H × G ×W × L2(0, T ;H).

where z denotes the solution of (1.14).
In view of the observability inequality, it is natural to introduce the norm

‖(zT , g, w, f)‖2obs =

∫ T

0

‖B∗z(t) + g(t)‖2U dt+

∫ T

0

‖f(t) + w(t)‖2H dt, (4.2)

where z solves (1.14), and one easily checks that J is coercive for this norm.
However, it is in general not true that this norm corresponds to the H×G ×W ×L2(0, T ;H) topology.

We should thus define

Xobs = {(zT , g, w, f) ∈ H × G ×W × L2(0, T ;H)}
‖·‖obs

, (4.3)

i.e. the completion of H × G ×W × L2(0, T ;H) for the topology induced by the norm ‖·‖obs.
Then, according to the observability estimate (1.16), the functional Jn is continuous for the topology

induced by ‖·‖obs. It can thus be extended by continuity to the space Xobs, and we will denote this
extension by Jn as well with a slight abuse of notations. Besides, the observability estimate (1.16)
also yields that the functional Jn is also coercive and strictly convex in Xobs. It thus admits a unique
minimizer (ZT , G,W,F ) in Xobs.

Writing the corresponding Euler-Lagrange equations, we can proceed as in the proof of Lemma 2.2 and
deduce that, taking the control u and the trajectory y as in (2.3), we can solve the null-controllability
problem (1.7) with the constraints (1.2), (1.4) on the projection of the control and of the trajectory.
Details are left to the reader.

4.2 Proof of Proposition 1.5

We place ourselves in the setting of Proposition 1.5. The proof of Proposition 1.5 is rather close to the
one of Lemma 3.1.

First, we start by remarking that one can immediately deduce from the observability inequality (1.19)
for solutions of (1.12) that there exists a constant C > 0 such that for all zT ∈ H and f ∈ L2(0, T ;H),
the solution of (1.14) satisfies∥∥∥z(T̃ )

∥∥∥
H

6 C
(
‖B∗z‖L2(0,T ;U) + ‖f‖L2(0,T ;H)

)
. (4.4)

Then, to prove the observability inequality (1.16), we use a contradiction argument. Namely we
consider a sequence (zT,n, gn, wn, fn) ∈ H × G ×W × L2(0, T ;H) such that

∀n ∈ N, ‖(zn(0), gn, wn, fn)‖H×G×W ×L2(0,T ;H) = 1, (4.5)

and lim
n→∞

(
‖B∗zn + gn‖L2(0,T ;U) + ‖fn + wn‖L2(0,T ;H)

)
= 0. (4.6)

From (4.5) and (4.6), we deduce from (4.4) that ‖zn(T̃ )‖H is uniformly bounded.
Using thus (4.5) and (4.6) and the fact that G and W are of finite dimension, we obtain the following

convergences: there exists (zT̃ , g, w, f) ∈ H × G ×W × L2(0, T ;H) such that

(zn(T̃ )) ⇀
n→∞

zT̃ weakly in H, (4.7)

(gn) →
n→∞

g strongly in L2(0, T ;U), (4.8)

(wn) →
n→∞

w strongly in L2(0, T ;H), (4.9)

(fn) ⇀
n→∞

f weakly in L2(0, T ;H), (4.10)
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and ∫ T̃

0

‖B∗z + g‖2U dt+

∫ T

0

‖f + w‖2H dt = 0, (4.11)

where z is the solution of {
z′ +A∗z = f, t ∈ (0, T̃ ),

z(T̃ ) = zT̃ ,
(4.12)

We can then use the unique continuation property (1.18) to get that zT̃ = 0, g = 0, w = 0 and f = 0.
Besides, from (4.6) and the strong convergences (4.8)–(4.9) (recall that g = 0 and w = 0), we get that

lim
n→∞

(
‖B∗zn‖L2(0,T ;U) + ‖fn‖L2(0,T ;H)

)
= 0,

so that from (4.4), we obtain that
lim
n→∞

‖zn(T̃ )‖H = 0.

From the two above convergences, we easily deduce that

lim
n→∞

(
‖zn(0)‖H + ‖fn‖L2(0,T ;H)

)
= 0. (4.13)

With the strong convergences (4.8)–(4.9) (recall that g = 0 and w = 0), this contradicts the assumption
(4.5). This completes the proof of Proposition 1.5.

5 Examples

The goal of this section is to derive several instances in which the unique continuation property (UC) can
be proved. We do not aim at giving the most general setting for each instance, but rather at describing
possible strategies to prove the unique continuation property (UC) for some specific spaces W and G .

5.1 Example 1. W = {0} and G containing functions supported on (0, T ′)
with T ′ ∈ (0, T ).

Example 1 focuses on the following case. We let T > 0, T ′ ∈ (0, T ), and we choose

G = {g ∈ L2(0, T ;U), g = 0 in (T ′, T )}, W = {0}, (5.1)

where T ′ ∈ (0, T ) is such that

If z satisfies

 z′ +A∗z = 0, for t ∈ (T ′, T ),
z(T ) = zT ∈ H,
B∗z = 0, for t ∈ (T ′, T ),

then zT = 0. (5.2)

Then condition (UC) is easy to check, so that Theorem 1.1 applies.
Of course, this case is somehow a straightforward case, as the unique continuation property (5.2)

implies that given any yT ′ , y1 ∈ H2, and any ε > 0, there exists a control function u ∈ L2(T ′, T ;U) such
that the solution y of

y′ = Ay +Bu, t ∈ (T ′, T ), with y(T ′) = yT ′ (5.3)

satisfies (1.3).
Thus, if one wants to approximately control (1.1) and to impose the condition PGu = g∗ for some

g∗ ∈ G , the simplest thing to do is to take u = g∗ in (0, T ′), call yT ′ the state obtained by solving the
equation (1.1) on (0, T ′) starting from y0, and then use the above approximate controllability property
to conclude the argument.

More interesting results arise when considering exact controllability result with a subspace G of finite
dimension when the time of unique continuation (equivalently of approximate controllability) and the
time of observability (equivalently of exact controllability) do not coincide.
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Such an instance is given by the wave equation. Let Ω be a smooth bounded domain of Rd and ω a
non-empty subdomain of Ω, and consider the controlled wave equation: ∂tty −∆y = uχω, for (t, x) ∈ (0, T )× Ω,

y(t, x) = 0, for (t, x) ∈ (0, T )× ∂Ω,
(y(0, ·), ∂ty(0, ·)) = (y0, y1), for x ∈ Ω.

(5.4)

Here, the state is given by Y = (y, ∂ty) and u is the control function. The function χω is the indicator
function of the set ω. This system writes under the form (1.1) with

Y =

(
y
∂ty

)
, A =

(
0 Id
∆ 0

)
, B =

(
0
χω

)
, (5.5)

with H = H1
0 (Ω)× L2(Ω), D(A) = H2 ∩H1

0 (Ω)×H1
0 (Ω), U = L2(ω).

The following facts are well-known:

• The wave equation (5.4) is approximately controllable if

T > TAC := 2 sup
Ω
d(x, ω),

where d denotes the geodesic distance in Ω. This is a consequence of Holmgren’s uniqueness
theorem, see [23, 24].

• The wave equation (5.4) is exactly controllable in time T if (and only if) the so-called geometric
control condition is satisfied, see [2, 3, 4]. Roughly speaking, this consists in saying that all the
rays of geometric optics meet the domain ω before the time T . We call TEC the critical time for
exact controllability.

Of course, the critical time of exact controllability is always larger than the one of approximate controlla-
bility, but our results will be of interest only when TEC is strictly larger than TAC , that we assume from
now on. This happens, for instance, in the case of the wave equation in the 2-d unit square Ω = (0, 1)2 ob-
served from a δ-neighborhood of two consecutive sides, in which TAC = 2(1− δ) and TEC = 2

√
2(1− δ).

We then choose:

T > TEC , T ′ ∈ (0, T ) such that T − T ′ > TAC ,

G a finite dimensional subspace of {g ∈ L2(0, T ;L2(ω)), g = 0 in (T ′, T )× ω}, W = {0}. (5.6)

We then claim the following result:

Theorem 5.1. Let us consider the setting of (5.6). Then for all (y0, y1) ∈ H1
0 (Ω)×L2(Ω) and (yT0 , y

T
1 ) ∈

H1
0 (Ω)× L2(Ω), for all g ∈ G , there exists a control function u ∈ L2(0, T ;L2(ω)) such that the solution

y of (5.4) starting from (y0, y1) satisfies (y(T ), ∂ty(T )) = (yT0 , y
T
1 ) in Ω and PGu = g.

This result is an easy consequence of Theorem 1.2 in the setting corresponding to the wave equa-
tion. We shall thus check the main two assumptions in Theorem 1.2. The first one is that the unique
continuation property (5.2) holds for the adjoint of the wave equation, which is given by ∂ttz −∆z = 0, for (t, x) ∈ (0, T )× Ω,

z(t, x) = 0, for (t, x) ∈ (0, T )× ∂Ω,
(z(T, ·), ∂tz(T, ·)) = (z0, z1), for x ∈ Ω.

(5.7)

Indeed, Holmgren’s uniqueness theorem [13, 11] gives that if a solution z of (5.7) with initial datum in
L2(Ω)×H−1(Ω) satisfies z(t, x) = 0 for (t, x) ∈ (T ′, T )× ω, then z vanishes identically on (T ′, T )× Ω.
Therefore, the unique continuation property (UC) is satisfied here.
The second assumption to check is the following observability inequality: there exists C > 0 such that
for all solutions z of (5.7) with (z0, z1) ∈ L2(Ω)×H−1(Ω),

‖(z0, z1)‖L2(Ω)×H−1(Ω) 6 C ‖zχω‖L2((0,T )×ω) . (5.8)
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This inequality is equivalent to the exact controllability of the wave equation (see [15]), and is thus
satisfied when the wave equation is exactly controllable, i.e. when T > TEC (In fact, the proof of exact
controllability of the wave equation in [2, 3] relies on the proof of (5.8)).

On this example, it clearly appears that G has to be of finite dimension. Indeed, Theorem 5.1 could
not be true when taking G = {g ∈ L2(0, T ;L2(ω)), g = 0 in (T ′, T )}. Otherwise, imposing PGu = 0, one
should be able to steer solutions of (5.4) from any initial datum to any final datum in H1

0 (Ω)×L2(Ω) with
controls vanishing on (0, T ′). It is then not difficult to check that this would imply exact controllability
of the wave equation in time T − T ′, which could be taken smaller than TEC if TAC < TEC .

5.2 Example 2. The case G = {0}, when B∗z = 0 implies that w = 0.

To start with, we consider the case G = {0}.
To motivate the functional setting given afterwards, we start with the example of the heat equation

in Ω with a distributed control supported in a non-empty open subset ω, namely ∂ty −∆y = uχω, for (t, x) ∈ (0, T )× Ω,
y(t, x) = 0, for (t, x) ∈ (0, T )× ∂Ω,
y(0, ·) = y0, in Ω.

(5.9)

and we assume that the vector space W is a vector space of L2(0, T : L2(Ω)) such that

Πω : f 7→ f |ω satisfies Ker (Πω|W ) = {0}. (5.10)

Here, we did not make precise the space on which Πω is defined, but in view of our applications below,
it is natural to define it as going from L2(0, T ;L2(Ω)) to L2(0, T ;L2(ω)). Note that this example is
borrowed from [21, 19, 20] and is also closely related to the condition (6.5) in [17].

To make it fit into the abstract setting of (1.1), it suffices to take

A = ∆, in H = L2(Ω), with D(A) = H2 ∩H1
0 (Ω), and B = χω, with U = L2(ω). (5.11)

The corresponding unique continuation property (UC) writes as follows: if z satisfies ∂tz + ∆z = w, for (t, x) ∈ (0, T )× Ω,
z(t, x) = 0, for (t, x) ∈ (0, T )× ∂Ω,
z(T, ·) = zT , in Ω,

(5.12)

with zT ∈ L2(Ω) and w ∈ W , and
z(t, x) = 0 in (0, T )× ω, (5.13)

then one should have w = 0 and zT = 0. This is indeed the case provided (5.10) holds. Indeed, (5.13)
implies that ∂tz+ ∆z = 0 in H−2((0, T )×ω), so that Πω(w) = 0, and thus from (5.10), w = 0. One can
then deduce that z = 0 in (0, T )×Ω from classical unique continuation properties for the heat equation.

We can then use that the heat equation is null-controllable in any time T > 0, see [9, 14], or
equivalently final state observable at any time, meaning that for all T > 0, there exists C such that any
solution z of (5.12) with zT ∈ L2(Ω) and w = 0 satisfies

‖z(0)‖L2(Ω) 6 C ‖zχω‖L2((0,T )×ω) .

Therefore, combining Proposition 1.5 and Theorem 1.4, we get that if W is of finite dimension and satisfies
condition (5.10), then for any y0 ∈ L2(Ω) and w ∈ W , there exists a control function u ∈ L2(0, T ;L2(ω))
such that the controlled trajectory y of (5.9) starting from y0 satisfies y(T ) = 0 and PW y = w. (The
existence of T ′ < T such that Πω,T ′ : f 7→ f |ω×(0,T ′) satisfies Ker (Πω,T ′ |W ) = {0} can be proved easily
by contradiction using the fact that Ker (Πω,T |W ) = {0} and W is of finite dimension.)

In fact, the above example can be put into a much more abstract setting, by assuming that the space
W is such that

∃ two linear operators K and L s.t.


K : L2(0, T ;H) 7→ H for some Hilbert space H,
L : L2(0, T ;U) 7→ H,
K(∂t +A∗) = LB∗,
Ker (K|W ) = {0}.

(5.14)
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The above example fits into this setting with K being the restriction operator to (0, T ) × ω and L =
(∂t + ∆) and H = H−2((0, T )× ω).

Now, if W satisfies (5.14) and for some w ∈ W and z ∈ C0([0, T ];H),

(∂t +A∗)z = w and B∗z = 0, in (0, T ),

then
Kw = K((∂t +A∗)z) = LB∗z = 0,

so that w = 0 according to the condition Ker (K|W ) = {0}. In particular, the classical unique continua-
tion property (1.11) would then imply the more involved unique continuation property (UC).

Of course, there is a completely symmetric statement when considering W = {0} and G such that

∃ two linear operators K and L s.t.


K : L2(0, T ;H) 7→ H for some Hilbert space H,
L : L2(0, T ;U) 7→ H,
K(∂t +A∗) = LB∗,
Ker (L|G ) = {0}.

(5.15)

In the above example (5.9) for instance, when G = Span {g} for some g ∈ L2(0, T ;L2(ω)) such
that ‖(∂t + ∆)g‖H−2((0,T )×ω) 6= 0, then the above condition is satisfied with K : L2(0, T ;L2(Ω)) →
H−2((0, T )× ω) the usual restriction operator and L = ∂t + ∆ : L2(0, T ;L2(ω))→ H−2((0, T )× ω).

In fact, under condition (5.14) or (5.15), it is not even needed to assume that one of the two vector
spaces W or G is reduced to {0} if we have that (w, g) ∈ W × G 7→ Kw + Lg is injective.

5.3 Example 3. Using time differentiation to go back to a classical unique
continuation property

In order to motivate the introduction of our abstract setting, let us consider again the heat equation
(5.9) in the case W = Span {eµtwµ(x)} for some µ ∈ R and wµ ∈ L2(Ω) (In fact, this example is inspired
by the previous work [5, Theorem 4.4 and Lemma 4.6]). Then to prove the unique continuation property
(UC), we want to prove that if z satisfies ∂tz + ∆z = aµe

µtwµ, for (t, x) ∈ (0, T )× Ω,
z(t, x) = 0, for (t, x) ∈ (0, T )× ∂Ω,
z(T, ·) = zT , in Ω,

(5.16)

with zT ∈ L2(Ω) and aµ ∈ R, and
z(t, x) = 0 in (0, T )× ω, (5.17)

then aµ = 0 and z vanishes everywhere in (0, T )× Ω.
In order to solve this problem, the basic idea is again to “kill” the source term by applying a suitable

operator. Here, in view of the time dependence of the source term, it is natural to apply ∂t − µ to the
equation (5.16). In particular, if we set z̃ = (∂t − µ)z, we obtain that{

∂tz̃ + ∆z̃ = 0, for (t, x) ∈ (0, T )× Ω,
z̃(t, x) = 0, for (t, x) ∈ (0, T )× ∂Ω,

and z̃(t, x) = 0 in (0, T )× ω, (5.18)

Using then the classical unique continuation property for the heat equation, we deduce that z̃ = 0 in
(0, T ) × Ω, so that ∂tz = µz. In particular, this implies that there exists a function zµ ∈ H1

0 (Ω) such
that for all (t, x) ∈ (0, T )× Ω, z(t, x) = eµtzµ(x). According to (5.16), we then deduce{

(µ+ ∆)zµ = aµwµ, for x ∈ Ω,
zµ(x) = 0, for x ∈ ∂Ω,

and zµ(x) = 0 in ω, (5.19)

Therefore, to conclude the argument, i.e. to deduce that zµ = 0 in Ω, we need to assume that wµ is such
that there are no solution Zµ of {

(µ+ ∆)Zµ = wµ, for x ∈ Ω,
Zµ(x) = 0, for x ∈ ∂Ω,

(5.20)
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which satisfies Zµ = 0 in ω.
In our setting, we shall thus distinguish two cases depending if µ belongs to the spectrum of the

Laplacian or not. Let us denote by λj the family of eigenvalues of the Laplace operator A = −∆ defined on
H = L2(Ω) with domain D(A) = H2∩H1

0 (Ω), indexed in increasing order 0 < λ1 6 λ2 6 · · · 6 λj 6→∞,
and Hj = Ker (∆ + λj) the corresponding eigenspace.

If µ /∈ {λj , j ∈ N}, then the solution of (5.20) is unique and therefore we shall ask that ‖Zµ‖L2(ω) 6= 0.
If µ = λj , then according to the Fredholm alternative,

• If PHj
wµ 6= 0, then there is no solution Zµ of (5.20) (where PHj

is the orthogonal projection on
Hj).

• If PHjwµ = 0, then any solution Zµ of (5.20) writes Z∗µ + Φj , where PHj (Z∗µ) = 0 and Z∗µ solves
(5.20), and with Φj ∈ Hj . Therefore, to guarantee that there are no solution Zµ of (5.20) such
that Zµ = 0 in ω, we should assume that

inf
Φj∈Hj

∥∥Z∗µ + Φj
∥∥
L2(ω)

> 0.

In the above example, we made the choice of presenting what happens when G = {0} and W =
{eµtwµ}, but in fact the strategy developed is much more general.

Namely, we have the following result:

Theorem 5.2. Assume (H1)–(H2), and let A be the generator of an analytic semigroup on H.
Let K ∈ N, (µk)k∈{1,·,K} be a family of real numbers two by two distinct, Wk be a family of closed

vector spaces included in H such that

Any function z satisfying (µk +A∗)z ∈ Wk and B∗z = 0 vanishes identically, (5.21)

and set
W = Span {eµktwk, for k ∈ {1, · · · ,K}, and wk ∈ Wk}. (5.22)

Let J ∈ N, (ρj)j∈{1,·,J} be a family of real numbers two by two distinct, Gj be a family of closed vector
spaces included in U such that

Any function z satisfying (ρj +A∗)z = 0 and B∗z ∈ Gj vanishes identically,, (5.23)

and set
G = Span {eρjtgj , for j ∈ {1, · · · , J}, and gj ∈ Gj}. (5.24)

We also assume that

{µk, k ∈ {1, · · · ,K}} ∩ {ρj , j ∈ {1, · · · , J}} = ∅. (5.25)

Finally, we also assume that the classical unique continuation property (1.11) holds.
Then the unique continuation property (UC) is satisfied.

Before going into the proof of Theorem 5.2, let us comment the assumptions.
Assumption (5.21) is similar to the requirement given in the above example that any z solving (5.19)

should vanish identically. In fact, as stated above, if Wk is a one-dimensional vector space Span (wk)
and µk does not belong to the spectrum of −A∗, then one only has to check that the solution zk of
(µ+A∗)zk = wk satisfies ‖B∗zk‖U 6= 0.

Assumption (5.23) is slightly different. In particular, if ρj does not belong to the spectrum of −A∗,
there are no non-trivial solution of (ρj +A∗)z = 0 so that condition (5.23) is automatically satisfied.

Finally, the condition (5.25) is there to avoid coupling of the elements of G and W . Otherwise, it
could be replaced by the following condition: If ν ∈ {µk, k ∈ {1, · · · ,K}} ∩ {ρj , j ∈ {1, · · · , J}}, then
we write ν = µk = ρj and we should assume that

Any function z satisfying (ν +A∗)z ∈ Wk and B∗z ∈ Gj vanishes identically.

Let us also comment that we assumed in Theorem 5.2 that all the coefficients are real because we are
thinking at real vector spaces, but the coefficients µk and ρj can of course be taken as complex numbers
provided we endowed our functional setting with a complex structure.
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Proof. We consider a solution z of (1.8) with some source term w ∈ W , satisfying (1.9) for some g ∈ G .
In order to prove Theorem 5.2, the basic idea is to apply the operator

P =

K∏
k=1

(∂t − µk)

J∏
j=1

(∂t − ρj)

to z, since for any w ∈ W and g ∈ G , Pw = 0 and Pg = 0.
To justify this computation, we need to guarantee that z has some nice time regularity properties.

This is guaranteed by the fact that the semigroup of generator A is analytic, so that z is in fact analytic
in time on [0, T ) (recall that the source term of z solution of (1.8) is an element of W , which is also
analytic in time).

Therefore, one should have that

(Pz)′ +A∗(Pz) = 0 t ∈ (0, T ), and B∗Pz = 0 on (0, T ),

while Pz ∈ C0([0, T ), H). Using that A (thus A∗) generates an analytic semi-group, we deduce that for
all T ′ ∈ (0, T ), p̃ given as the solution of

p̃′ +A∗p̃ = 0 for t ∈ (0, T ), with p̃(T ) = Pz(T ′),

satisfies B∗p̃ = 0 in (0, T ). Hence the unique continuation condition (1.11) implies that p̃ = 0 on (0, T ),
and in particular that Pz = 0 in [0, T ′). As T ′ is arbitrary in (0, T ), Pz = 0 in [0, T ).

It then follows that there exists (zk)k∈{1,··· ,K} and (zj)j∈{1,··· ,J} in H such that for t ∈ [0, T ),

z(t) =

K∑
k=1

zke
µkt +

J∑
j=1

zje
µjt.

Now, writing that z solves (1.8) with some source term w ∈ W , and satisfies (1.9) with some g ∈ G ,
using the definitions of W and G and the independence of the family (eµkt)k∈{1,··· ,K}, (e

ρjt)j∈{1,··· ,J},
we see that each zk should satisfy

(µk +A∗)zk ∈ Wk, and B∗zk = 0,

while each zj should satisfy
(ρj +A∗)zj = 0, and B∗zk ∈ Gj .

Conditions (5.21) and (5.23) then imply that z vanishes identically, and thus that zT = 0, g = 0 and
w = 0. This proves the unique continuation property (UC).

Remark 5.3. In fact, the above proof works as well if W and G are such that there exists an interval
of time (T1, T2) ⊂ [0, T ] such that

W = Span {fk(t)wk, k ∈ {1, · · · ,K}, wk ∈ Wk, fk = fk(t) s.t. fk(t) = eµkt on (T1, T2)},
G = Span {fj(t)gj , j ∈ {1, · · · , J}, gj ∈ Gj , fj = fj(t) s.t. fj(t) = eρjt on (T1, T2)},

with µk, Wk, ρj and Gj as in Theorem 5.2.

6 Further comments

We would like to end up this article with a number of comments.

6.1 Fenchel Rockafellar theorem

In fact, our results and proofs can be fit into the framework of Fenchel Rockafellar convex-duality theory
[22], [16]. Using this theory, the minimization problem of the functionals we consider in the proof of
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Theorem 1.1 (respectively, Theorem 1.2, or Theorem 1.4) can be interpreted as the dual problem of the
one which consists in minimizing ∫ T

0

‖y(t)‖2H dt+

∫ T

0

‖u(t)‖2U dt,

among all the controls u ∈ L2(0, T ;U) and corresponding controlled trajectories y given by (1.1) such
that (y, u) satisfy all the conditions of Theorem 1.1 (resp., Theorem 1.2, or Theorem 1.4).

In fact, this duality theory is very helpful to reduce the proof of control results to suitable unique
continuation and observability properties for the adjoint equation. We refer for instance to the recent
work [25] for developments related to stabilization properties.

6.2 Operators with time variable coefficients

Here, for sake of simplicity, we consider a controlled equation given by (1.1) with coefficients which are
independent of time. But this is in fact not really needed and we can consider equations which writes as
y′ = A(t)y +Bu for t ∈ (0, T ) provided it can be endowed with a suitable functional setting.

For instance, if we consider a heat type equation ∂ty −∆y + a0(t, x)y = uχω, for (t, x) ∈ (0, T )× Ω,
y(t, x) = 0, for (t, x) ∈ (0, T )× ∂Ω,
y(0, ·) = y0, in Ω,

(6.1)

for some a0 = a0(t, x) ∈ L∞((0, T )× Ω), the same strategy as above applies immediately. In particular,
the relevant unique continuation property (corresponding to (UC)) writes as follows: if z satisfies ∂tz + ∆z = a0(t, x)z + w, for (t, x) ∈ (0, T )× Ω,

z(t, x) = 0, for (t, x) ∈ (0, T )× ∂Ω,
z(T, ·) = zT , in Ω,

(6.2)

with zT ∈ L2(Ω) and w ∈ W , and

z(t, x) = g(t, x) in (0, T )× ω, (6.3)

for some g ∈ G , then
zT = 0, g = 0, w = 0. (6.4)

It is also clear under this form that the approach proposed in Section 5.3 will not apply easily in such
settings.

In fact, we refer to [19, 20] for examples in which time-dependent potentials are considered, and
even semi-linear parabolic systems, under conditions which correspond to the ones given in Section 5.2.
According to the above remark, these are rather natural conditions to ensure the unique continuation
property (6.2)–(6.3)–(6.4).

6.3 More general settings

It would be interesting to further develop the approach presented here to a more general abstract setting.
One might consider for instance the case of unbounded control operator.

In fact, it is quite clear that provided B is an admissible control operator, in the sense of [26, Chapter
4], the proofs of Theorem 1.1, Theorem 1.2, and Theorem 1.4 apply without any change, since the
functionals J in (2.1), (3.1) and (4.1) are still continuous on H × G ×W × L2(0, T ;H) in this case.

One could also try to adapt our results in a non-hilbertian framework and rather deal with Banach
spaces, similarly as in [6] in the context of parabolic equations, since this is sometimes more appropriate
depending on the equations under considerations.

It would also be interesting, as suggested by Günther Leugering, who I hereby thank, to address
similar questions with constraints on the control space restricting the control to be at all time in some
bounded convex set (for instance balls), similarly as what is done in [1]. This question is of major interest
for practical applications of control theory.

18



6.4 Cost of controllability in G and W

It would be interesting to try to quantify the cost of controlling the projections on G and W in the spirit
of what has been done in [8]. There, the cost of the approximate controllability problem (1.3), (1.5) for
some finite dimensional space E (that is, corresponding to G = {0} and W = {0}) was discussed for
heat equations.

6.5 Moment approaches

In the special case in which the equation (1.1) is the one-dimensional heat equation on an interval
Ω = (0, 1) with Dirichlet boundary conditions controlled at one end, for which the control u is looked for
in L2(0, T ) (that is, U = R) and G = Span {t 7→ eµt}, W = {0}, one could solve the null-controllability
problem (1.2)–(1.7) using a moment approach similar to the one developed in [7]. However, this becomes
less clear when G = Span {g = g(t)} for some arbitrary function g in L2(0, T ) not necessarily of the form
of an exponential. It would be interesting to try to develop a moment approach which would recover the
results in Theorem 1.4 in such case.

In fact, it would be tempting to similarly address the exact controllability problem (1.2)–(1.6) for
1-d wave equation using Ingham’s type argument [12]. But here again when G = Span {g(t)} for some
arbitrary function g in L2(0, T ) not necessarily exponential, this does not seem so clear either.

Actually, we are not aware in the literature of a proof of approximate controllability (i.e. of controls
such that the trajectory y of (1.1) satisfies (1.3)) which is based on the construction of the control
through a moment approach, for instance in the case of the heat equation on a half line controlled at the
boundary. In fact, even if such an approach could be developed, it is not clear how it could be adapted to
solve the approximate controllability problem (1.2)–(1.3) for G = Span {g = g(t)} with g not of the form
of an exponential. It would be very interesting to develop such approaches, in particular to precisely
address the cost of controlling the projection on G and W mentioned in Section 6.4.
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[11] L. Hörmander. The analysis of linear partial differential operators. I, volume 256 of Grundlehren
der Mathematischen Wissenschaften. Springer-Verlag, Berlin, second edition, 1990. Distribution
theory and Fourier analysis.

[12] A. E. Ingham. Some trigonometrical inequalities with applications to the theory of series. Math.
Z., 41(1):367–379, 1936.

[13] F. John. On linear partial differential equations with analytic coefficients. Unique continuation of
data. Comm. Pure Appl. Math., 2:209–253, 1949.

[14] G. Lebeau and L. Robbiano. Contrôle exact de l’équation de la chaleur. Comm. Partial Differential
Equations, 20(1-2):335–356, 1995.
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[18] P. Lissy, Y. Privat, and Y. Simporé. Insensitizing control for linear and semi-linear heat equations
with partially unknown domain. working paper or preprint, September 2017.

[19] G. Massengo Mophou and O. Nakoulima. Sentinels with given sensitivity. European J. Appl. Math.,
19(1):21–40, 2008.

[20] G. Massengo Mophou and O. Nakoulima. Null controllability with constraints on the state for the
semilinear heat equation. J. Optim. Theory Appl., 143(3):539–565, 2009.
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[25] E. Trélat, G. Wang, and Y. Xu. Characterization by observability inequalities of controllability and
stabilization properties. Pure and Applied Analysis, to appear.

[26] M. Tucsnak and G. Weiss. Observation and control for operator semigroups. Birkhäuser Advanced
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