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A B S T R A C T

The advent of deep learning has pushed medical image analysis to new levels, rapidly

replacing more traditional machine learning and computer vision pipelines. However

segmenting and labelling anatomical regions remains challenging owing to appearance

variations, imaging artifacts, the paucity and variability of annotated data, and the

difficulty of fully exploiting domain constraints such as anatomical knowledge about

inter-region relationships. We address the last point, improving the network’s region-

labeling consistency by introducing NonAdjLoss, an adjacency-graph based auxiliary

training loss that penalizes outputs containing regions with anatomically-incorrect ad-

jacency relationships. NonAdjLoss supports both fully-supervised training and a semi-

supervised extension in which it is applied to unlabeled supplementary training data.

The approach substantially reduces segmentation anomalies on the MICCAI-2012, IB-

SRv2 brain MRI datasets and the Anatomy3 whole body CT dataset, especially when

semi-supervised training is included.

c© 2019 Elsevier B. V. All rights reserved.

1. Introduction

Medical image segmentation is a critical technology for

localizing, classifying and quantifying anatomical structures.

Clinical examination of segmented cerebral regions is one of

the key applications of neuroimaging, for example to investi-

gate structural brain connectivity (Frau-Pascual et al., 2019).

Diffeomorphic atlas-based methods have long been a robust

choice (Vercauteren et al., 2009; Ashburner, 2007; Sdika, 2008,

2013), providing theoretical guarantees and yielding consis-

tent segmentation maps that preserve both the topologies and

interrelationships of structures. Machine learning approaches

have been used to complement the traditional multi-atlas fusion

step (Wang and Yushkevich, 2013; Coupé et al., 2011; Sdika,

2010), correcting for potential voting errors. However multi-

atlas methods are computationally burdensome owing to need

to register the input to each atlas.

In comparison, Convolutional Neural Network (CNN) ap-

proaches are proving to be both efficient and accurate.

(Moeskops et al., 2016) introduced a CNN-based multi-scale

patch-level classifier for segmentation. Although patch-based

methods can exploit contextual information around each pixel

and side information such as the image position of the patch

e-mail: michael.sdika@creatis.insa-lyon.fr (Michaël Sdika)

(Ganaye et al., 2018; de Brebisson and Montana, 2015; Ghafoo-

rian et al., 2017), they are unable to exploit global constraints

such as volumetric and anatomical consistency and this limits

their overall performance. CNN’s based on multiscale encoder-

decoder architectures are able to take account of the entire in-

put image, for example using “fully convolutional” approaches

(Long et al., 2015; Badrinarayanan et al., 2017; Ronneberger

et al., 2015). This has proved to be more effective than the

patch based approach and it allows the inclusion of loss terms

that exploit richer forms of 2D and 3D domain information. For

example for brain MRI, (Roy et al., 2017) proposed an encoder-

decoder model pre-trained on a dataset annotated automatically

with Freesurfer then fine-tuned with a specific loss focused on

mining hard negatives. For 2D/3D segmentation (Sudre et al.,

2017) formulated a generalized Dice loss that is more robust to

highly imbalanced problems.

In part the success of CNNs has been driven by the advent

of larger annotated training sets, formerly a rare commodity for

various reasons (the complexity of manual segmentation, stor-

age costs, ethical requirements, ...). CNNs are typically trained

to minimize low-level image-based differences between the in-

ferred segmentation and the annotated ground truth, as mea-

sured by cost functions such as cross-entropy and Dice. So their

precision is limited by both their myopic view of correctness

and the quantity and quality of the available training data (ide-

ally this should capture the full range of inter-subject variability
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and the annotations should embody a broad consensus among

experts). For these reasons early CNN methods were not al-

ways a clear improvement on traditional segmentation pipelines

and there have been various attempts to harness properties such

as anatomical invariance (Oktay et al., 2018; Kervadec et al.,

2018; Ravishankar et al., 2017) and semantic knowledge (Xu

et al., 2018) within the CNN framework.

Dense (pixel level) conditional random fields (CRF)

(Krähenbühl and Koltun, 2011) have been used in many com-

puter vision problems as a post-processing method to correct la-

belling inconsistencies, despite their computational cost. In the

broader deep learning community such priors (contextual infor-

mation, spatial position) can be used either as additional inputs

or soft constraints. For brain image segmentation, (de Brebis-

son and Montana, 2015; Ganaye et al., 2018) integrated a spatial

localization feature as a representation prior, requiring the seg-

ment positions to be correlated with their anatomical structures.

In constrained image segmentation, (Oktay et al., 2018) used

an auto-encoder to learn a prior on the label space, extracting

features directly on the label maps and using them to penalize

the output segmentations during training. (Ravishankar et al.,

2017) formulate a method that learns and integrates a shape

prior, while (Kervadec et al., 2018) imposes restrictions on the

volumes of the segmented structures during training. To in-

clude containment and exclusion priors between the structures

in multi-label segmentation, (BenTaieb and Hamarneh, 2016)

defined a loss inspired from the conditional random field (CRF)

approach: the last layer of the network is a sigmoid function

which forces the model to segment correctly while penalizing

impossible configurations between labels. Compared to the lat-

ter, our loss directly penalizes impossible adjacencies on the

joint probability space.

The contributions of this paper can be summarized as fol-

lows:

• We propose a new methodology that reduces the number

of segmentation abnormalities by penalizing violations of

the known adjacency relationships between anatomical re-

gions. We use a 2D encoder-decoder model inspired by

(Roy et al., 2017), but during fine-tuning we augment its

label-based segmentation loss (Dice or cross-entropy) with

an original, fully differentiable, structure adjacency loss

named NonAdjLoss.

• We show that the non-adjacency penalty can also be used

in a semi-supervised fashion, supplementing the annotated

training data with additional unlabeled images to improve

generalization without compromising accuracy.

• We explore a change of architecture that expands the scope

of the original 2D segmentation method to 3D, at the same

time reformulating the NonAdjLoss to consider spatial ar-

rangements between regions.

• We show that our methods provide a remarkable reduction

in segmentation outliers on two neuroimaging datasets,

MICCAI 2012 (Landman) and IBSR V2 (Worth), and a

multi-organ dataset, Anatomy3 (Jimenez-del-Toro et al.,

2016). We attribute this improvement to the NonAdjLoss

and semi-supervised training.

Our implementation of NonAdjLoss training is available at

https://github.com/trypag/NonAdjLoss.

2. Methods

Sect. 2.1 introduces our 2D segmentation architecture and

Sect. 2.2 shows how we extract adjacency rules from ground

truth label maps. Sect. 2.3 formulates a differentiable non-

adjacency loss that operates directly on output segmentation

maps, and shows how it can be enforced on unannotated im-

ages. In Sect. 2.5 the 2D architecture is extended to 2.5D and

the NonAdjLoss is reformulated to account for the relative spa-

tial displacements between structures. Finally, Sect. 2.4 details

our practical algorithm for optimizing this loss.

2.1. Encoder-Decoder architecture

Our first CNN architecture is an encoder-decoder inspired

by (Roy et al., 2017). This network (Fig. 1) takes 7 consec-

utive 2D slices as input and uses these to segment the middle

one. The additional slices bring contextual information about

the central one, improving the overall robustness. The network

is a U-net composed of four 2× downsampling layers (the en-

coding path), followed by four upsampling steps based on max-

unpooling (the decoding path). Each decoding layer also has

direct connections from the corresponding encoding one.

2.2. Anatomical adjacency matrix

We make the assumption that all subjects will have the

same anatomical adjacencies and thus inter-region connectiv-

ities, even though their region geometries may vary. In the im-

age, the adjacency relationships between each pair of regions

i and j can be represented by an adjacency matrix A, where

Ai j is the total number of voxels on the boundary between the

annotated segments labelled i and j. Formally,

Ai j =
∑

x

∑

v∈V

δi,s(x)δ j,s(x−v), (1)

where x are the voxels, s(x) is the label at x, δ is the Kro-

necker delta function and V defines a local neighborhood. A

encodes the surface area of the contours shared between pairs

of structures in the 3D volume. The volumes of anatomical

structures may vary considerably between subjects owing to

inter-person variability and neuropathologies. For this reason

we choose to binarize A to Ã = (A > 0) as this is invariant to

homeomorphic image deformations (see Fig. 2 as an example).

We define the set of impossible transitions between structures

to be F = {(i, j) | Ãi j = 0}, for Ã in the training set. This defines

the set of anatomical adjacencies that we want to forbid during

the training of the model.
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Fig. 1: Our pipeline for 2D image segmentation. Seven adjacent slices are given as input to the neural network, which outputs the label map of the central slice only.

A fully convolutional U-net encoder-decoder architecture is used to obtain a fast slice-by-slice volume segmentations. The network has about 3 million parameters.

Fig. 2: Binary adjacency matrix Ãi j extracted on the training dataset of the

MICCAI 2012 multi-atlas segmentation challenge. Blue denote adjacencies

between structures in a 3×3×3 neighborhood.

2.3. Training a segmentation network with adjacency con-

straints

Constrained training. The main objective of this work is to

train segmentation networks to produce outputs that satisfy the

anatomical constraints encoded within F. To this end we define

a constraint function G(w) of the network parameters w, which

is zero when all constraints are satisfied for all images of the

dataset and increases with the number of inconsistencies. The

network is trained by solving the following optimisation prob-

lem:

min
w | G(w)=0

1

|DS |

∑

(I,S)∈DS

L(φ(I,w),S)), (2)

where

G(w) =
∑

I∈DG

∑

(i, j)∈F

ai j(φ(I,w)). (3)

Here, I is a greylevel image and S is its annotated label map.

DS and DG are the training datasets used respectively for the

segmentation loss and the NonAdjLoss (DG will typically in-

clude DS plus some unannotated supplementary images). φ is

the function defined by the neural network. For an image I and

given the network’s weights w, φ(I,w) is the network’s output :

a multi-channel image providing for every pixel the probability

of belonging to each class. The ai j function is defined below.

Adjacency functions. The function ai j measures the soft ad-

jacency between output labels i and j based on the network’s

output probability maps. Its form is inspired by Eq. 1 but the

function δ·,s(x) needs to be softened for use in the context of

soft output labelings and gradient descent training. Let φi(x)

be the probability map for label i in image I, as given by the

neural network output. When two regions i and j should not

be adjacent, (i, j) ∈ F, the probability of respectively belonging

to i and j should be simultaneously null for a pixel and all of

its neighbors. A simple means of enforcing this is to require

φi(x)φ j(x − v) to be low for x and its neighbors x − v. To apply

this penalty over the image we define ai j as :

ai j(φ) =
∑

x

∑

v∈V

φi(x)φ j(x − v), (4)

where φ is the label probability vector map. If we define

φ̃ = φ ∗ ✶V as the convolution of φ with the indicatrix of the

neighborhood element V , this expression can be simplified for

faster computation:

ai j(φ) =
∑

x

φi(x)
∑

v∈V

φ j(x − v) (5)

=
∑

x

φi(x)φ̃ j(x) (6)

If the network gives crisp outputs, φi(x) becomes δi,argmaxk pk(x)

and ai j(φ) reduces to Ai j(φ).

The constraint G(w) is the sum of these functions for all for-

bidden adjacencies and all images. As with most objective

functions used for deep neural network training, G(w) is not

convex with respect to the network weights and care is needed

with the numerical resolution of 2 (see section 2.4). However G

is at least positive and quadratic (but non-convex) with respect

to the network’s output probabilities φi(x), which ensures that

the objective in is bounded below.
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Extension to semi-supervised learning. Once the adjacency

matrix A has been extracted from the annotated label maps of

DS , it is considered to be the ground truth forbidden adjacency

rule for every input image. Using the network with ai j as a

differentiable adjacency metric, we can then estimate the for-

bidden connectivity of any image, whether or not it is in the

original annotated dataset DS . This allows us to include unan-

notated images in the adjacency-constraint training dataset DG,

giving a form of semi-supervised training in which the network

is simultaneously optimized to segment structures based on full

annotations when available, and to enforce the NonAdjLoss on

all images whether or not they are annotated. As we will show

in the experiments, this gives us a great deal of scope to improve

the anatomical reliability of the output labelings by including

multi-centric datasets during training. (see fig. 3).

2.4. Constrained optimization algorithm

Optimization. In practice, we solve the constrained optimiza-

tion problem using a penalty method similar to (Nocedal and

Wright, 2006): the network is trained by continuation using the

constraint G as a penalty term with gradually increasing weight

λ:

min
w

1

|DS |

∑

(I,y)∈DS

L(φ(I,w), y)) + λ G(w). (7)

It turns out to be important to pre-train the network using the

standard segmentation loss before activating the NonAdjLoss

constraints. The overall procedure is detailed in Algo. 1, where

train(λ) denotes the result of the optimization problem Eq. 7

under the given soft constraint.

Algorithm 1 Constrained learning algorithm

1: Initialization

2: L0 ,G0 = train(0)

3: λ = λratio ×
L0

G0

4: for i = 0 to i = nepochs do

5: Li = train(λ)

6: if i mod nupdate then

7: if L0 − Li < ǫ then

8: λ = λ ∗ λincrease

9: else

10: λincrease = λincrease ∗ λreduction_ f actor

11: λ = λ ∗ λreduction

12: end if

13: end if

14: end for

Here and below, Li and Gi denote respectively the average

Dice or cross-entropy and the average NonAdjLoss on the train-

ing set at the end of the i-th epoch. Initially λ is set to make the

non-adjacency loss contribution a fraction λratio of the segmen-

tation loss – in practice λratio = 0.3. High λratio settings (0.8

for example) tend to lead to overly-local flipping of pixel la-

bels, nominally removing adjacency errors but adversely affect-

ing the Dice metric and the segmentation topology. Low λratio

settings slow the method’s convergence to optimality. While

training, if the validation-set Dice is steady or improving, λ is

increased by λincrease every nupdate epochs. Conversely, if the

Dice falls more than ǫ below that of the initial unconstrained

iteration, λ is rolled back to a lower value and the step size

λincrease is also reduced. λreduction_ f actor is the constant reduc-

tion factor applied to λincrease when the Dice drops: low λincrease

values slow the convergence while high ones create training in-

stabilities.

Multi-objective model selection. To choose the best model, one

should usually look for the epoch at which the validation met-

ric reaches its best level. However in this paper we are inter-

ested in both segmentation and adjacency metrics so we pro-

pose a simple multi-objective selection rule. To select the final

set of model parameters, we take the epochs with the five best

validation-set Dice scores and choose the model with the lowest

validation-set non-adjacency loss among these. This strategy

plays an important role in finding optimal models with regard

to the validation set and it helps to reduce overfitting on the

training set.

Fig. 3: Global overview of the semi-supervised scheme, where the network

parameters w are optimized using Lseg and NonAdjLoss on annotated images

and Lgraph alone on unannotated ones.

2.5. Extension to 3D

2.5D architecture. To benefit from the 3D nature of brain im-

ages we would like to extend the adjacency constraints in the

depth dimension. This is problematic within a lightweight 2D

architecture. Using full 3D convolutions would solve the prob-

lem, but at the expense of a larger network requiring signif-

icantly more memory than our GPU’s had available. Instead

we altered the architecture of Fig. 1 to segment the three cen-

tral slices out of the seven input, instead of just the central one.

Specifically, we replaced the final 1×1 convolution with three

parallel 1×1 convolutions, estimating segmentation probability

maps for both the central slice and the ones immediately above

and below it. Each branch is optimized based on its own ground

truth so the segmentation loss becomes a sum ofthese 3 terms.

We will refer to this 3-slice architecture as the 2.5D one. It

allows the use of a 3D neighborhood to compute the adjacency
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constraints, but it requires a simple map-fusion strategy at infer-

ence: the final probability map of a given slice is the average of

the three corresponding maps generated from the current block

and the ones immediately above and below it. (see fig 4).

Fig. 4: The configuration of the last convolution block for the 2.5D architecture.

The final convolution is converted into 3 parallel convolutions, generating 3

distinct maps.

Oriented adjacencies. The adjacency matrix A was found by

evaluating, for each pixel, the labels of all of its neighbours in a

symmetric 3D neighbourhood. This overlooks anatomical sid-

edness constraints. For instance in neuroanatomy one knows

that the right putamen is not merely adjacent to the right pal-

lidum but also to the right of it. We can strengthen the anatomi-

cal constraint by replacing A with six separate matrices, one for

each of the six available orientations o ∈ O = {front, back, top,

bottom, left, right}. These are built in the same way as A but

using oriented neighbourhoods that encode adjacency in each

direction separately. The network optimizer needs to enforce

all six constraints Go(w):

min
w | Go(w)=0,∀o∈O

1

|DS |

∑

(I,y)∈DS

L(φ(I,w), y)) (8)

The numerical procedure used to solve this constraint problem

is the same as in section 2.4. The only difference is that the

penalty function is the sum of all six Go functions.

3. Experiments

We tested the NonAdjLoss and our semi-supervised training

method on two neuroimaging datasets and a whole-body dataset

(Section 3.1). Post-processing with a dense conditional ran-

dom field was evaluated for comparison. The hyperparameters

used for training are detailed in Section 3.2. To quantify our

methods’ ability to reduce the incidence of adjacency errors in

segmented images, we propose new quality metrics that count

unique connections and volumes (Section 3.3).

3.1. Data

Neurological Imaging. The method was evaluated on brain-

region segmentations from T1-weighted MR images using the

subjects labels train validation test

MICCAI12 35 135 10 5 20

IBSRv2 18 33 10 3 5

OASIS 406 0 284 122 0

Table 1: Characteristics of the three brain MRI datasets used in the experiments:

numbers of patients, labels, training images, validation images, and test images.

The OASIS dataset is entirely composed of unannotated images.

MICCAI 2012 multi-atlas challenge (Landman) and IBSRv2

datasets (Worth). Each brain imaging dataset was split into

training/validation/test subsets as presented in table 1. We fol-

lowed the official train/test experimental protocol for the MIC-

CAI challenge, however no official data split is provided for

the IBSRv2 dataset. The OASIS dataset (Marcus et al., 2010)

was used as the source of unlabelled training data for the semi-

supervised experiments, excluding the subjects who also appear

in MICCAI 2012. In IBSRv2, 6 of the 39 labels were removed

from the segmentation problem (ones such as Lesion, Blood

vessel, and Unknown).

All of the images were affine-registered to a reference atlas

in the MNI space with FSL FLIRT, then resampled to 1mm

voxel spacing. Bias field correction was applied with N4ITK

(Tustison et al., 2010). The mean and standard deviation were

estimated for each dataset and the corresponding images were

centered and reduced. Skull stripping was not used as a pre-

processing step because we found that our CNN’s were able to

label the skull as background with high precision. During train-

ing, the images from the annotated (DS ) dataset were artificially

augmented with elastic deformations (Simard et al., 2003) in or-

der to simulate the inherent natural variability of anatomy.

Whole Body Imaging. Anatomy3 is a multi-organ dataset com-

posed of CT scans and MRIs with and without contrast agent,

where 20 anatomical regions were annotated by trained experts.

It was created for the purpose of the Visceral (Jimenez-del-Toro

et al., 2016) segmentation challenge, which is not running any-

more. We did not have access the test set used for the challenge,

however a “Silver Corpus” set was released publicly, with anno-

tations crowd-sourced by merging the segmentations obtained

from the participants’ models. Our train/validation/test split

was as follows :

• 10 images for training, 10 for validation, with all data from

the official training set.

• 25 images for testing, 30 images for semi-supervision (ex-

cluding annotations), with all data from the “Silver Cor-

pus”.

During pre-processing, all images were clamped between

[−1000; 2000] Hounsfield units and intensity-normalized to set

their mean to 0 and standard deviation to 1. For computational

speed and to conserve GPU memory, we sub-sampled the xy

axis (acquisition plan) from resolution 512×512 to 256×256,

while the z axis was preserved at its original resolution. Cu-

bic interpolation was used for image re-sampling, and nearest

neighbor interpolation for the label maps.
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3.2. Implementation Details

Network optimization was performed using stochastic gradi-

ent descent with momentum of 0.9. The batch size was set to

8. The learning rate was initialized to 0.01 and updated using

the polynomial rate policy (Chen et al., 2016). During training

only the cross-entropy or Dice loss was used for the first 300

epochs, then the NonAdjLoss was progressively enforced, ad-

justing its weight λ using Algorithm 1. The parameters of Algo-

rithm 1 were: λratio = 0.3, λincrease = 1.3, λreduction_ f actor = 0.98,

λreduction = 0.90, nupdate = 5 and ǫ = 0.02. The non-adjacency

penalization was applied for 170 epochs, using a decreased

learning rate of 0.001.

When optimizing the cross-entropy losses, we found that

class imbalance caused issues owing to the large number of

label classes and the considerable volume variations between

structures. Following (Roy et al., 2017), median frequency

weighting was applied with success. The Dice loss did not need

such an imbalance correction.

When used, the dense CRF inference (Krähenbühl and

Koltun, 2011) was run for 15 steps, with a unary term based

on the network’s probability maps and two pairwise terms: po-

sition dependant and image dependant. The pairwise terms take

advantage of Ã, the binarized adjacency matrix, as the label

compatibility term. Increasing the number of steps to 50 de-

creased the performance and led to a processing time of 1 hour.

3.3. Evaluation

For all of the experiments we report Dice, HausdorffDistance

and Mean Surface Distance. These metrics do not directly mea-

sure topological defects such as adjacency errors, so to quantify

such anatomical inconsistencies we introduce two new metrics:

CAunique(AI) =
|OI ∩ H|

|H|
(9)

CAvolume(AI) =

∑
(i, j)∈(OI∩H) AI

i j

volcontour

, (10)

where AI is an output segmentation map’s adjacency graph for

a given image I, Ã the binarized ground truth adjacency ma-

trix, OI = {(i, j) | AI
i j
> 0}, H = {(i, j) | Ãi j = 0} and volcontour

is total number of contour voxels in the inferred segmentation.

CAunique is the percentage of all the forbidden inter-class adja-

cencies that appear somewhere in the image, while CAvolume is

the percentage of the region-boundary voxels in the image that

have forbidden adjacencies. The former measures the fraction

of all the incorrect region adjacencies that appear, while the lat-

ter gives the volumetric ratio of pixels with adjacency errors.

4. Results

Section 4.1 reports results showing the impact of including

the NonAdjLoss and semi-supervised training. To account for

adjacencies at different scales, we test a sum of NonAdjLosses

of varying neighborhood sizes in Section 4.2. Finally, the origi-

nal 2D architecture is extended to 2.5D in Section 2.5, and com-

bined with the oriented non-adjacency penalization in Section

4.4.

4.1. NonAdjLoss and semi-supervision

The results of our method are presented in tables 2 and

3, where Baseline is for the model with unconstrained train-

ing (Dice and cross-entropy losses) and NonAd jLoss(n) for

the model with constrained training and n unannotated images

from the OASIS dataset. Note that all three datasets (MIC-

CAI12, IBSRv2, Anatomy3) see significant improvements in

average Hausdorff Distance across models (with a confidence

level of 95%). Likewise, the non-adjacency metrics CAunique

and CAvolume evaluated on 30 images from OASIS indicate that

forbidden connectivities are being reduced quite effectively. As

a comparison with methods using spatial pairwise priors, the

Baseline was post-processed using the dense CRF approach

proposed in (Krähenbühl and Koltun, 2011) with a unary po-

tential based on the negative log likelihoods of the network

output maps. Table 2 shows that including the CRF inference

does lead to a slight improvement in distance and connectivity

metrics, but at the cost of 13 minutes of post-processing time,

compared to less than a second for the underlying Baseline and

NonAd jLoss models.

The results for the Visceral Anatomy3 organ segmentation

tests (table 3) show the same tendencies as for MICCAI12 and

IBSRv2, with a sharp decrease of 30mm in the mean Hausdorff

Distance as well as a constant reduction of abnormal connectiv-

ity. However the Dice scores are slightly decreased (by 0.01):

this can be attributed the hyperparameter settings and our multi-

objective selection criteria.

Adjacency graphs obtained by merging all output-label tran-

sitions seen anywhere in the MICCAI12 and IBSRv2 test sets

are presented in Fig. 6, for which we set the neighborhood size

to 3 × 3 × 3. No pre-processing was required on the adjacency

matrix. We did try varying the thresholding levels in an at-

tempt to eliminate erroneous transitions introduced by annota-

tion errors, but no improvement was observed. In both datasets

the baseline models produce a large number of forbidden inter-

class transitions (red dots), while the same CNNs trained with

the NonAdjLoss make significantly fewer errors, as confirmed

at 95% confidence level by a paired t-testin which each mod-

els’ mean is compared to the Baseline mean. Labeling errors

that are spatially distant from their ground truth regions are cor-

rected as expected, while the allowed transitions (blue dots) are

preserved. For both the 2D and 2.5D architectures, the best re-

sults for distance and connectivity metrics are obtained when

semi-supervised training is used to further reinforce the Non-

AdjLoss.

Semi-supervision proves to be a powerful addition to the

framework if one needs to enforce stronger structural adja-

cencies. This is especially true in cases where little anno-

tated imagery is supplied for training, but a great deal of raw

imagery is available. For example Fig. 7 (left) shows (on

a log scale) the total number of incorrect adjacencies across

all OASIS subjects for each anatomical structure, comparing

the baseline, NonAd jLoss(0) and NonAd jLoss(50) methods.

The semi-supervised model (blue) is meaningfully more re-

liable than either the baseline or the raw NonAd jLoss one,

providing anomaly-free segmentation (according to our non-

adjacency criteria) for a large number of anatomical regions on
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Fig. 5: Segmentation maps for two subjects from the MICCAI12 dataset, from left to right: ground truth, model based only on Lseg loss, model including NonAdjLoss

with semi-supervision. The red boxes highlight areas where anatomical inconsistencies were corrected.

MICCAI12 Dice HD (mm) MSD (mm) CAunique CAvolume

Baseline 0.740 ± 0.11 20.93 ± 9.50 1.18 ± 0.40 5.1e-2 ± 6.8e-2 1.8e-2 ± 4.9e-2

Baseline + CRF 0.739 ± 0.11* 18.86 ± 8.03* 1.17 ± 0.40 4.4e-2 ± 6.8e-2* 1.5e-2 ± 4.5e-2*

NonAdjLoss(0) 0.734 ± 0.10* 12.37 ± 4.62* 1.10 ± 0.34 2.7e-3 ± 6.6e-3* 2.6e-4 ± 9.4e-4*

NonAdjLoss(20) 0.739 ± 0.10* 11.19 ± 4.40* 1.06 ± 0.34 5.8e-4 ± 1.4-e3* 2.8e-5 ± 9.6e-5*

NonAdjLoss(50) 0.741 ± 0.10 10.97 ± 4.37* 1.04 ± 0.33 3.9e-4 ± 9.9e-4* 1.4e-5 ± 4.8e-5*

NonAdjLoss(100) 0.743 ± 0.10 11.31 ± 4.69* 1.04 ± 0.33 4.7e-4 ± 1.5e-3* 1.9e-5 ± 6.8e-5*

Multi-scale{33, 73, 113} 0.737 ± 0.10* 12.46 ± 5.23* 1.09 ± 0.36 4.4e-3 ± 1.0e-2* 5.4e-4 ± 1.5e-3*

Multi-scale{33, 113, 153} 0.734 ± 0.10* 12.01 ± 4.69* 1.09 ± 0.34 2.6e-3 ± 5.4e-3* 3.0e-4 ± 8.4e-4*

IBSRv2 Dice HD (mm) MSD (mm) CAunique CAvolume

Baseline 0.833 ± 0.11 15.99 ± 15.27 0.78 ± 0.37 1.0e-1 ± 8.8e-2 1.5e-3 ± 3.0e-3

NonAdjLoss(0) 0.835 ± 0.10* 14.04 ± 15.45 0.76 ± 0.34* 7.0e-3 ± 2.1e-2* 3.1e-5 ± 1.5e-4*

NonAdjLoss(20) 0.834 ± 0.10 12.75 ± 13.26 0.77 ± 0.34* 1.2e-3 ± 2.2e-3* 3.4e-7 ± 8.7e-7*

NonAdjLoss(50) 0.832 ± 0.10 11.92 ± 12.65* 0.77 ± 0.37 1.6e-3 ± 4.6e-3* 1.8e-6 ± 8.1e-6*

Table 2: Distance, similarity and connectivity metrics for each model. HD denotes HausdorffDistance and MSD denotes Mean Surface Distance, both in millimeters.

Dice, HD and MSD were averaged over the test set while CAunique and CAvolume were averaged over 30 unlabeled images from the OASIS test set. NonAdjLoss(n)

denotes the same network architecture as the baseline model, but trained using NonAdjLoss penalization and n images of semi-supervised data. * indicates that the

metric’s mean is significantly different from the Baseline with a confidence level of 95%. We report average score ± standard deviation.

this dataset.

In tables 2 and 3, although clear improvements are seen for

the connectivity metrics (CAunique, CAvolume) and the surface

metrics (HD, MSD), no such improvements are seen for the

Dice score. The NonAd jLoss(n) models have similar Dice

scores to the Baseline ones, sometimes slightly better and

sometimes slightly worse. This follows from the nature of the

constraints imposed by NonAd jLoss: for the most part, clear-

ing inconsistencies removes small erroneous regions that are far

from their true anatomical locations. As these are small their

impact on the Dice is limited (especially after averaging over

the classes), whereas if their distances to their true locations are

large their impact on the Hausdorff Distance is more important.

During the final revision of this paper we became aware of the
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Visceral Anatomy3 Dice HD (mm) MSD (mm) CAunique CAvolume

Baseline 0.682 ± 0.26 88.76 ± 52.30 3.88 ± 2.31 9.2e-2 ± 3.9e-2 3.9e-4 ± 6.4e-4

NonAdjLoss(0) 0.679 ± 0.26 58.44 ± 39.46* 3.38 ± 2.01 1.1e-2 ± 1.3e-2* 3.5e-5 ± 8.3e-5*

NonAdjLoss(30) 0.674 ± 0.26* 57.53 ± 41.45* 3.17 ± 1.87* 5.4-e3 ± 5.9e-3* 7.8e-6 ± 2.0e-5*

Table 3: Distance, similarity and connectivity metrics for each model. HD denotes HausdorffDistance and MSD denotes Mean Surface Distance, both in millimeters.

Dice, HD and MSD were averaged over the test set. NonAdjLoss(n) denotes the same network architecture as the baseline model, but trained using NonAdjLoss

penalization and n images of semi-supervised data. * indicates that the metric’s mean is significantly different from the Baseline with a confidence level of 95%.

We report average score ± standard deviation.

Fig. 6: Binary output-class adjacency matrices summarizing adjacencies seen anywhere on the MICCAI 2012 (top row) and IBSRv2 (bottom row) datasets. Blue

denotes correct adjacencies, red forbidden ones. From left to right the methods are: (i) 2D without NonAdjLoss; (ii) 2D with NonAdjLoss; (ii) 2D with NonAdjLoss

and semi-supervision; (iv) 2.5D with fusion; (v) 2.5D with fusion and semi-supervision. We report average score ± standard deviation.

work of (Painchaud et al., 2019) which shares the objective of

removing inconsistencies from segmentation maps. It is inter-

esting to observe that even though their method is completely

different (post-processing with a variational auto-encoder to re-

move a set of 16 inconsistencies in cardiac segmentation), they

observe systematic decreases in average Dice scores when ap-

plying their post-processing algorithm to a set of ten different

segmentation methods.

Two visual examples of corrected adjacency anomalies are

shown in Fig. 5, where small incorrect regions produced in

the 2D baseline are ultimately suppressed. For the 2D Base-

line the training time was 11.1 hours (300 epochs), fine-tuning

with the NonAdjLoss required 8.5 hours (170 epochs), while

semi-supervised training (100 images) required 46 hours (170

epochs). These execution times were measured on a server

equipped with a single K80 GPU.

4.2. Multi-scale NonAdjLoss

In an attempt to make better use of the multi-scale nature

of inter-structure distances, we briefly tested multi-scale adja-

cency penalties. For these experiments, the global constraint

term is the sum of non-adjacency losses using several different

neighborhoods (V in Eq. 4) with increasing sizes. We evalu-

ated this on MICCAI12 for two different three-neighbourhood

configurations with sizes given by n0 = {3
3, 73, 113} and n1 =

{33, 113, 153}. Table 2 shows that the segmentation and connec-

MICCAI12 Dice HD (mm)

Baseline 2.5D 0.733 ± 0.11 19.77 ± 9.52

Baseline 2.5D + fusion 0.738 ± 0.11 16.06 ± 7.11

NonAdjLoss(0) + fusion 0.736 ± 0.10 12.10 ± 4.75

NonAdjLoss(50) + fusion 0.744 ± 0.10 10.19 ± 3.73

IBSRv2 Dice HD (mm)

Baseline 2.5D 0.832 ± 0.11 14.48 ± 16.00

Baseline 2.5D + fusion 0.834 ± 0.11 12.60 ± 14.60

NonAdjLoss(0) + fusion 0.837 ± 0.10 9.71 ± 10.38

NonAdjLoss(50) + fusion 0.835 ± 0.10 10.94 ± 13.96

Table 4: Distance and similarity metrics for each model. HD denotes Hausdorff

distance. Each metric is averaged over the test dataset and we report average

score ± standard deviation.

tivity results were broadly similar to those for the corresponding

single-scale loss (3×3×3 neighborhood), so we did not pursue

this further.

4.3. 2.5D Architecture

To see whether more of the 3D connectivity information from

the brain images could be exploited at a reasonable cost, we

trained the baseline CNN with the proposed 2.5D output aug-

mentation. During inference we applied a simple fusion based

post-processing strategy, that consists in summing the over-

lapping maps while sliding the window over the entire vol-
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MICCAI12 Dice HD (mm) MSD (mm) CAunique CAvolume

Baseline 2D 0.740 ± 0.11 20.93 ± 9.50 1.18 ± 0.40 5.1e-2 ± 6.8e-2 1.8e-2 ± 4.9e-2

Baseline 2.5D + fusion 0.738 ± 0.11 16.06 ± 7.11 1.20 ± 0.39 1.9e-2 ± 3.1e-2 8.0e-3 ± 2.6e-2

2.5D + NonAdjLoss(0) + Fus. 0.736 ± 0.10 12.10 ± 4.74 1.15 ± 0.38 4.0e-3 ± 1.1e-2 1.3e-3 ± 5.9e-3

2.5D + NonAdjLoss(50) + Fus. 0.744 ± 0.10 10.19 ± 3.73 1.05 ± 0.34 3.2e-4 ± 1.4e-3 4.4e-5 ± 2.2e-4

2.5D + NonAdjLoss(50) + Fus. +M-O 0.734 ± 0.10 10.27 ± 4.02 1.10 ± 0.34 1.7e-4 ± 5.4e-4 1.2e-5 ± 4.4e-5

IBSRv2 Dice HD (mm) MSD (mm) CAunique CAvolume

Baseline 2D 0.833 ± 0.11 15.99 ± 15.27 0.78 ± 0.37 1.0e-1 ± 8.8e-2 1.5e-3 ± 3.0e-3

Baseline 2.5D + fusion 0.834 ± 0.11 12.60 ± 14.60 0.78 ± 0.34 5.6e-2 ± 5.5e-2 1.5e-3 ± 2.5e-2

2.5D + NonAdjLoss(0) + Fus. 0.837 ± 0.10 9.71 ± 10.39 0.75 ± 0.33 5.3e-3 ± 1.2e-2 6.2e-5 ± 2.1e-4

2.5D + NonAdjLoss(50) + Fus. 0.835 ± 0.10 10.94 ± 13.96 0.76 ± 0.32 5.3e-4 ± 2.8e-3 1.3e-6 ± 7.0e-6

2.5D + NonAdjLoss(50) + Fus. +M-O 0.836 ± 0.10 9.99 ± 11.45 0.76 ± 0.35 4.2e-4 ± 2.3e-3 1.3e-6 ± 7.0e-6

Table 5: Distance, similarity and connectivity metrics for each model. HD denotes HausdorffDistance and MSD denotes Mean Surface Distance, both in millimeters.

For each model we report average score ± standard deviation. The Dice, HD and MSD scores were averaged over the stated test set while the CAunique and CAvolume

ones were averaged over 30 test images from OASIS. The same CNN architectures were used for the baseline models and the NonAdjLoss(n) ones, with the baseline

models trained using Lseg loss alone and the NonAdjLoss(n) ones including NonAdjLoss penalization and n additional images of semi-supervision.

Fig. 7: Some illustrative non-adjacency statistics for each anatomical region on 30 test images from OASIS, using various models trained on MICCAI12. The log

total adjacency error counts of regions without errors are set to −14. For Hausdorff Distances the point diameters are proportional to their standard deviations. The

regions are ordered by their (left) error frequency on Baseline and (center) Hausdorff Distance on NonAdjLoss(0).

ume. Table 4 shows that the fusion post-processing reduces

outliers, leading to decreased Hausdorff Distances. Combin-

ing the 2.5D model, NonAdjLoss with semi-supervision, and

post-processing gives the best results seen in our experiments.

Fig. 7 (center) shows the test-set average HausdorffDistance for

each anatomical structure, comparing the 2D baseline against

2D NonAd jLoss(0) and 2.5D NonAd jLoss(50) with fusion:

the latter has lower errors than the others for almost all anatom-

ical regions.

4.4. Oriented Non-adjacency Loss

The oriented NonAdjLoss provides finer-grained anatomical

constraints but training a model using all eight 3D orientations

requires full 3D output maps to be available. In practice we used

our proposed 2.5D networks with a 6-orientation NonAdjLoss

restricted to their 3 adjacent output slices, with the averaging fu-

sion strategy. Table 5 shows that although the oriented loss im-

proves the CA non-adjacency scores on both datasets, it slightly

degrades the Dice, Hausdorff Distance and MSD scores. How-

ever for the semi-supervised training of the multi-oriented loss

the setup was not identical to that for NonAd jLoss(50): in or-

der to to evaluate 6 losses instead of one, we were forced to

reduce the batch size due to GPU memory constraints. The

small degradations seen might also be due to sub-optimal hy-

perparameter settings, such as the learning rate or network’s

weights initialization. In the longer term we think that the ori-

ented loss will prove to be a useful technique for anatomical ap-

plications. Fig. 7 (right) shows a scatter plot of average Haus-

dorff Distance versus log total non-adjacency counts for each

anatomical region. This suggests that for most regions, reduc-

ing their connectivity errors also decreases their Hausdorff Dis-

tances significantly. Indeed the 2.5D oriented NonAd jLoss(50)

with fusion brings many of the regions down to zero adjacency

errors. However even for these regions some of the usual Haus-

dorff Distance (inter-region boundary location) errors persist.

5. Conclusion

We have introduced NonAdjLoss, a loss constraint that sup-

presses known-forbidden region adjacencies in anatomical seg-

mentations. Only the network training procedure is changed:

the underlying network architecture remains unchanged and

there is no additional cost during inference. Although the

method had little effect on the Dice segmentation quality scores,
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it clearly improved the Hausdorff Distance, Mean Surface Dis-

tance and connectivity metrics. It should be especially valuable

for complex anatomical segmentation problems such as corti-

cal region labelling because increasing the number of anatomi-

cal regions also increases the number of active constraints. The

method’s ability to handle partly unannotated data during train-

ing is another major advantage, allowing models to be trained

on larger datasets.
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