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Abstract—In this paper, we consider the problem of estimat-
ing the attitude of a rigid body who is subject to non-negligible
external acceleration, based on the measurements provided by a
classical IMU unit: gyroscope, accelerometer and magnometer.
Two algorithms are proposed, based on the combination of
a low-pass filter in the fixed inertial frame and an observer.
The stability of the proposed schemes are proved, based on
a Lyapunov approach. Simulations are provided in order to
illustrate the performances of the proposed observers.

I. INTRODUCTION
The estimation of attitude for a rigid body has been a great

subject of interest for the last decades. An estimation of the
attitude is indeed needed in many fields such as robotics
[27], bio-logging [11], indoor positioning [30] or UAV [10].
Nowadays, the estimation of orientation is usually based on
the measurement of two vectors in some body fixed frame
whose reference value in an inertial fixed frame (usually earth
fixed frame) is known, together with the angular velocity in
body fixed frame. This usual configuration is mainly due to
the development of low-cost systems equipped with MEMS
inertial measurement unit, which contains an accelerometer,
a magnometer and a gyroscope.

Many approaches have been developed for the reconstruc-
tion of the attitude, using these measurements. They can be
divided into three main approaches (surveys can be found
in [9] and [37] for example). The first category contains
optimization based approaches and is usually referred to
as the Wahba’s problem [36], [7]. For this approach, no
filtering is performed and only the measurements at time t
is used for the estimation of the orientation at time t. The
second approach is based on stochastic filtering and contains
different types of Kalman filters, such as EKF [20], [38],
UKF [8] or particle filter [28]. Though providing interesting
results, the main drawback is that convergence cannot be
ensured in general and the tuning of the gains might not be
easy. The third approach is based on nonlinear observers.
The main advantage of this approach is that a large domain
of convergence can be ensured and the tuning of the gains
can be done through a systematic procedure. These observers
can be designed directly on S0(3) [18], [5], [35], [22] or on
R3×3 (forgetting the underlying geometry structure) [1], [2],
[25].

These approaches give satisfactory results when the con-
sidered body is subject to only low magnitude external
acceleration. Indeed, it is usually assumed that the accelerom-
eter provide a measurement of the gravity only, neglecting
external acceleration. But this is generally not the case when
medium to high acceleration are considered, which can occur
when considering mobile robots such as UAV [13] or even
when a smartphone is carried by a pedestrian [26].

In order to alleviate this problem, different solutions have
been considered. Additional measurements have been con-
sidered, such as position provided by a GPS [13], [15],
or velocity either in inertial frame [21], [12], [31] or in
body fixed frame [4], [34], [14]. This allows to obtain an
estimation of the external acceleration and thereby correcting
the fact that the magnometer does not measure only the
gravity in the body fixed frame. A second approach consists
in using a model for the acceleration, but this can be used
only for specific cases where such a model exists and is
known such as in some robotic vehicles, for example for
quadrotors [23], [24]. Another approach consists in using
the fact that the norm of the accelerometer is known when
there is no external acceleration, the difference µ between the
norm of the measured acceleration and the gravity constant
should actually be equal to zero. In [29], [32], [17], the
accelerometer are discarded in the update phase if the value
of µ is too high. Residual errors are used in [33], [19] to
detect external acceleration. In [30], the update phase of the
Kalman filter is only performed during periods considered as
quasi static field, which is defined as a period of low variance
of measurements.

No observer-based approach, with proof of stability, taking
explicitly into account non negligible external acceleration
without extra measurements or extra knowledge on the exter-
nal acceleration model exists. An approach is then proposed
here based on the assumption that the acceleration in the
inertial frame can be decomposed into a low frequency
component equal to the known constant gravity vector and an
high frequency component equal to the external acceleration.
It should be noted that this assumption is not true for the
measured acceleration, since the measurements are done in



the body fixed frame, which means that one cannot directly
apply a low pass filter to the measured acceleration unless the
angular velocity is very low. The proposed attitude estimator
is composed of a first order low pass filter together with an
observer. Furthermore the considered estimator forgets the
underlying geometry of SO(3), which means that the esti-
mates belong to R3×3. The drawback is that the dimension
of the observer increases, but the advantage is that there is no
topological limitation, unwinding phenomena or singularities
for achieving global stability due the structure of SO(3) [3],
[6]. Two observers are proposed here. A first observer is
based on a coordinate transformation which allows to obtain
a linear error system, but the computation of the observer
gain implies computing the inverse of a time-varying matrix.
A second observer is then proposed with a different gain,
which does not involve computing the inverse of this matrix.

The paper is organized as follows. The model used to
design the observer is depicted in section II, together with
some notations. Section III contains the proposed observers.
The considered low-pass filter is given in subsection III-A.
The two observers are presented in subsections III-B and
III-C respectively. Some simulations are provided in section
IV in order to illustrate the performances of the proposed
approach. Finally, section V concludes the paper.

II. PRELIMINARIES

A. Notations
Throughout the paper, a block diagonal matrix is rep-

resented as diag(A1, . . . , An). The identity matrix and the
square zero matrix, of dimension n ∈ N, are respectively
denoted In and 0n. For x, y ∈ R3, x×y represents the cross
product. For a vector x =

(
x1 x2 x3

)T ∈ R3, x× ∈ R3×3

is the associated skew-symmetric matrix, that is

x× =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 (1)

The lower and upper eigenvalues of a matrix M are denoted
λmin(M) and λmax(M) respectively.

B. Physical model
Consider an inertial reference frame {I} and a body fixed

frame {B}. The rotation matrix from {B} to {I}, of the
considered moving body, is denoted R(t) ∈ SO(3) and
verifies the following differential equation

Ṙ(t) = R(t)(ω(t))×, t ≥ 0 (2)
where ω(t) ∈ R3 is the angular velocity of the moving body
in the frame {B}.
One assumes that the rate gyro measurements are available
without bias. In addition to the rate gyro, one has access to
the measurements of an accelerometer and a magnometer.
The output a of the accelerometer is in the following form

a(t) = RT (t)(ae(t)− g0) (3)
where g0 =

(
0 0 G

)
, with G ≈ 9.81 the gravitational

constant and ae(t) is the external acceleration, that is all

other accelerations applied to the body.
The output m of the magnometer is in the form

m(t) = RT (t)mI (4)
where mI is the earth magnetic field (expressed in the inertial
frame) and is constant.
In the remainder of the paper the following assumption is
supposed to hold true.

Assumption 1. The vectors a(t) and m(t) are non-collinear
for all t ≥ 0, more precisely, there exists α > 0 such that
‖a(t)×m(t)‖ ≥ α, ∀t ≥ 0.

In a more general way, one assumes that 3 independent
vectors vi(t) ∈ R3 are measured in the body fixed frame,
and are in the following form

vi(t) = RT (t)(bi + pi(t)) (5)
where bi ∈ R3 is a known constant reference vector and
pi(t) ∈ R3 is a time varying unknown perturbation. This is
not restrictive since one can take a×m for the third vector, in
order to obtain three linearly independent vectors, when only
accelerometer and magnometer measurements are available.
The perturbations pi, i = 1, 2, 3, and their derivative will be
supposed to be bounded in the following.

Assumption 2. There exist γ1, γ2 > 0 such that

‖pi(t)‖ ≤ γ1 and ‖ṗi(t)‖ ≤ γ2 for i = 1, 2, 3 and all t ≥ 0.
(6)

C. Design model
Since the observer is designed directly on R3×3, forgetting

the SO(3) structure, one now writes the rotation matrix R
in vector form. Similarly as in [1], denoting

R(t) =
(
z1(t) z2(t) z3(t)

)T
, zi(t) ∈ R3, i = 1, 2, 3

(7)
one can write R(t) as a vector, as follows

x2(t) =
(
zT1 (t) zT2 (t) zT3 (t)

)T ∈ R9 (8)
It is then straightforward to show that

ẋ2(t) = −S3(ω(t))x2(t) (9)
where

S3(x) = diag(x×, x×, x×) ∈ R9×9 (10)

Following equation (5), the 3 measurements can be written
in a general way as follows

bi + pi(t) = Wi(t)x2(t), i = 1, 2, 3 (11)
with

Wi(t) =



vTi (t) 01×3 01×3

01×3 vTi (t) 01×3

01×3 01×3 vTi (t)


 ∈ R3×9 (12)

One then obtains, in compact form, the relation
B + P (t) = W (t)x2(t) (13)

with B =
(
bT1 bT2 bT3

)T ∈ R9,
P (t) =

(
pT1 (t) pT2 (t) pT3 (t)

)T ∈ R9

and W (t) =
(
WT

1 (t) WT
2 (t) WT

3 (t)
)T ∈ R9×9

It should be noted that by assumptions 1 and 2, the matrix
W (t) is non singular and bounded for all t ≥ 0, more



precisely, one can further say that there exist ν1, ν2 > 0
such that

ν1I9 ≤W (t) ≤ ν2I9, ∀t ≥ 0. (14)

III. OBSERVER DESIGN

A. Low-pass filter design
One considers the linear time-varying system (9)-(13):

ẋ2(t) = −S3(ω(t))x2(t) (15)
B + P (t) = W (t)x2(t) (16)

The aim is to reconstruct x2, but the problem is that the
output B + P (t) is unknown since only B is known. The
idea is based on the assumption that the perturbations are not
low frequency, then the output of the following augmented
system

ẋ1(t) =
1

τ
(−x1(t) +W (t)x2(t)) (17)

ẋ2(t) = −S3(ω(t))x2(t) (18)
y(t) = x1(t) (19)

is approximately equal to B, indeed P (t) is filtered out by the
first stage of system (17)-(18), which is simply a first order
low pass filter, with time constant τ > 0, whose transfer
function is given by G(s) = 1

τs+1 .

It should be noted that the augmented system (17)-(18)-
(19) is uniformly observable since the matrix W (t) is non
singular for all t ≥ 0 by assumption 1. Then the design of
an observer is possible.

B. First observer
The first proposed observer is given by

˙̂x1(t) =
1

τ
(−x̂1(t) +W (t)x̂2(t)) + k1(B − x̂1(t)) (20)

˙̂x2(t) = −S3(ω(t))x̂2(t) + k2W
−1(t)(B − x̂1(t))

where K =
(
k1 k2

)T ∈ R2 is the gain of the observer and
is chosen in such a way that the matrix

Ā
4
= A−KC =

(
− 1
τ − k1

1
τ

−k2 0

)
(21)

is Hurwitz, where

A =

(
− 1
τ

1
τ

0 0

)
, C =

(
1 0

)
(22)

One has the following convergence result in the perturbation
free case.

Theorem 1. Assume that P (t) ≡ 0 and that the gains k1, k2

are chosen such that the matrix Ā is Hurwitz, then the state
of observer (20) converges exponentially toward the state of
system (17)-(18).

Proof. First notice that in the perturbation free case, one has
W (t)x2(t) = B, for all t ≥ 0, then ε(t) = x1(t) − B
converges exponentially to zero, since the first-order low-
pass filter G(s) = 1

τs+1 has a static gain equal to 1. Thus,
there exists α, β > 0 such that ‖ε(t)‖ ≤ βe−αt.
Consider the error state e =

(
eT1 eT2

)T
, with e1 = (x1−x̂1),

e2 = Wx̃2 and x̃2 = (x2 − x̂2). Since P (t) ≡ 0, one can
show that

Ẇ (t) = W (t)S3(ω(t)) (23)

And one can obtain that
ė(t) = Āe(t) +Kε(t) (24)

The error signal e(t) is thus given by

e(t) = eĀte(0) +

∫ t

0

eĀ(t−s)ε(s)ds (25)

since Ā is assumed to be Hurwitz, there exists γ, ϕ > 0 such
that

∥∥∥eĀt
∥∥∥ ≤ ϕe−γt (one can further assume without loss of

generality that γ 6= α), and so

‖e(t)‖ ≤ ϕe−γt‖e(0)‖+ βϕ
e−αt − e−γt

γ − α (26)

This shows the exponential convergence to zero of e1(t)
and e2(t). Since W (t) verifies (14), x̃2(t) also converges
exponentially to zero.

The next corollary provides a practical stability result in
the case of bounded external accelerations.

Corollary 1. Assume that the external acceleration satisfies
assumption 2 and that k1, k2 are chosen such that the matrix
Ā is Hurwitz, then the estimation error of observer (20)
x̃ =

(
x̃T1 x̃T2

)T
, with x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2

is ultimately bounded, that is, there exists a bound K > 0
such that

lim sup
t→+∞

‖x̃(t)‖ ≤ K (27)

Proof. In the case where the perturbation P (t) is non zero,
the dynamics of W (t)x2(t) is given by

d

dt
(W (t)x2(t)) = Ṗ (t) (28)

and the output of the first order filter by x1(t) = B + ε(t).
The signal ε(t) is bounded since it corresponds to the sum
of two signals, the first one is the filtered version of P (t) by
the first order filter and the second one is a signal converging
exponentially to zero, which is due to the possibly incorrect
initial condition when filtering B.
Let us denote e(t) =

(
eT1 eT2

)T
, with e1 = x̃1, e2 = Wx̃2,

then, one has
ė(t) = Āe(t) +Kε(t) +DṖ (t) (29)

with D =
[
09 I9

]T
. It is direct to see that the error e(t) is

practically bounded since the matrix Ā is Hurwitz, and ε(t)
and Ṗ (t) are uniformly bounded. It directly follows that x̃1

and x̃2 are ultimately bounded because of (14).

Remark 1. Corollary 1 only provides practical convergence.
Indeed, there are two sources of error for the reconstruction
of the attitude, first the output of system (17)-(18) is not
perfectly known, since one assumes that it is equal to B in the
observer, and the model of W (t)x2(t) is uncertain, due to the
non zero derivative of P (t). It is then not possible to obtain
an arbitrarily small error. Nevertheless, the estimate given
by the proposed observer is very satisfactory, as illustrated
with the simulations in section IV. A more precise effect of
these two sources of error shall be done in future works in



order to determine the optimal gains, but is beyond the scope
of this article, due to the limited space.

C. Second observer
The second proposed observer is given by

˙̂x1(t) =
1

τ
(−x̂1(t) +W (t)x̂2(t))

+ k1W (t)WT (t)(B − x̂1(t))

˙̂x2(t) = −S3(ω(t))x̂2(t) + k2W
T (t)(B − x̂1(t)) (30)

where the gains are chosen as k1 > 0 and k2 = k1
2 .

One has the following convergence result in the perturbation
free case.

Theorem 2. Assume that P (t) ≡ 0 and that k1 > 0 and k2 =
k1
2 , then the state of observer (30) converges exponentially

toward the state of system (17)-(18).

Proof. One denotes e =
(
eT1 eT2

)T
, e1 = x1 − x̂1, e2 =

W (t)x̃2 and x̃2 = x2 − x̂2. The error equation is given by

ė1 = −1

τ
e1 +

1

τ
e2 − k1WWT e1 + k1WWT ε (31)

ė2 = −k1

2
WWT e1 +

k1

2
WWT ε (32)

Consider the following candidate Lyapunov function

V (e) = eTMe, M =

(
1
4I9 − 1

4I9
− 1

4I9
1
2I9

)
(33)

This is a valid candidate Lyapunov function since M is
definite positive and thus there exists %1, %2 > 0 such that
%1‖e‖ ≤

√
V (e) ≤ %2‖e‖.

One has
V̇ (e) ≤ −eTNe+ 2σ2

√
V (e)‖ε‖ (34)

where

N =

(
1
2τ + k1λ1

4 − 1
2τ

− 1
2τ

1
2τ

)
(35)

with λ1 = inft≥0 λmin(W (t)WT (t)),
λ2 = supt≥0 λmax(W (t)WT (t)) and σ2 = k1λ2

8ρ1
. One can

note that λ1 > 0 because of inequality (14) and λ2 < +∞
because the perturbation P (t) is assumed to be uniformly
bounded.
Furthermore, since N is positive definite as soon as k1λ1 >
0, there exists σ1 > 0 such that

V̇ (e) ≤ −2σ1V (e) + 2σ2

√
V (e)‖ε‖ (36)

Then
d

dt
(
√
V (e)) ≤ −σ1

√
V (e) + σ2‖ε‖ (37)

Applying the comparison lemma (lemma 3.4 p.102 [16])
and following the same lines as in the end of the proof of
Theorem 1 gives the result.

Corollary 2. Assume that the external acceleration satis-
fies assumption 2 and the gains are chosen as k1 > 0
and k2 = k1

2 , then the estimation error of observer (30)
x̃ =

(
x̃T1 x̃T2

)T
, with x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2 is

ultimately bounded, that is, there exists a bound K > 0 such
that

lim sup
t→+∞

‖x̃(t)‖ ≤ K (38)

The proof of Corollary 2 combines the same ideas as the
ones of corollary 1 and Theorem 2 and is then omitted.

IV. SIMULATIONS
The behavior of the proposed observers are now illustrated
through simulations.
For all the simulations, the rotation dynamic is given by
equation (2) and the angular velocity is depicted on figure 1.
The rotation is initialized in such a way that the Euler angles
Yaw, Pitch, Roll are equal to

[
0.4383 0.9902 1.0074

]
at

time t = 0. The measurements given by the accelerometer
and the magnometer are taken as:

a(t) = RT (t)(ae(t)− g0) + εa(t) (39)

m(t) = RT (t)mI + εm(t) (40)
where ae is the external acceleration and depends on the
simulation, εa and εm are white noise with mean equal to 0
and standard deviation equal to 1 and 0.1 respectively, g0 =[
0 0 9.81

]
and mI =

[
0.434 −0.0091 0.9008

]
.

The observers presented in this paper will be compared with
the classical observer from [18] with explicit error formu-
lation, without bias estimation, since no bias is considered
here. The tuning parameters of the Mahony observer are
taken as k1 = k2 = kp = 1. The two proposed observers
are implemented with the same gains k1 = 1 and k2 = 1/2.
The time constant of the low-pass filter is taken as τ = 2s.

All the implemented observers are initialized at R̂(0) = I3.
When external acceleration is considered, it starts only after
time t = 10s in order for the observers to converge before.
Furthermore, the mean square error (MSE) will be computed
in order to compare the different observers, but between t =
10s and t = 100s (the end of the simulation), in order to
take into account only the effect, on the error, of the external
acceleration and not the transient behavior.

Three different simulations are considered here. First, the
external acceleration is equal to zero, only noise on the
measurements is considered. The Euler angles with their
reconstructed version and the error R̃ = ‖R−R̂‖ are reported
on figure 2. All three observers perform quite well, even if the
observers proposed in this paper filter the noise better, which
has a direct effect on the estimation. It can be seen that the
second proposed observer convergence is slower than the first
one. This is due to the fact that the error dynamics depend on
W (t)WT (t) and then can become slower if the eigenvalues
of this matrix are low, while for the first observer the error
dynamics are independent from W (t). The MSE of observer
1, observer 2 and the Mahony observer are respectively equal
to 1.00◦, 2.47◦ and 4.60◦.
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Fig. 1: Angular velocity ω(t)
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Fig. 2: Euler angles and error R̃ with no external acceleration
A second simulation is considered with medium acceleration.
The external acceleration applied on the rigid body is given
on figure 3 with its filtered version. The external accelera-
tion is well filtered, since its magnitude is divided by ten,
which means that the time constant of the low-pass filter
is correctly chosen. The Fourier transform of the applied
external acceleration is depicted on figure 4. The norm of
the error matrix ‖R− R̂‖ are reported on figure 5. The two
proposed observer performed very well, while the impact of
the external acceleration on the Mahony observer is quite
high. The MSE of observer 1, observer 2 and the Mahony
observer are respectively equal to 2.41◦, 3.80◦ and 11.99◦.

In the third simulation, the external acceleration is taken as
twice the acceleration in the second simulation and is then
quite high (the same order of magnitude as the gravitational
constant). The reconstructed Euler angle and the error ‖R−
R̂‖ are given on figure 6. Observer 1 still performs very
well, observer 2 estimations are pretty good, but the Mahony
observer is completely off. The MSE of observer 1, observer
2 and the Mahony observer are respectively equal to 2.95◦,
7.88◦ and 33.53◦.

V. CONCLUSION

We have presented two observers who provide an estimation
of the attitude of a moving rigid body subject to external ac-
celeration. The stability of these two observers are guaranteed
through a Lyapunov approach. The good performances of
the proposed approach have been illustrated through several
simulations.
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Fig. 3: External acceleration and difference between the
filtered acceleration and g0 in the inertial frame for medium
acceleration

-50 0 50
0

5

10

-50 0 50
0

2

4

6

8

-50 0 50
0

5

10

Fig. 4: Frequency representation of the external acceleration

The main drawback of the proposed approaches is the fact
that the dimension of the proposed observer is higher than
the classical SO(3) observers, due to their geometry free
structure. But the provided simulations show that the external
acceleration are well filtered and the performances are very
promising.

In future works, the authors will try to transform the ob-
servers so that their estimate evolve on SO(3) in order to re-
duce the dimension of the proposed observers. Furthermore,
a thorough analysis of the effect of the external acceleration
on the estimation error would be interesting in order to tune
the gains in an optimal way.
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