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Continuum limit of the nonlocal p-Laplacian evolution

problem on random inhomogeneous graphs

Hafiene Yosra∗ Jalal M. Fadili∗ Christophe Chesneau† Abderrahim Elmoataz∗

Abstract. In this paper we study numerical approximations of the evolution problem for the nonlocal
p-Laplacian operator with homogeneous Neumann boundary conditions on inhomogeneous random conver-
gent graph sequences. More precisely, for networks on convergent inhomogeneous random graph sequences
(generated first by deterministic and then random node sequences), we establish their continuum limits and
provide rate of convergence of solutions for the discrete models to their continuum counterparts as the num-
ber of vertices grows. Our bounds reveals the role of the different parameters, and in particular that of p
and the geometry/regularity of the data.

Key words. Nonlocal diffusion; p-Laplacian; inhomogeneous random graphs; graph limits; numerical
approximation.

AMS subject classifications. 35A35, 65N12, 65N15, 41A17, 05C80.

1 Introduction

1.1 Problem statement

Our main goal in this paper is to study numerical approximations on random inhomogeneous
graphs to a nonlocal nonlinear diffusion problem, involving the nonlocal p-Laplacian operator with
homogeneous Neumann boundary conditions. More precisely, the nonlocal p-Laplacian evolution
problem with Neumann boundary conditions that we deal with is{

∂
∂tu(x, t) = −∆K

p (u(x, t)), x ∈ Ω, t > 0,

u(x, 0) = g(x), x ∈ Ω,
(P)

where

∆K
p (u(x, t)) = −

∫
Ω
K(x, y)

∣∣u(y, t)− u(x, t)
∣∣p−2

(u(y, t)− u(x, t))dy,

where Ω ⊂ R a bounded domain, and without loss of generality we take Ω = [0, 1]1. The kernel
K ∈ L∞(Ω2) is a symmetric measurable and nonnegative mapping. Throughout the paper, we will
assume that p ∈]1,+∞[. Existence and uniqueness of a strong solution to (P) in the space Lp(Ω)
was shown in [17, Theorem 3.1] (relying on arguments from [2]).

∗Normandie Univ, ENSICAEN, UNICAEN, CNRS, GREYC, France.
†Normandie Univ, ENSICAEN, UNICAEN, CNRS, LMNO, France.
1Only boundedness of Ω is actually needed but we take Ω as a closed set as well to conform to our setting of

graphs. Moreover, though we here focus on the one-dimensional case Ω ⊂ R, several of our results can be extended
to higher dimension.
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The nonlocal p-Laplacian operator appears naturally in the study of many nonlocal diffusion
phenomena. It arises for instance in a number of applications such as continuum mechanics, phase
transition phenomena, population dynamics, image processing and game theory (see [1, 2, 16, 20]
and the references therein). On the other hand, recently, there has been a high interest in adapting
and applying discretized versions of PDEs such as (P) on data defined on arbitrary graphs and
networks. Given the discrete nature of data in practice, graphs constitute a natural structure
suited to their representation. The demand for such methods is motivated by existing and potential
future applications, such as in machine learning and mathematical image/signal/data processing
(see among other references [10, 11, 15, 8]). Indeed, any kind of discrete data can be represented
by a graph in an abstract form in which the vertices are associated to the data and the edges
correspond to relationships within the data. These practical considerations naturally lead to a
discrete time and space approximation of (P).

To do this, fix n ∈ N∗. Let Gn = (V (Gn), E(Gn)), where V (Gn) stands for the set of nodes and
E(Gn) ⊂ V (Gn) × V (Gn) denotes the edges set, be a sequence of simple graphs, i.e. undirected
graphs without loops and parallel edges.

Next, we consider the fully discrete counterpart of (P) on a graph Gn using the forward Euler
scheme. For that, let us consider a partition (not necessarily uniform) of the time interval [0, T ]

into intervals of sizes {τh}Nh=1, N ∈ N∗, and denote τ = max
h∈[N ]

τh, where [N ]
def
= {1, · · · , N} for any

integer N . Denote uhi
def
= u(xi, th) and gi

def
= g(xi). Then for h ∈ [N ], consider

uhi − u
h−1
i

τh
=

1

n

∑
j:(i,j)∈E(Gn)

∣∣uh−1
j − uh−1

i

∣∣p−2
(uh−1
j − uh−1

i ),

u0
i = gi, i ∈ {1, · · · , n} .

(Pdn,τ )

Thus, (Pdn,τ ) induces a discrete diffusion process parametrized by the structure of the graph whose
adjacency matrix captures the (nonlocal) interactions. As such, it can be viewed as a discrete
approximation of a continuum problem such as (P).

Several questions then naturally arise:

• Does the discrete problem (Pdn,τ ), and in what sense, has a continuum limit (as n→ +∞) ?

• What is the rate of convergence to this limit ? Is this limit consistent/related with the unique
strong solution of (P) ?

• What are the parameters involved in this rate and what is their influence on the convergence
rate ?

This paper provides answers to these questions for graphs drawn from a random inhomogeneous
model introduced by [4]. The ’classical’ random graph models, in particular dense graphs, are
’homogeneous’, in the sense that the nodes degrees tend to be concentrated around a typical value,
so that all vertices are exactly equivalent in the definition of the model. Furthermore, in a typical
realization, most vertices are in some sense similar to most others. In contrast, some graphs arising
in real-world applications do not have this property and are inhomogeneous. One reason is that the
vertices may have been ’born’ at different times, with old and new vertices having very different
properties. Thus, there has been a lot of recent interest in defining and studying networks on
inhomogeneous random graph models (see Section 2 for further details). Our aim is to investigate
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this graph model and study the continuum limit of the p-Laplacian discrete approximation on these
random graph models that can be dense or sparse.

1.2 Contributions

In [17], we provided a rigorous justification of the continuum limit (P) for the discrete p-
Laplacian on deterministic dense graphs (graphs with n vertices and Θ(n2) edges2). The analysis
of the continuum limit in [17] uses ideas from the theory of dense graph limits [22, 6, 21], which
for every convergent family of dense graphs defines the limiting object, a measurable symmet-
ric bounded and nonnegative function K called graphon (see Section 2 for a brief overview on
graphons). This object characterizes the completion of the space of all graphs with respect to an
appropriate metric. In [17], for convergent sequences of deterministic dense graphs {Gn}n∈N, it
was shown that with the kernel in (P) taken to be the graphon associated to {Gn}n∈N∗ , the solu-
tion of (P) is well-approximated by those of the totally discrete problems (Pdn,τ ). We gave precise
convergence rates as a function of n the discretization time step τ .

However, the analysis in [17] does not deal with inhomogeneous graphs, see [4], which allow for
sparse (but not too sparse) graphs with o(n2) but ω(n) edges. It does not either exhibit the typical
error bounds achieved over a sequence of (random) graphs drawn from this inhomogeneous graph
model. The main concern of this paper is to bridge this gap by studying continuum limits of (Pdn,τ )
on inhomogeneous random graphs.

Combining tools from evolution equations, random graph theory and deviation inequalities,
we establish nonasymptotic rate of convergence of the discrete solution to its continuum limit
with a controlled (high) probability. More precisely, we start by considering the case of random
graph models generated by a deterministic sequence of nodes. We prove nonasymptotic error
bounds that hold with a controlled probability (Theorem 3.1). These results serve as a basis
to deal with the totally random graph model, i.e., where both the nodes and edges are random
(Theorem 3.2). In turn, this shows convergence of solutions of the discrete models to the solution
of the continuum problem as the number of vertices n grows. To get the corresponding convergence
rate, we additionally assume that the kernel K and the initial data g belong to the versatile
class Lipschitz spaces Lip(s, Lq(Ω2)) and Lip(s′, Lq(Ω)). Roughly speaking, Lip(s, Lq(Ω2)) contains
functions with s ”derivatives” in Lq(Ω2). They contain in particular functions of bounded variation
and those of fractal structure for appropriate values of s, see (see Appendix A for a brief introduction
to these functional spaces). Using in addition arguments from approximation theory on these spaces,
we reveal the influence of the value of p, the density of the graph, the regularity of the graphon
K and that of the initial data g both on the convergence rate and the probability of success. In
particular, we isolate different regimes where the rate exhibits different scalings.

1.3 Relation to prior work

In [25] and earlier [24], the author studied convergence of discrete approximations of a nonlinear
heat equation governed by a Lipschitz continuous potential, first on dense deterministic graphs and
then on dense random ones, without discretization of time. However, though the work of [25] was
important to us, it differs markedly from ours in many crucial aspects. Indeed, we use some standard
arguments from numerical analysis of evolution problems but also specific and sophisticated ones
tied to the p-Laplacian. Typically, well-posedness and Lipschitz continuity of the solutions w.r.t.

2We recall the usual Landau asymptotic notations: O(.), Θ(.), o(.) and ω(.).
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to the kernel and initial data for the evolution problem with the p-Laplacian is much harder to
establish than for the problem considered in [24, 25] (see [17]). Second, comparing [25] and our
current work, we use completely different paths to prove consistency in the random case. Indeed,
while the claim in [25] is asymptotic by nature as it completely relies on application of the central
limit theorem (CLT), the latter argument cannot be applied to our evolution problem (except for
the trivial case p = 2). Rather, we establish a nonasymptotic deviation inequality, both in the
partly and completely random graph model, relying on a careful control of a random process using
sharp inequalities from probability theory (Rosenthal and Bernstein, see Lemma A.1). Thus, we are
able to provide the probability of success of our bound for fixed n and we exhibit the dependence
of both the error bound and the probability on the problem parameters (p, T , graph model, kernel
K, initial data g). This is in a stark contrast to the asymptotic claims in [25].

In [19], the authors extended the analysis of [25] to sparse random graphs corresponding to
L2(Ω2) graphons and proved almost sure consistency. While a first version of this paper was under
review, we also became aware of the recent preprint [26] which studied the Kuramoto model on a
sequence of converging dense and sparse graph sequences. It proved almost sure convergence of the
discrete problems on such graphs to continuum limit with time intervals of size T = O(log(n)). In
addition to the fact that our evolution problem is different and more intricate, our random graph
model is different from that of [19, 26]. Both models allow for sparse graphs, but ours only for those
with o(n2) but ω(n) edges with bounded graphons, while theirs covers graphs with O(n) edges and
Lq(Ω2) graphons. Whether our results on the p-Laplacian can be extended to such sparse graphs
is an open problem. In fact, even well-posedness (existence and uniqueness) of the p-Laplacian
evolution problem (P) with unbounded kernels K remains completely open in the literature. Our
results can also cope with time intervals T = O(log(n)) as discussed in Remark 3.3(v). Observe
finally that the convergence claim of [19] is asymptotic (almost sure convergence), relying on the
standard Markov inequality and Borel-Cantelli lemma, while ours are nonasymptotic with a precise
rate and probability of success.

1.4 Paper organization

The rest of the paper is organized as follows. In Section 2, we provide some pre-requisites on
graph limits and graphons and then define our inhomogeneous K-random graph model that we deal
with throughout the paper. We also specify the assumptions needed to get our results and give a
class of graphs for which our assumptions hold true. Section 3 is devoted to the main result of the
paper. We begin our analysis by treating random graph sequences generated by deterministic nodes
in Section 3.1. Then, in Section 3.2 we consider the general model defined previously in Section 2.
After getting the convergence of the discrete model to its continuum limit and identifying the
corresponding rate, in Section 3.3, we discuss the different regimes of the convergence rate as a
function of the problem parameters. Some technical material is deferred to Appendix A.

1.5 Notations

For a given vector u = (u1, · · · , un)> ∈ Rn, we define the norm
∥∥ · ∥∥

p,n

‖u‖p,n =

(
1

n

n∑
i=1

∣∣ui∣∣p)
1
p

.
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For an integer n ∈ N∗, we denote [n] = {1, · · · , n}. For any set S, S is its closure and |S| is its
cardinality or its Lebesgue measure (to be understood from the context). χS is the characteristic
function of the set S (takes 1 in it and 0 otherwise).

C(0, T ;Lp(Ω)) denotes the space of uniformly time continuous functions with values in Lp(Ω).
We endow this space with the norm

‖u‖C(0,T ;Lp(Ω))
def
= sup

t∈[0,T ]
‖u(t)‖Lp(Ω) .

For d ∈ {1, 2}, Lip(s, Lq(Ωd)) is the Lipschitz space which consists of functions with, roughly
speaking, s ”derivatives” in Lq(Ωd) [9, Ch. 2, Section 9]. Only values s ∈]0, 1] are of interest to us.
See Section A.2 for further details on these spaces and approximation theoretic results on them.

2 The random inhomogeneous graph model

2.1 Graph limits and graphons

We start with some important results from the theory of graph limits that will be crucial to our
exposition. The theory of graph limits was introduced by Lovász and Szegedy in 2006 [22] and then
further developed in a series of papers (see the book [21] for a comptrehensive bibliography). A key
goal of Lovász and Szegedy was to understand large graph structures by characterizing convergence
for sequences of graphs which grow unboundedly, thereby constructing a natural limit object.

Let Gn = (V (Gn), E(Gn)), n ∈ N∗, be a sequence of finite and simple graphs. Every finite simple
graph Gn such that V (Gn) = [n] can be represented by a measurable function KGn : Ω2 → Ω called
a pixel kernel. Its construction is as follows: split the interval Ω into n equal intervals, and for
every (x, y) ∈ [ i−1

n , in [×[ j−1
n , jn [, define

KGn(x, y) =

{
1 if (i, j) ∈ E(Gn),

0 otherwise.
(1)

For weighted graphs with edge weights {β(i, j)}(i,j)∈V (G)2 , the pixel kernel KGn becomes

KGn(x, y) =

{
β(i, j) if (i, j) ∈ E(Gn),

0 otherwise.
(2)

This construction is not unique, however given a graph, the set of pixel kernels arising via (1) can
be considered to be equivalent via the weakly isomorphic relation.

Convergent graph sequences {Gn}n∈N∗ have a limit object, which can be represented as a
measurable and symmetric function K : Ω2 → [0, 1] called graphon, and the function K is uniquely
determined up to measure-preserving transformation; see [7, Theorem 2.1]. Intuitively, a graphon
can be thought of as a generalization of the adjacency matrix of a (weighted) graph which has
a continuum number of vertices. Actually, the space of graphons is the the completion of the
metric space of graphs, or equivalently pixel kernels, relative to the so-called cut distance; see
[6, Theorem 2.6]. Conversely, [7, Theorem 2.1] also shows that every measurable symmetric and
[0, 1]-valued function K arises as the limit of a convergent graph sequence.

The result of [7, Theorem 2.1] proves existence and uniqueness of the limit graphon but it is
not a constructive result. In fact, there is a natural ”limit object” in the form of a symmetric
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measurable function K : Ω2 → [0, 1] which arises as a limit of an appropriate graph sequence but
this limit is not explicitly known for every graph sequence. The natural question is then whether,
given a graphon K, one can construct a sequence fo graphs {Gn}n∈N∗ whose limit is K. It turns
out that there is such a random construction as we show in the next two sections.

2.2 Random graphs

The theory of random graphs was founded in the 50s-60s by Erdös and Rényi [12], who started
the systematic study of the space of graphs with n labeled vertices and M = M(n) edges, with
all graphs equiprobable. Nearly the same time, Gilbert [14] introduced the closely related model
of random graphs on n labeled vertices obtained as follows: join each pair (i, j) ∈ [n]2 of vertices
independently, with probability p = p(n). These graphs are now known as Erdös-Rényi random
graphs.

The aim is to turn the set of all graphs with n vertices into a probability space. Intuitively we
should be able to generate Gn randomly as follows: for each edge (i, j) ∈ [n]2, we decide by some
random experiment wether or not (i, j) shall be an edge of Gn, these experiments are performed
independently.

Lovász et al. [22, 7] defined a more general random graph model called K-random graph, as
follows: given any symmetric measurable function K : Ω2 → [0, 1] and an integer n ∈ N∗, generate
n independent numbers X1, . . . ,Xn from the uniform distribution on Ω, and then connect nodes
i and j with probability K(Xi,Xj). The Erdös-Rényi graph corresponds to K being the constant
p-valued function. It was shown in [22, Corollary 2.6] that this random construction provides a
sequence of graphs {Gn}n∈N∗ which converges almost surely to the graphon K.

2.3 K-random inhomogeneous graph model

2.3.1 Model generation

The random graph models defined above are ”homogeneous” in the sense that all vertices are
exactly equivalent in the definition of the model. Furthermore, in a typical realization, most vertices
are in some sense similar to most others. For example, the vertex degrees in the Erdös-Rényi model
do not vary very much: their distribution is close to a Poisson distribution. However, many large
real-world graphs are inhomogeneous. One reason is that the vertices may have been ’born’ at
different times, with old and new vertices having very different properties. This has led to the
introduction and analysis of many new random graph models designed to incorporate or explain
inhomogeneous features. We here focus on a particular random graph model that will be used
throughout. This random graph model is motivated by the construction of inhomogeneous random
graphs proposed in [3, 4, 5].

Definition 2.1. Fix n ∈ N∗ and let K : Ω2 → [0, 1] be a symmetric measurable function. Generate

the undirected graph Gn = (V (Gn), E(Gn))
def
= Gqn(n,K) as follows:

1) Generate n independent and identically distributed (i.i.d.) random variables (X1, . . . ,Xn)
def
=

X from the uniform distribution on Ω. Let
{
X(i)

}n
i=1

be the order statistics of the random
vector X, i.e. X(i) is the i-th smallest value.
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2) Conditionally on X, join each pair (i, j) ∈ [n]2 of vertices independently, with probability

qn
∧
KX
nij, i.e. for every (i, j) ∈ [n]2, i 6= j,

P ((i, j) ∈ E(Gn)|X) = qn
∧
KX
nij , (3)

where
∧
KX
nij

def
= min

(
1∣∣ΩX
nij

∣∣ ∫
ΩX
nij

K(x, y)dxdy, 1/qn

)
, (4)

and
ΩX
nij

def
= ]X(i−1),X(i)]×]X(j−1),X(j)] (5)

where qn is non-negative and uniformly bounded in n.

A graph Gqn(n,K) generated according to this procedure is called a K-random inhomogeneous graph
generated by a random sequence X.

Following [4], we write the parameter qn as a subscript to emphasize that it is part of the
normalization. For appropriate choices of qn, this model allows to sample both dense and sparse
graphs from the kernel K. In the latter, we think of a sparse graph generated from K, rather than
a ”sparse kernel” qnK.

At this stage, the following important remark is in order.

Remark 2.1. In the context of numerical analysis, we are primarily interested not only in the error
bounds of the discrete problem, but more importantly in the (nonasymptotic) rate of convergence.
This is why our attention aims specifically at this graph model and not at the original inhomogeneous
random model defined in [3, 4], i.e. the model constructed replacing (3) by

P ((i, j) ∈ E(Gn)) = min (qnK(Xi,Xj), 1) .

Our error bounds of the discrete problem (Pdn,τ ) cover also this graph model, and more specifically,
the first statements of Theorem 3.1 and Theorem 3.2 hold. However, with this model, even our
convergence claim (not to mention the rate) of the discrete scheme does not hold unless the kernel
K and the initial data g are additionally supposed almost everywhere continuous.

We denote by x = (x1, . . . ,xn) the realization of X. To lighten the notation, we also denote

ΩX
ni

def
= ]X(i−1),X(i)], Ωx

ni
def
= ]x(i−1),x(i)], and Ωx

nij
def
= ]x(i−1),x(i)]×]x(j−1),x(j)] i, j ∈ [n].

(6)
As the realization of the random vector X is fixed, we define

∧
Kx
nij

def
= min

(
1∣∣Ωx
nij

∣∣∫
Ωx
nij

K(x, y)dxdy, 1/qn

)
, ∀(i, j) ∈ [n]2, i 6= j. (7)

In the rest of the paper, the following random variables will be useful. Let λij , (i, j) ∈ [n]2, i 6= j,
be independent random variables such that qnλij follows a Bernoulli distribution with parameter

qn
∧
Kx
nij . We consider the independent random variables Υij such that the distribution of qnΥij

conditionally on X = x is that of qnλij . Thus qnΥij follows a Bernoulli distribution with parameter

E
(
qn
∧
KX
nij

)
, where E(·) is the expectation operator (here with respect to the distribution of X).
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2.3.2 Model assumptions

We are now ready to formulate our assumptions on the graph sequence {Gqn(n,K)}n∈N.

Assumption 2.1. We suppose that qn and K are such that the following hold:

(A.1) Gqn(n,K) converges almost surely and its limit is the graphon K;

(A.2) sup
n≥1

qn ≤ 1.

At this stage, it is legitimate to discuss the validity of Assumption 2.1. As far as the boundedness
assumption (A.2) is concerned, it is the least we can expect from qn; otherwise the generated
graphs are trivially empty. Of course, there is no loss of generality in taking 1 in the bound
of (A.2). For (A.1), it is also reasonable as it allows one to assert that the randomly generated
graph sequence has an (almost sure) limit object, which is the graphon K. The forthcoming
proposition provides a large class of K-random graphs, corresponding to a particular scaling of qn,
for which both (A.1) and (A.2) hold. It is is inspired by the so-called non-uniform random graphs
studied in [4, Section 3.4]. This choice of qn allows to cover both dense and reasonably sparse
graphs (see the discussion after Proposition 2.1) which are ubiquitous in various applications such
as data (e.g., signal/image/point clouds) processing.

Proposition 2.1. Suppose K : Ω2 → [0, 1] is a symmetric measurable function. Choose the
parameter qn = n−g(n) where g(n) = o(1). Then, assumptions (A.1) and (A.2) are in force.

Proof . Since the graphon K ∈ L∞(Ω2) and qn = n−o(1), the arguments to prove [4, Lemma 3.5
and Lemma 3.8], that were designed for the graph model described in Remark 2.1, can be adapted
to cover our graph model with (3) to show that the sequence of random graphs Gqn(n,K) indeed
converges almost surely to the graphon K in the metric dsub (see [4, Section 2.1] for details about
this metric). This shows (A.1). (A.2) is trivially verified.

The graph model of Proposition 2.1 encompasses the dense random graph model (i.e., with
Θ(n2) edges) extensively studied in [22, 7], by taking the choice g(n) log(n) = C, for C > 0, and
thus qn = e−C . This graph model allows also to generate sparse (but not too sparse) graphs. That is
graphs with o(n2) but ω(n) edges, i.e., that the average degree tends to infinity with n. For example,
one can take g(n) = C log(n)−δ, where δ ∈]0, 1[, in which case one has qn = exp(−C log(n)1−δ) =
o(1), where such a choice of qn will control the level of density/sparsity.

3 Consistency of the nonlocal p-Laplacian on random inhomoge-
neous graphs

Having defined the graph model, we are now in position to state our main error bounds between
the discrete dynamics and their continuum counterparts. In Section 3.1, we first deal with the case
where X is deterministic. Capitalizing on this result, we will then extend the bounds to the totally
random model (i.e., where the nodes are also random) in Section 3.2 by a marginalization argument.
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3.1 Networks on graphs generated by deterministic nodes

We define the parameter δ(n) as the maximal size of the spacings between the ordered values
x(i)

δ(n) = max
i∈[n]

∣∣x(i) − x(i−1)

∣∣ . (8)

Recall from (Pdn,τ ) the definition of the time steps τh and maximal size τ .
Next, we consider the following system of difference equations on Gqn(n,K):

uhi − u
h−1
i

τh
=

1

n

n∑
j=1

λij
∣∣uh−1
j − uh−1

i

∣∣p−2
(uh−1
j − uh−1

i ), (i, h) ∈ [n]× [N ],

u0
i = gi, i ∈ [n],

(Pd,dn )

where uhi is the value at vertex i ∈ [n] and time th ∈ [0, T ], and

gi =
1∣∣Ωx
ni

∣∣ ∫
Ωx
ni

g(x)dx.

Recall from Section 2 that {qnλij}i,j are independent Bernoulli variables with parameters {qn
∧
Kx
nij}i,j .

Before turning to our convergence result, we pause here to make the following observations.

Remark 3.1. Coming back to Definition 2.1, Gqn(n,K) is a random variable taking its values on
the set of simple graphs. It is then important to keep in mind that the evolution equations we write
involving random variables must be understood in this sense.

Remark 3.2. As the reader may have remarked, the sum in the right-hand side of (Pd,dn ) is divided

by n instead of a weighted sum with weights
∣∣x(i) − x(i−1)

∣∣−1
which would be expected if we interpret

this sum as a Riemann sum. The scaling by n reminds us of an equidistant design regarding the
space-discretization, despite the fact that the nodes are not necessarily equispaced. However, given
that the xi’s are realizations of i.i.d. uniform variables on Ω, the uniform spacing choice still
makes sense. Indeed, using classical results on order statistics of uniform variables, see, e.g., [27,
Section 1.7], it can be shown that each spacing X(i)−X(i−1) concentrates around 1/n for any i ∈ [n].

We are now in position to tackle our main goal: comparing the solutions of the discrete and
continuum problems and establish our rate of convergence. Since the two solutions do not live
on the same spaces, it is reasonable to represent some intermediate model that is the continuum
extension of the discrete problem, using the vector Uh = (uh1 , u

h
2 , · · · , uhn)> whose components solve

the previous system (Pd,dn ) to obtain the following interpolation on Ω × [0, T ] (linear in time and
piecewise constant in space)

ǔn(x, t) =
th − t
τh

uh−1
i +

t− th−1

τh
uhi if x ∈ Ωx

ni, t ∈]th−1, th], (9)

and a space-time piecewise constant approximation

ūn(x, t) =

n∑
i=1

N∑
h=1

uh−1
i χ]th−1,th](t)χΩx

ni
(x). (10)
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Then, ǔn formally solves the following problem{
∂
∂t ǔn(x, t) = −∆Λn

p (ūn(x, t)), x ∈ Ω, t > 0,

ǔn(x, 0) = gn(x), x ∈ Ω,
(Pn)

where the random variable

Λn(x, y) = λij for (x, y) ∈ Ωx
nij ,

and

gn(x) = gi if x ∈ Ωx
ni, i ∈ [n].

Toward our goal of establishing error bounds, we need an intermediate discrete problem for the
p-Laplacian. This is defined as

vhi − v
h−1
i

τh
=

1

n

n∑
j=1

∧
Kx
nij

∣∣vh−1
j − vh−1

i

∣∣p−2
(vh−1
j − vh−1

i ), (i, h) ∈ [n]× [N ],

v0
i = gi, i ∈ [n].

(
∧
Pdn)

The discrete problem (
∧
Pdn) can also be viewed as a discrete p-Laplacian evolution problem over a

weighted graph on n vertices, where the weight of edge (i, j) is
∧
Kx
nij .

Using the vector V h = (vh1 , v
h
2 , · · · , vhn)> whose components solve the system (

∧
Pdn), similarly to

before, we define the following interpolation on Ω× [0, T ]

v̌n(x, t) =
th − t
τh

vh−1
i +

t− th−1

τh
vhi if x ∈ Ωx

ni, t ∈]th−1, th], (11)

and a space-time piecewise constant interpolation

v̄n(x, t) =
n∑
i=1

N∑
h=1

vh−1
i χ]th−1,th](t)χΩx

ni
(x). (12)

We also define the piecewise-constant extension
∧
Kn on Ω2

∧
Kn(x, y) =

∑
(i,j)∈[n]2

∧
Kx
nijχΩx

nij
(x, y). (13)

Then, by construction, v̌n(x, t) formally solves the following problem ∂
∂t v̌n(x, t) = −∆

∧
Kn
p (v̄n(x, t)), x ∈ Ω, t > 0,

v̌n(x, 0) = gn(x), x ∈ Ω,
(
∧
Pn)

where

gn(x) = gi for x ∈ Ωx
ni, i ∈ [n].

The first main result of the paper is the following theorem.
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Theorem 3.1. Suppose that p ∈]1,+∞[, K ∈ L∞(Ω2) is a symmetric and measurable mapping,

and g ∈ L∞(Ω). Let u and Uh denote the solutions to (P) and (Pd,dn ), respectively. Let ǔn be the
continuum extension of Uh given in (9). Then, the following hold:

(i) for T > 0, there exist positive constants C1 and C2, independent of n and T , such that for
any β > 0

∥∥u− ǔn∥∥C(0,T ;Lp(Ω))
≤ C1T exp (O(T ))

((
β

log(n)

n
+

max
(
q
−(p−1)
n , q

−p/2
n

)
np/2

)1/p

+
∥∥K − ∧Kn

∥∥
Lp(Ω2)

+
∥∥g − gn∥∥Lp(Ω)

+ τ

)
, (14)

with probability at least 1− n−C2q
2p−1
n β.

(ii) Suppose furthermore that g ∈ Lip(s, Lq(Ω)) and K ∈ Lip(s′, Lq(Ω2)), q ∈ [1,+∞], s, s′ ∈]0, 1],
and qn ‖K‖L∞(Ω2) ≤ 1. Then, for T > 0, there exist positive constants C1 and C2, independent
of n and T , such that for any β > 0

∥∥u− ǔn∥∥C(0,T ;Lp(Ω))
≤ C1T exp (O(T ))

((
β

log(n)

n
+

max
(
q
−(p−1)
n , q

−p/2
n

)
np/2

)1/p

+ δ(n)min(s,s′) min(1,q/p) + τ

)
, (15)

with probability at least 1− n−C2q
2p−1
n β, where δ(n) is the spacing parameter defined in (8).

Before proceeding to the proof, some remarks are in order.

Remark 3.3.

(i) The constant C1 in (14) depends on p and the data via ‖g‖L∞(Ω) and ‖K‖L∞(Ω2). For the

bound (15), it also depends on (q, s, s′). Similarly, the constant in the O(T ) term in the
exponential can be made explicit and depends on p, ‖g‖L∞(Ω) and ‖K‖L∞(Ω2).

(ii) Thanks to the well-known inequality

(a+ b)α ≤ aα + bα, ∀α ∈]0, 1] and a, b ≥ 0, (16)

it is clear that the first term in the bounds (14)-(15) can be replaced by

β1/p

(
log(n)

n

)1/p

+
max

(
q
−(1−1/p)
n , q

−1/2
n

)
n1/2

.

(iii) The last term in the latter bound can be rewritten as

n−1/2 max
(
q−(1−1/p)
n , q−1/2

n

)
=

{
(qnn)−1/2 if p ∈]1, 2],

q
1/p
n (q2

nn)−1/2 if p > 2.
(17)
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Thus, if infn≥1 qn > 0, as is the case when the graph is dense (see discussion after Propo-
sition 2.1), then the term (17) is in the order of n−1/2 with probability at least 1 − n−cβ

for some c > 0. If qn is allowed to be o(1), i.e., sparse graphs (see Proposition 2.1), then
(17) is o(1) if either qnn → +∞ for p ∈]1, 2], or q2

nn → +∞ for p > 2. The probability

of success is at least 1 − e−C2β log(n)1−δ provided that qn = log(n)−δ/(2p−1), with δ ∈ [0, 1[.
Observe that all these conditions on qn are fulfilled by the graph model of Proposition 2.1 for
g(n) = δ/(2p− 1) log(log(n))/ log(n).

(iv) In fact, if infn≥1 qn ≥ c > 0, then we have
∑

n≥1 n
−C2q

2p−1
n β ≤

∑
n≥1 n

−C2c2p−1β < +∞
provided that β > (C2c

2p−1)−1. Thus, if this holds, invoking the (first) Borel-Cantelli lemma,
it follows that the bounds of Theorem 3.1 hold almost surely. The same reasoning carries over
for the bounds of Theorem 3.2.

(v) For finite fixed T , the term T exp(c1T ), for c1 > 0, in the bound becomes a constant. One can
even allow for time intervals of size T = c2 log(n), c2 > 0, in which case this term scales as
O(nc1c2 log(n)). Thus this term can be dominated by the other rates in n if c1c2 is sufficiently
small (see Remark 3.4(ii) for details).

(vi) One may wonder if the functional space assumption made on g and K in claim (ii) is rea-
sonable or even makes sense. The answer is affirmative. Indeed, Lipschitz spaces are rich
enough to include both functions with discontinuities and even fractal structure. For instance,
from [21], one can show that the graphon corresponding to the nearest neighbour graphs, which
are very popular in practice (e.g. in image processing [11, 10]), are typical examples satisfying
Assumptions (A.1)-(A.2) with qn = 1 and K is a {0, 1}-valued function living on the space of
bounded variation functions, which in turn is Lip(1, L1(Ω2)).

To prove Theorem 3.1, we first show the following key lemma.

Lemma 3.1. Under the assumptions of Theorem 3.1, for T > 0, there exist positive constants C1

and C2, independent of n and T , such that for any β > 0

P
(∥∥v̌n − ǔn∥∥C(0,T ;Lp(Ω))

≥ ε
)
≤ n−C2q

2p−1
n β,

where

ε = C1T exp (O(T ))

((
β

log(n)

n
+ max

(
q−(p−1)
n , q−p/2n

) 1

np/2

)1/p

+ τ

)
.

Proof of Lemma 3.1. For 1 < p < +∞, we define the function

Ψ : R→ R
x 7→ |x|p−2 x = sign(x)|x|p−1.

First, for an appropriate choice of τh, using [17, Lemma 5.1], we have that both (Pd,dn ) and (
∧
Pdn)

are well posed. In turn Uh and V h are bounded and V h uniquely solves (
∧
Pdn), and similarly for

ǔn and v̌n as solutions to (Pn) and (
∧
Pn). Observe also that v̌n(·, t) and ǔn(·, t) are both constants

12



over Ωx
ni. Similarly, v̄n(·, t) and ūn(·, t) are also constants over the cell Ωx

ni. We therefore used

the shorthand notations for the vector-valued functions ūn(t) = (ūni(t))i∈[n]
def
= (ūn(xi, t))i∈[n] and

v̄n(t) = (v̄n(t))i∈[n]
def
= (v̄n(xi, t))i∈[n], and likewise for ǔn(t) and v̌n(t). Let us denote ξ̌n(t) =

ǔn(t) − v̌n(t) and ξ̄n(t) = ūn(t) − v̄n(t). By subtracting both sides of (Pn) from those of (
∧
Pn),

evaluated at the cell Ωx
ni, we obtain

d

dt
ξ̌ni(t) =

1

n

n∑
j=1

(
λijΨ(ūnj(t)− ūni(t))−

∧
Kx
nijΨ(v̄nj(t)− v̄ni(t))

)

= Zni(t) +
1

n

n∑
j=1

∧
Kx
nij

(
Ψ(ūnj(t)− ūni(t))−Ψ(v̄nj(t)− v̄ni(t))

)
,

(18)

where

Zni(t) =
1

n

n∑
j=1

(λij −
∧
Kx
nij)αij(t) and αij(t) = Ψ(ūnj(t)− ūni(t)),∀(i, j) ∈ [n]2, t ∈ [0, T ]. (19)

By our discussion above, we have sup(i,j)∈[n]2,t∈[0,T ] |αij(t)| < +∞. We multiply both sides of (18)

by 1
nΨ(ξ̌ni(t)) and sum over i to obtain

1

p

d

dt

∥∥ξ̌n(t)
∥∥p
p,n

=
1

n

n∑
i=1

Zni(t)Ψ(ξ̌ni(t))+
1

n2

n∑
i,j=1

∧
Kx
nij

(
Ψ(ūnj(t)−ūni(t))−Ψ(v̄nj(t)−v̄ni(t))

)
Ψ(ξ̌ni(t)).

(20)
We estimate the first term on the right-hand side of (20) using the Hölder inequality, to get

1

n

∣∣∣∣∣
n∑
i=1

Zni(t)Ψ(ξ̌ni(t))

∣∣∣∣∣ ≤ 1

n

(
n∑
i=1

∣∣Zni(t)∣∣p)
1
p

×

(
n∑
i=1

∣∣ξ̌ni(t)∣∣p)
p−1
p

≤
∥∥Zn(t)

∥∥
p,n

∥∥ξ̌n(t)
∥∥p−1

p,n
. (21)

Now, using the fact that
∧
Kx
nij ≤ ‖K‖L∞(Ω2) (see (4)), ∀(i, j) ∈ [n]2, and applying a generalized

mean value theorem ([17, Corollary B.1]) to the function Ψ, since p > 1, between aij(t) = v̄nj(t)−
v̄ni(t) and bij(t) = ūnj(t)− ūni(t) (without loss of generality, we suppose that bnij(t) > aij(t)), we
get ∣∣∣∣∣∣ 1

n2

n∑
i,j=1

∧
Kx
nij

(
Ψ(ūnj(t)− ūni(t))−Ψ(v̄nj(t)− v̄ni(t)

)
Ψ(ξni(t))

∣∣∣∣∣∣
≤

(p− 1) ‖K‖L∞(Ω2)

n2

n∑
i,j=1

∣∣ξ̄nj − ξ̄ni∣∣∣∣ηij(t)∣∣p−2∣∣ξ̌ni∣∣p−1
,

(22)

where ηij(t) is an intermediate value between aij(t) and bij(t). Using that fact that g ∈ L∞(Ω)
and the construction of ūn(·), we deduce from [17, Theorem 3.1(ii)] that for any (i, j) ∈ [n]2 and
t ∈ [0, T ], we have for p ≥ 2∣∣ηij(t)∣∣p−2 ≤

∣∣ūnj(t)− ūni(t)
∣∣p−2 ≤

(
2
∥∥u(·, t)

∥∥
L∞(Ω)

)p−2 ≤
(
2
∥∥g∥∥

L∞(Ω)

)p−2
.
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For p ∈]1, 2[, since inf(i,j,t)∈[n]2×[0,T ] |ηij(t)| = C ′ > 0, we have∣∣ηij(t)∣∣p−2 ≤ C ′p−2 < +∞.

Altogether, we obtain ∣∣ηij(t)∣∣p−2 ≤ max
((

2
∥∥g∥∥

L∞(Ω)

)p−2
, C ′p−2

)
. (23)

Let C2 = max
((

2
∥∥g∥∥

L∞(Ω)

)p−2
, C ′p−2

)
‖K‖L∞(Ω2). Inserting (23) into (22), and then using the

Hölder and triangle inequalities, it follows that∣∣∣∣∣∣ 1

n2

n∑
i,j=1

∧
Kx
nij

(
Ψ(ūnj(t)− ūni(t))−Ψ(v̄nj(t)− v̄ni(t)

)
Ψ(ξ̌ni(t))

∣∣∣∣∣∣
≤ C2

p− 1

n2

n∑
i,j=1

∣∣ξ̄nj(t)− ξ̄ni(t)∣∣∣∣ξ̌ni∣∣p−1

≤ C2
p− 1

n2


 n∑
i,j=1

∣∣ξ̄nj(t)− ξ̄ni(t)∣∣p
 1

p
∑

i,j

∣∣ξ̌ni(t)∣∣p


p−1
p


≤ C2

p− 1

n2


 n∑
i,j=1

∣∣ξ̄nj(t)∣∣p
 1

p

+

 n∑
i,j=1

∣∣ξ̄ni(t)∣∣p
 1

p


n 2(p−1)

p

(
1

n

n∑
i=1

∣∣ξ̌ni(t)∣∣p)
p−1
p


≤ C2

p− 1

n2

(
2n

2
p
∥∥ξ̄n(t)

∥∥
p,n

)(
n

2(p−1)
p
∥∥ξ̌n(t)

∥∥p−1

p,n

)
≤ 2C2(p− 1)

∥∥ξ̄n(t)
∥∥
p,n

∥∥ξ̌n(t)
∥∥p−1

p,n
.

(24)

Using the triangle inequality combined with [17, Lemma 5.2], we have∥∥ξ̄n(t)
∥∥
p,n

=
∥∥v̄n(t)− ūn(t)

∥∥
p,n

≤
∥∥v̄n(t)− v̌n(t)

∥∥
p,n

+
∥∥v̌n(t)− ǔn(t)

∥∥
p,n

+
∥∥ǔn(t)− ūn(t)

∥∥
p,n

≤ Cτ +
∥∥ξ̌n(t)

∥∥
p,n

+ C ′τ

≤ C ′′τ +
∥∥ξ̌n(t)

∥∥
p,n
.

(25)

Putting together (20), (21), (24) and (25), we have

d

dt

∥∥ξ̌n(t)
∥∥p
p,n
≤
∥∥Zn(t)

∥∥
p,n

∥∥ξ̌n(t)
∥∥p−1

p,n
+ 2C2(p− 1)

(
C ′′τ +

∥∥ξ̌n(t)
∥∥
p,n

)∥∥ξ̌n(t)
∥∥p−1

p,n

≤
(

2C3(p− 1)τ +
∥∥Zn(t)

∥∥
p,n

)∥∥ξ̌n(t)
∥∥p−1

p,n
+ 2C2(p− 1)

∥∥ξ̌n(t)
∥∥p
p,n
.

(26)

Then, from (26) via the Gronwall’s inequality in its differential form (see, e.g., [13, Appendix B]),
we obtain∥∥ǔn − v̌n∥∥C(0,T ;Lp(Ω))

= sup
t∈[0,T ]

∥∥ξ̌n(t)
∥∥
p,n
≤
(

2C3Tτ +

∫ T

0

∥∥Zn(t)
∥∥
p,n
dt

)
exp (2C2T ) . (27)
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It remains to bound
∫ T

0

∥∥Zn(t)
∥∥
p,n
dt. For this purpose, we use Lemma A.1 (see Section A.1)3.

Thus, plugging the bound of Lemma A.1(i) into inequality (27), we get the desired conclusion.

We are now ready to prove our main result.

Proof of Theorem 3.1. (i) Using the triangle inequality, we have∥∥u− ǔn∥∥C(0,T ;Lp(Ω))
≤
∥∥u− v̌n∥∥C(0,T ;Lp(Ω))

+
∥∥v̌n − ǔn∥∥C(0,T ;Lp(Ω))

. (28)

Since by construction
∧
Kn is a bounded mapping, we bound the first term on the right-hand

side of (28) using [17, Theorem 5.1]4 to get

∥∥u− v̌n∥∥C(0,T ;Lp(Ω))
= O

(
T exp(O(T ))

(∥∥K − ∧Kn

∥∥
Lp(Ω2)

+
∥∥g − gn∥∥Lp(Ω)

+ τ
))

, (29)

Claim (14) then follows by plugging (29) and Lemma 3.1 into (28).

(ii) Our assumption on qn together with (7) and (13) entail that

∧
Kn(x, y) =

∑
(i,j)∈[n]2

KnijχΩx
nij

(x, y), Knij =
1∣∣ΩX
nij

∣∣ ∫
ΩX
nij

K(x, y)dxdy

Since g ∈ Lip(s, Lq(Ω)) and K ∈ Lip(s′, Lq(Ω2)), we can invoke Lemma A.3 to get∥∥K − ∧Kn

∥∥
Lp(Ω2)

≤ C(p, q, s′)δ(n)s
′min(1,q/p) and

∥∥g − gn∥∥Lp(Ω)
≤ C(p, q, s)δ(n)smin(1,q/p).

(30)
Inserting the bound (30) into (14), and using the fact that δ(n) < 1, yields (15).

3.2 Networks on graphs generated by random nodes

Let us now turn to the totally random graph model. Consider the following system of difference
equations on the totally random graph Gqn(n,K)5 :

uhi − u
h−1
i

τh
=

1

n

∑
{j: (i,j)∈E(Gqn (n,K))}

∣∣uh−1
j − uh−1

i

∣∣p−2
(uh−1
j − uh−1

i ), h ∈ [N ]

u0
i = gi, i ∈ [n].

(Pr,dn )

As we have done before, we consider the continuum extension of the solution vector Uh = (uh1 ,
uh2 , · · · , uhn)>, that is a linear interpolation on Ω× [0, T ]

ǔn(x, t) =
th − t
τh

uh−1
i +

t− th−1

τh
uhi if x ∈ ΩX

ni, t ∈]th−1, th], (31)

3This inequality is sharp as can be seen for instance from assertion (ii) of Lemma A.1, at least for p ≥ 2.
4Here, we have made the constant explicit in T compared to the statement in [17, Theorem 5.1].
5Recall again from Remark 3.1, that rigorously speaking, each variable involved in the problems and equations of

this section should be understood as random.

15



and a piecewise approximation

ūn(x, t) =
n∑
i=1

N∑
h=1

uh−1
i χ]th−1,th](t)χΩX

ni
(x). (32)

Then, we have {
∂
∂t ǔn(x, t) = −∆Γn

p (ūn(x, t)), x ∈ Ω, t > 0,

ǔn(x, 0) = gn(x), x ∈ Ω
(Prn)

where
gn(x) = gi if x ∈ ΩX

ni, i ∈ [n],

and the random variable Γn is such that

Γn(x, y) = Υij for (x, y) ∈ ΩX
nij .

If conditioned with respect to a realization x = (x1, · · · ,xn) of the random vector X, prob-

lem (Pr,dn ) can be rewritten on Gqn(n,K) in the following form
uhi − u

h−1
i

τh
=

1

n

n∑
j=1

λij
∣∣uh−1
j − uh−1

i

∣∣p−2
(uh−1
j − uh−1

i ), (i, h) ∈ [n]× [N ],

u0
i = gi, i ∈ [n].

(Pdn)

By capitalizing on the results obtained for the the case where {Gqn(n,K)}n∈N was generated
by the deterministic sequence x, we get the following result.

Theorem 3.2. Suppose that p ∈]1,+∞[, K ∈ L∞(Ω2) is a symmetric and measurable mapping,

and g ∈ L∞(Ω). Let u and Uh denote the solutions to (P) and (Pr,dn ), respectively. Let ǔn be the
continuum extension of Uh given in (31). Then, the following hold:

(i) For T > 0, there exist positive constants C1 and C2, independent of n and T , such that for
any β > 0

∥∥u− ǔn∥∥C(0,T ;Lp(Ω))
≤ C1T exp (O(T ))

((
β

log(n)

n
+

max
(
q
−(p−1)
n , q

−p/2
n

)
np/2

)1/p

+
∥∥K − ∧Kn

∥∥
Lp(Ω2)

+
∥∥g − gn∥∥Lp(Ω)

+ τ

)
, (33)

with probability at least 1− n−C2q
2p−1
n β.

(ii) Suppose furthermore that g ∈ Lip(s, Lq(Ω)) and K ∈ Lip(s′, Lq(Ω2)), s, s′ ∈]0, 1], and

qn ‖K‖L∞(Ω2) ≤ 1. Let θ
def
= min (s, s′) min (1, q/p). Then, for T > 0, there exist positive

constants C1 and C2, independent of n and T , such that for any β > 0 and t ∈]0, e[

∥∥u−ǔn∥∥C(0,T ;Lp(Ω))
≤ C1T exp (O(T ))


β log(n)

n
+

max
(
q
−(p−1)
n , q

−p/2
n

)
np/2

1/p
+

(
t log(n)

n

)θ
+ τ

 ,

(34)

with probability at least 1−
(
n−C2q

2p−1
n β + n−t

)
.
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Remark 3.4.

(i) The dependence of the constant C in the parameters is similar to Remark 3.3(i).

(ii) As observed in Remark 3.3(v), one can take T = c2 log(n), in which case T exp(c1T ) =
c2n

c1c2 log(n), with c1, c2 > 0. Consequently, if one sets qn = log(n)−δ/(2p−1), for δ ∈]0, 1[

(see Remark 3.3(iii)), then the bound in (34) scales as O
(

log(n)s

nmin(1/p,1/2,θ)−c1c2

)
, for some s > 0,

which converges to 0 provided that c1c2 < min(1/p, 1/2, θ).

As a preparatory step to prove Theorem 3.2, the following lemma is instrumental. It establishes
that the spacings between the n uniformly distributed nodes are O(log(n)/n) with high probability.

Lemma 3.2. Consider the sequence of random spacings (X(1),X(2) −X(1), . . . , 1 −X(n)), where

we recall
{
X(i)

}n
i=1

are the order statistics of X. Let t ∈]0, e[. Then, for any i ∈ [n]

δi
def
= X(i) −X(i−1) ≤ t

log(n)

n
, (35)

with probability at least 1− n−t.

Proof of Lemma 3.2. Since Xi are i.i.d. uniform random variables on Ω, we have, by virtue of [27,
Theorem 1.6.7] that the random variables δi, i ∈ [n], have the same distribution as the random
variables Zi/

∑n+1
k=1 Zk, where Z1, · · · , Zn+1 are i.i.d standard exponential random variables. In

addition, invoking [27, Lemma 1.6.6], we know that Sn+1
def
=
∑n+1

k=1 Zk is a Gamma random variable
with parameters (1, n+ 1) (thus having the density fSn+1(s) = e−ssn/n!, s ≥ 0).

Now, combining these two observations, we obtain by straightforward integral calculations that
for any ε ∈ [0, 1[

P(δi ≥ ε) = P(Zi ≥ εSn+1) = P((1− ε)Zi ≥ ε(Sn+1 − Zi))

= P
(
Zn+1 ≥

ε

1− ε
Sn

)
=

∫ +∞

0
P
(
Zn+1 ≥

ε

1− ε
s

)
fSn(s)ds

=

∫ +∞

0
e−

ε
1−ε se−s

sn−1

(n− 1)!
ds

= (1− ε)n.

(36)

The equality of the second line stems from an equality in distribution, since Sn+1−Zi has the same
distribution as Sn and Zi has the same distribution as Zn+1, and the fact that Zi and Sn+1 − Zi
are independent. Taking ε = t log(n)

n ∈]0, 1[, and using the standard inequality log(1− u) ≤ −u, for
u ∈ [0, 1], we get

P(δi ≥ ε) = (1− ε)n = exp(n log(1− ε)) ≤ exp(−nε) = n−t.
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Proof of Theorem 3.2. The idea of the proof is to take the conditional probability with respect
to a fixed realization x = (x1, · · · ,xn) of the random vector X, then use the bound in Theorem 3.1,
which is independent of x, and finally integrate with respect to the uniform density on Ωn.

(i) We have

P
(∥∥u− ǔn∥∥C(0,T ;Lp(Ω))

≥ ε′
)

=
1∣∣Ω∣∣n
∫

Ωn
P
(∥∥u− ǔn∥∥C(0,T ;Lp(Ω))

≥ ε′|X = x
)
dx

≤ 1∣∣Ω∣∣n
∫

Ωn
n−C2q

2p−1
n βdx

= n−C2q
2p−1
n β,

(37)

with

ε′ = C1T exp (O(T ))


β log(n)

n
+

max
(
q
−(p−1)
n , q

−p/2
n

)
np/2

1/p

+
∥∥K − ∧Kn

∥∥
Lp(Ω2)

+
∥∥g − gn∥∥Lp(Ω)

+ τ

 .

Thus, (33) follows from the fact that the obtained bound in (14) is independent of the random
choice of x.

(ii) In view of (30), we can argue that

P
(∥∥K − ∧Kn

∥∥
Lp(Ω2)

+
∥∥g − gn∥∥Lp(Ω)

≥ κ
)
≤ P

((
C(p, q, s) + C(p, q, s′)

)
δ(n)θ ≥ κ

)
.

Taking κ =
(
C(p, q, s) + C(p, q, s′)

) (
t log(n)

n

)θ
, for t ∈]0, e[, and applying Lemma 3.2, we

deduce that

P
(∥∥K − ∧Kn

∥∥
Lp(Ω2)

+
∥∥g − gn∥∥Lp(Ω)

≥ κ
)
≤ n−t.

Denote the events

A1 :
{∥∥v̌n − ǔn∥∥C(0,T ;Lp(Ω))

≤ ε
}

A2 :

{∥∥K − ∧Kn

∥∥
Lp(Ω2)

+
∥∥g − gn∥∥Lp(Ω)

≤ κ′
}

and their complements Aci , where

ε = CT exp (O(T ))


β log(n)

n
+

max
(
q
−(p−1)
n , q

−p/2
n

)
np/2

1/p

+ τ


and κ′ = CT exp (O(T ))

(
t log(n)

n

)θ
, with C the largest constants among the one in claim (i)

and(
C(p, q, s) + C(p, q, s′)

)
. Using the union bound, we get

P
(∥∥u− ǔn∥∥C(0,T ;Lp(Ω))

≤ ε+ κ′
)
≥ P

(
∩2
i=1Ai

)
= 1− P

(
∪2
i=1A

c
i

)
18



≥ 1−
2∑
i=1

P (Aci ) ≥ 1−
(
n−C2q

2p−1
n β + n−t

)
,

which yields the desired claim.

3.3 Rate regimes

A close inspection of the error bound in (34) (Theorem 3.2) reveals three contributions:

• Spatial discretization and edge sampling: the first contribution is materialized in the first
term which scales as (see Remark 3.3(ii))

O

( log(n)

n

)1/p

+
max

(
q
−(1−1/p)
n , q

−1/2
n

)
n1/2

 .

This term represents the spatial discretization error when approximating the continuous evolu-
tion equation (P) on the random inhomogeneous graph model Gqn(n,K) generated according
to Definition 2.1 with the graphon K.

• Data approximation and node sampling: the second term is O

((
log(n)
n

)θ)
which captures

the error of approximating the initial data g and the graphon K on the grid of size δ(n)
which concentrates around log(n)/n. The presence of the error on K is clearly tied to the
nonlocal nature of the evolution equation on graphs. This approximation error depends on
the regularity of g and K, and the latter encodes the geometry/structure of the underlying
graphs. The more regular g and K are, the faster the convergence rate.

• Time discretization: the last term, which is O(τ), is classical and corresponds to the time
discretization error.

At this stage, one may wonder which of the first two terms dominate, or in other words, what
are the different regimes exhibited by the convergence rate as a function of the problem parameters
(p, q, s, s′). This is quite important as it will reveal which nonlocal p-Laplacian evolution problems
are harder/easier to discretize by highlighting the role of each parameter, and for instance that of
p and the impact of nonlocality (i.e. graphon structure).

Toward this goal, we first make the error measure in (34) independent of p and we choose to
quantify the error in the classical L2(Ω) norm. Consequently, thanks to the classical inequalities
(16) and (48), as well as boundedness of the solutions, it is not difficult to see that

∥∥u−ǔn∥∥C(0,T ;L2(Ω))
=


O

((
β log(n)

n

)1/p

+
max(q−(1−1/p)

n ,q−1/2
n )

n1/2 +
(
t log(n)
n

)θ
+ τ

)
, p ∈ [2,+∞[

O

((
β log(n)

n

)1/2

+
max(q−(p−1)/2

n ,q−p/4
n )

np/4 +
(
t log(n)
n

)pθ/2
+ τp/2

)
p ∈]1, 2],

(38)

holds with probability at least 1−
(
n−C2q

2p−1
n β + n−t

)
.

19



To make the rest of the discussion more concrete we will take qn = log(n)−δ/(2p−1), with
δ ∈ [0, 1[, which covers both dense (δ = 0) and non-dense (δ ∈]0, 1[) graphs; see Remark 3.3(iii)
and Proposition 2.1. Thus, we have

max
(
q−(1−1/p)
n , q−1/2

n

)
=

{
O
(

log(n)1/2
)

p ∈ [2,+∞[

O
(

log(n)p/4
)

p ∈]1, 2],

In turn, the second term in (38) is bounded by(
log(n)

n

)min(p/4,1/2)

,∀p ∈]1,+∞[. (39)

Without loss of generality6, we also suppose that s = s′ and q ≤ p so that θ = sq/p ∈]0, q/p] ⊂
]0, 1]. In this case, (38) reads

∥∥u− ǔn∥∥C(0,T ;L2(Ω))
= O

((
log(n)

n

)min(1/p,1/2,sq/p) min(p/2,1)

+ τmin(p/2,1)

)
.

The term depending on n then exhibits four different regimes as a function of p, s and q (see
Figure 1). Indeed, it is straightforward to see that it scales as

(
log(n)
n

)sq/p
for p ≥ 2, sq ∈]0, 1],(

log(n)
n

)1/p
for p ≥ 2, sq ∈]1, p],(

log(n)
n

)sq/2
for p ∈]1, 2], sq ∈]0, p/2],(

log(n)
n

)p/4
for p ∈]1, 2], sq ∈ [p/2, p].

In particular, the convergence rate shows a transition phenomenon at p = 2. The rate increases
with p for p ∈]2,+∞[ while it decreases with p for p ∈]1, 2] and sq ∈ [p/2, p]. As expected, the
dependence of the rate on the initial data g and graphon K is more prominent as they become
irregular, i.e. for smaller values of sq. For small sq and p ∈]1, 2], the rate is independent of p.

A Appendix

A.1 A key deviation result

The following lemma establishes a key deviation inequality for
∫ T

0

∥∥Zn(t)
∥∥
p,n
dt where Zn(·) is

a random process defined as

Zni(t) =
1

n
αij(t)

n∑
j=1

(λij − γij), (40)

where sup(i,j)∈[n]2,t∈[0,T ] |αij(t)| < +∞, and the λij ’s are independent random variables such that
qnλij is Bernoulli with parameter qnγij , where supi,j γij < +∞ and qn satisfies (A.2). It is obvious
that this process covers that in (19) as a special case.

6This setting is true for many graphons, see, e.g., Remark 3.3(vi).
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Figure 1: Different regimes according to the values of p and s, and q.

Lemma A.1. Let Zn(·) be the random process defined in (40). Then, we have

(i) For p ∈ [1,+∞[, T > 0, there exists a positive constant C, such that for any β > 0

P
(∫ T

0

∥∥Zn(t)
∥∥
p,n
dt ≥ ε

)
≤ n−Cq

2p−1
n β,

with

ε = T

(
β

log(n)

n
+ C3 max

(
q−(p−1)
n , q−p/2n

) 1

np/2

)1/p

,

where C3 is a positive constant which will be explicit in the proof.

(ii) For p ∈ [2,+∞[, suppose that there exists a positive constant C, such that for t > 0

inf
j∈[n]

1

n

∑
i>j

α2
ij(t)

qn
γij(1− qnγij) ≥ C.

Then,

E
(∫ T

0

∥∥Zn(t)
∥∥p
p,n
dt

)
∼ T

np/2
.

To prove this lemma, we need the following deviation inequalities that we include for the reader
convenience.

Rosenthal’s inequality [18]. Let n be a positive integer, γ ≥ 2 and U1, . . . , Un be n zero mean
independent random variables such that sup

i∈[n]
E(
∣∣Ui∣∣γ) < ∞. Then there exists a positive constant

C such that

E

(∣∣∣∣∣
n∑
i=1

Ui

∣∣∣∣∣
γ)
≤ C max

 n∑
i=1

E(|Ui|γ),

(
n∑
i=1

E(U2
i )

)γ/2 .
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Bernstein’s inequality [23]. Let n be a positive integer and U1, . . . , Un be n zero mean indepen-
dent random variables such that there exists a positive constant M satisfying sup

i∈[n]
|Ui| ≤ M <∞.

Then, for any υ > 0,

P

(
n∑
i=1

Ui ≥ υ

)
≤ exp

− υ2

2

(
n∑
i=1

E
(
U2
i

)
+ υM/3

)
 .

Proof of Lemma A.1. (i) Using the Jensen inequality, we have

P
(∫ T

0

∥∥Zn(t)
∥∥
p,n
dt ≥ ε

)
≤ P

(
T p−1

∫ T

0

∥∥Zn(t)
∥∥p
p,n
dt ≥ εp

)
.

Let us first recall that qnλij are independent Bernoulli random variables with parameters

qnγij . For the sake of simplicity, set, for (i, j) ∈ [n]2, Yni
def
=
∫ T

0

∣∣ 1
n

n∑
j=1

Unij(t)
∣∣pdt, where

Unij(t)
def
= αij(t)(λij − γij). We have

I
def
= P

(∫ T

0

∥∥Zn(t)
∥∥p
p,n
dt ≥ T 1−pεp

)
= P

(
1

n

(
n∑
i=1

Yni − E(Yni)

)
≥ T 1−pεp − 1

n

n∑
i=1

E(Yni)

)
.

It remains now to bound E (Yni). We distinguish the cases where p ≥ 2 and p ∈]1, 2[.

• p ≥ 2. Using the Rosenthal inequality with the independent according to j zero-mean
random variables Unij(t), we have

E (Yni) =
1

np

∫ T

0
E

∣∣ n∑
j=1

Unij(t)
∣∣p dt

≤ C1T

np
sup
t∈[0,T ]

max

 n∑
j=1

E(
∣∣Unij(t)∣∣p),

 n∑
j=1

E(Unij(t)
2)

p/2
 . (41)

We have

E
(∣∣Unij(t)∣∣p) = q−pn

∣∣αij(t)∣∣p∣∣qnγij(1− qnγij)p + (qnγij)
p(1− qnγij)

∣∣
= q−(p−1)

n

∣∣αij(t)∣∣pγij(1− qnγij)((qnγij)p−1 + (1− qnγij)p−1
)
.

Taking p = 2, we get
E(Unij(t)

2) = q−1
n α2

ij(t)γij(1− γij).
Since sup(i,j)∈[n]2,t∈[0,T ] |αij(t)| < +∞, and γij is also bounded and p being greater than
2, there exists C2 > 0, such that,

max

 n∑
j=1

E(
∣∣Unij(t)∣∣p),

 n∑
j=1

E(Unij(t)
2)

p/2
 ≤ C2 max

(
nq−(p−1)

n , np/2q−p/2n

)
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≤ C2 max
(
q−(p−1)
n , q−p/2n

)
np/2.

Therefore

1

n

n∑
i=1

E (Yni) ≤ C1C2T max
(
q−(p−1)
n , q−p/2n

)
n−p/2. (42)

• p ∈ [1, 2[. Observe that by the mutual independence of the random variables {λij}(i,j)∈[n]2 ,
we deduce that {Unij(t)}nj=1 are independent and zero-mean random variables. Thus

E

 n∑
j=1

Unij(t)

2 = Var

 n∑
j=1

Unij(t)

 =

n∑
j=1

E
(
Unij(t)

2
)
. (43)

Therefore, applying the Jensen inequality to the concave function x 7→ xp/2, we obtain

E (Yni) ≤
T

np
sup
t∈[0,T ]

E

∣∣ n∑
j=1

Unij(t)
∣∣p ≤ T

np
sup
t∈[0,T ]

E

 n∑
j=1

Unij(t)

2p/2

=
T

np
sup
t∈[0,T ]

 n∑
j=1

E
(
Unij(t)

2
)p/2

=
T

np
sup
t∈[0,T ]

 n∑
j=1

αij(t)
2

qn
γij(1− qnγij)

p/2

≤ C2T

q
p/2
n

n−p/2 ≤ C2T max
(
q−(p−1)
n , q−p/2n

)
n−p/2.

(44)

Altogether, we have shown that for any p ≥ 1,

1

n

n∑
i=1

E (Yni) ≤ C3T max
(
q−(p−1)
n , q−p/2n

)
n−p/2, (45)

where C3 = C2 max(1, C1).

Hence, setting Wni = Yni − E (Yni) and κ = T 1−pεp − C3T max
(
q
−(p−1)
n , q

−p/2
n

)
n−p/2, we

have

I ≤ P

(
1

n

n∑
i=1

Wni ≥ κ

)
.

Let ε > 0 such that κ > 0. Observe that the random variables {Wni}ni=1 are independent,
zero-mean, and obey:

. sup
i∈[n]

∣∣Wni

∣∣ ≤ 2 sup
i∈[n]

∣∣Yni∣∣ ≤ C4T , since αij and qnγij are both uniformly bounded.
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.
n∑
i=1

E
(
W 2
ni

)
=

n∑
i=1

Var (Yni) ≤
n∑
i=1

E
(
Y 2
ni

)
. Using the Jensen inequality with the function

x 7→ x2, and replacing the exponent ”p” in inequality (41), by ”2p” which is greater
than 2, we obtain

n∑
i=1

E
(
W 2
ni

)
≤

n∑
i=1

E
(
Y 2
ni

)
≤ C5T

2 max
(
q−(2p−1)
n , q−pn

) 1

np−1
.

We are then in position to apply the Bernstein inequality to {Wni}ni=1 according to the index
i, whence we get, after some elementary algebra

P

(
1

n

n∑
i=1

Wni ≥ κ

)
≤ exp

− n2κ2

2

(
n∑
i=1

E
(
W 2
ni

)
+ nκC4T/3

)


≤ exp

(
−C6

2
min

(
q2p−1
n , qpn

) nκ2

n−pT 2 + κT

)
.

Taking κ = βT log(n)
n > Tn−p, for p ≥ 1, we have after straightforward calculations

P

(
1

n

n∑
i=1

Wni ≥ κ

)
≤ exp

(
−C6

4
min

(
q2p−1
n , qpn

)
nκ/T

)
= n−

C6
4

min(q2p−1
n ,qpn)β.

In turn,

I ≤ P

(
1

n

n∑
i=1

Wni ≥ κ

)
≤ n−C min(q2p−1

n ,qpn)β.

For this choice of κ, observe that

κ = βT
log(n)

n
⇔ T 1−pεp − C3T max

(
q−(p−1)
n , q−p/2n

)
n−p/2 = βT

log(n)

n

⇔ ε = T

(
β

log(n)

n
+ C3 max

(
q−(p−1)
n , q−p/2n

) 1

np/2

)1/p

.

Thus

P
(∫ T

0

∥∥Zn(t)
∥∥
p,n
dt ≥ ε

)
≤ n−C min(q2p−1

n ,qpn)β. (46)

As qn ≤ 1 by (A.2) and 2p− 1 ≥ p for p ∈≥ 1, we obviously have min
(
q2p−1
n , qpn

)
= q2p−1

n .

(ii) Recalling the notation in the proof of claim (i), we have

∀(i, j) ∈ [n]2,
1

n

n∑
i=1

Yni =
1

n

∫ T

0

n∑
i=1

∣∣Zni(t)∣∣pdt =
1

np+1

∫ T

0

n∑
i=1

∣∣ n∑
j=1

Unij(t)
∣∣pdt.
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Thus, for p ∈ [2,+∞[, applying the Jensen inequality and using (43), we have

1

n

n∑
i=1

E(Yni) =
1

np+1

∫ T

0

n∑
i=1

E

∣∣ n∑
j=1

Unij(t)
∣∣p dt

≥ 1

np+1

∫ T

0

n∑
i=1

E

 n∑
j=1

Unij(t)

2p/2

dt

=
1

np+1

∫ T

0

n∑
i=1

Var

 n∑
j=1

Unij(t)

p/2

dt

=
1

np+1

∫ T

0

n∑
i=1

 n∑
j=1

Var(Unij(t))

p/2

dt

=
1

np+1

∫ T

0

n∑
i=1

 n∑
j=1

α2
ij(t)

qn
γij(1− qnγij)

p/2

dt

≥ Cp/2Tn−p−1np/2+1 ≥ Cp/2T

np/2
.

Combining this lower-bound with the upper-bounded (45), we get the claimed equivalence.

A.2 Approximation theoretic results

In an effort to make this paper more self-contained we briefly recall some results on functional
spaces and approximation theory that our work relies on.

Lp spaces embeddings. Since |Ω| = 1, we have the classical inclusion Lq(Ω) ⊂ Lp(Ω) for
1 ≤ p ≤ q < +∞. More precisely∥∥F∥∥

Lp(Ω)
≤
∥∥F∥∥

Lq(Ω)
≤
∥∥F∥∥

L∞(Ω)
. (47)

We also have the reverse bound ∥∥F∥∥
Lp(Ω)

≤
∥∥F∥∥1−q/p

L∞(Ω)

∥∥F∥∥q/p
Lq(Ω)

, (48)

for any 1 ≤ q < p < +∞.

Lipschitz spaces Lip(s, Lq(Ωd)) [9, Ch. 2, §6 and 9]. We introduce the Lipschitz spaces
Lip(s, Lq(Ωd)), for d ∈ {1, 2}, which contain functions with, roughly speaking, s ”derivatives” in
Lq(Ωd) [9, Ch. 2, Section 9].

Definition A.1. For F ∈ Lq(Ωd), q ∈ [1,+∞], we define the (first-order) Lq(Ωd) modulus of
smoothness by

ω(F, h)q
def
= sup

z∈Rd,|z|<h

(∫
x,x+z∈Ωd

∣∣F (x + z)− F (x)
∣∣qdx)1/q

. (49)
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The Lipschitz spaces Lip(s, Lq(Ωd)) consist of all functions F for which∣∣F ∣∣
Lip(s,Lq(Ωd))

def
= sup

h>0
h−sω(F, h)q < +∞.

We restrict ourselves to values s ∈]0, 1] as for s > 1, only constant functions are in Lip(s, Lq(Ωd)).
It is easy to see that

∣∣F ∣∣
Lip(s,Lq(Ωd))

is a semi-norm. Lip(s, Lq(Ωd)) is endowed with the norm

∥∥F∥∥
Lip(s,Lq(Ω2))

def
=
∥∥F∥∥

Lq(Ω2)
+
∣∣F ∣∣

Lip(s,Lq(Ωd))
.

The space Lip(s, Lq(Ω2)) is the Besov space Bs
q,∞ [9, Ch. 2, Section 10] which are very popular

in approximation theory. In particular, Lip(1, L1(Ωd)) contains the space BV(Ωd) of functions of
bounded variation on Ωd, i.e. the set of functions F ∈ L1(Ωd) such that their variation is finite:

VΩ2(F )
def
= sup

h>0
h−1

d∑
i=1

∫
Ωd

∣∣F (x + hei)− F (x)
∣∣dx < +∞

where ei, i ∈ {1, d} are the coordinate vectors in Rd; see [9, Ch. 2, Lemma 9.2]. Thus Lipschitz
spaces are rich enough to contain functions with both discontinuities and fractal structure.

Let us define the piecewise constant approximation of a function F ∈ Lq(Ω2) (a similar reasoning

holds of course on Ω) on a partition of Ω2 into cells Ωnij
def
=
{

]xi−1, xi]×]yj−1, yj ] : (i, j) ∈ [n]2
}

of

maximal mesh size δ
def
= max

(i,j)∈[n]2
max(|xi − xi−1| ,

∣∣yj − yj−1

∣∣),
Fn(x, y)

def
=

n∑
i,j=1

FnijχΩnij (x, y), Fij =
1∣∣Ωnij

∣∣ ∫
Ωnij

F (x, y)dxdy.

Clearly, Fn is nothing but the orthogonal projection of F on the n2-dimensional subspace of Lq(Ω2)
defined as

Span
{
χΩnij : (i, j) ∈ [n]2

}
.

Lemma A.2. There exists a positive constant Cs, depending only on s, such that for all F ∈
Lip(s, Lq(Ωd)), d ∈ {1, 2}, s ∈]0, 1], q ∈ [1,+∞],∥∥F − Fn∥∥Lq(Ωd)

≤ Csδs
∣∣F ∣∣

Lip(s,Lq(Ωd))
. (50)

Proof . Using the general bound [9, Ch. 7, Theorem 7.3] for the error in spline approximation,
and in view of Definition A.1, we have∥∥F − Fn∥∥Lq(Ωd)

≤ Csω(F, δ)q = Cδs(δ−sω(F, δ)q) ≤ Csδs
∣∣F ∣∣

Lip(s,Lq(Ωd))
.

An immediate consequence is the following result.
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Lemma A.3. Assume that F ∈ L∞(Ωd) ∩ Lip(s, Lq(Ωd)), d ∈ {1, 2}, s ∈]0, 1], q ∈ [1,+∞], and
let p ∈]1,+∞[. Then there exists a positive constant C(p, q, s), depending on p, q and s such that∥∥F − Fn∥∥Lp(Ωd)

≤ C(p, q, s)δsmin(1,q/p). (51)

Proof . We have

∥∥F −Fn∥∥Lp(Ωd)
≤



∥∥F − Fn∥∥Lq(Ω)
≤ C

∣∣F ∣∣
Lip(s,Lq(Ω))

δs, if q ≥ p;

∥∥F − Fn∥∥1−q/p
L∞(Ωd)

∥∥F − Fn∥∥q/pLq(Ωd)
≤ C

(
2
∥∥F∥∥

L∞(Ω)

)1−q/p ∣∣F ∣∣q/p
Lip(s,Lq(Ωd))

δsq/p

otherwise,

where we used (47) (resp. (48)) and Lemma A.2 in the first (resp. second) case.
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