

INSTITUT DE CHIMIE SEPARATIVE DE MARCOULE

Role of alkali cation in early stage of oligomerization: a molecular dynamics study

<u>Amaury Coste</u>, Arnaud Poulesquen, Jean-François Dufrêche and Magali Duvail

IAP 2018 Interfaces Against Pollution

La Grande Motte, France 10 - 13 June 2018

Introduction

<u>Context</u>

anR

- Solutions of activation (= concentrated alkali media) of alumino-silicates are interfacial media involved in many industrial processes and building
- Complex formulation
- Alkali impacts gelation process and drives final properties of the gel [1]

Objectives

- Study ion-ion interactions in the early stage of oligomerization
- Predict structure of the system to improve the formulation

Complex media

Media impacted by the concentration and the nature of the alkali (Li⁺, Na⁺, K⁺ and Cs⁺)

Speciation of silicate in aqueous phase is complexed [2]: huge variety of structure, total charge of oligomers

Molecular Dynamics

Theoretical approach

anR

- Classical Molecular Dynamics allow to simulate silicate precursor solutions
- No formation of covalent bonds in Classical Molecular Dynamics
- Development of a force field (issued from ref. [1]) for silicate oligomers:

Construction of simulation boxes

- Silicate solutions at 2.0 mol kg⁻¹ of [Si] with a ratio [Si]/[Na⁺] = 1
- Hydroxide are added for a total charge equal to 0

Studies of each oligomer

□ Study of each oligomer separately

300 Na⁺ 300 SiO(OH)₃⁻ 8236 H₂O

anR

300 Na⁺ 150 Si₂O₂(OH)₅⁻ 8236 H₂O 150 OH⁻ 300 Na⁺ 1<mark>50 Si₂O₃(OH)₄²⁻</mark> 8236 H₂O

"Homogenous" structure for the monomer solutions

Dimer solutions tend to the demixtion

Example for NaOH solution

A. Coste et al., « Investigation of the structure of concentrated NaOH solutions: development of a polarizable force field for the OH⁻ anion » in preparation

Comparison of WAXS spectra

□ Same intensity for Q > 1 Å⁻¹

Intensity of the peak at 0.45 Å⁻¹ different

Different rise at small angle

Monomer: disperse media Dimer: phase separation

Dimer mixture after 26 ns

OH⁻ in the bulk

ANR

Mixture of dimer

WAXS

Dimer mixture after 26 ns

 $\begin{array}{rl} 300 \text{ Na}^+ & 75 \text{ Si}_2\text{O}_3(\text{OH})_4^{2-} \\ 75 \text{ Si}_2\text{O}_2(\text{OH})_5^- & 150 \text{ OH}^- = 150 \end{array}$

By replacing $Si_2O_3(OH)_4^{2-}$ by 2 SiO(OH)₃⁻

Different structure of the solution

Kinetics of aggregation

Main aggregate evolution

anR

- Criteria of affiliation in the same aggregate: Si-Si distance less than 5.7 Å
- Increase of the size during the simulation
- Stabilization of the size at 22 ns around (85 % of the Si)
- Slow decrease of the free Na⁺ concentration
- Around 40 % of the Na⁺ are in the bulk phase

Kinetics of aggregation

0

Bulk phase evolution

anR

- Evolution of the silicates oligomers without the main aggregate
- Dimers and small cluster predominant at the beginning
- Time to form the biggest aggregate : 13 ns
- After 24 ns equilibrium between dimers in the aggregate and the bulk

16

time (ns)

12

20

32

28

24

Spectres WAXS

Mixture of dimers and monomers

300 Na⁺ 37 Si₂O₂(OH)₅⁻

<mark>37 Si₂O₃(OH)₄²⁻</mark> 37 OH⁻

152 SiO(OH)₃-

Mixture of monomers and dimers after 20 ns

Polydispersity of aggregates sizes

13

Mixing of dimers and monomers

Main aggregate evolution

anR

300 Na⁺ 37 Si₂O₂(OH)₅⁻ 37 Si₂O₃(OH)₄²⁻ 37 OH⁻

- Criteria of affiliation in the same aggregate: Si-Si distance less than 5.7 Å
- Increase of the size during the simulation
- Slow diminution of the free Na⁺ concentration
- Around 42 % of the Na⁺ are in the bulk phase

Mixing of dimers and monomers

Bulk phase evolution

anR

- Evolution of the silicates oligomers without the main aggregate
- Oligomers and small cluster dominants at the beginning
- Increase of cluster size
- After 20 ns equilibrium between one and two big aggregates

time (ns)

Summary and outlooks

Conclusions

anR

- Structure of the solution depends on oligomer composition
 - Dimers → demixtion of the solution
 - Monomers → destabilization of the aggregate, entropic effect
- Similar behaviours of Na⁺ in each simulation, provide a buffer media with hydroxide
- Weak interactions between silicate and hydroxide

<u>Outlook</u>

- Comparison to experimental solutions
- Simulations with various ratio of [Si]/[Na] and change the alkali nature

ANR DYNAMISTE:

Laboratoire de Modélisation Mésoscopique et Chimie Théorique (LMCT)

Thanks for your attention!

Institut de Chimie Séparative de Marcoule UMR 5257 | CEA – CNRS – UM – ENSCM Site de Marcoule | Bâtiment 426 | BP 17171 | F-30207 Bagnols-sur-Cèze Cedex http://www.icsm1.fr

(ANR-15-CE07-0013)