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Abstract10

Accurate maps of wastewater networks in cities are mandatory for an integrated

management of water resources. However, in many countries around the world

this information is unavailable or inaccurate. A new mapping method is put

forward to create wastewater network maps using manhole cover locations as a

prime information source. These locations could be available via ground sur-

veys, remote sensing techniques or stakeholder’s databases. A new algorithm is

developed which considers manhole covers as the nodes of the network and con-

nects them automatically. It minimizes cost functions defined by industry rules

thus generating an optimized network. The various input data and the rules

used to build the deterministic tree-shaped graph being uncertain, a stochastic

version of the algorithm is also put forward to generate a set of probable net-

works in addition to the optimized one. The method is tested on the wastewater

networks of Prades-le-Lez and validated on the town of Ramonville Saint Agne.

Both towns are located in Southern France, are part of the two most dynamic

metropolitan areas of France and are under constant urban pressure due to their

proximity with the cities of Montpellier and Toulouse. The shape and topology

of the mapped networks are compared to the actual ones. The results indi-

cate an overall good agreement between the layouts of the real and generated
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networks. The proposed algorithm may thus be used to map wastewater net-

works from sampled georeferenced manhole covers, elevation and street network

databases. Additional sources of information are however necessary to recreate

the networks full geometry and insure proper conveyance. The low error val-

ues and high scores for completeness, correctness and quality indicate that the

method is robust and may be adapted and tested on other study zones.

Keywords: Wastewater, Urban hydrology, Multigraph, Network connectivity,11

Mapping12

1. Introduction13

Urban expansion is an ongoing process both in developing and developed14

countries. According to the latest global statistics published by the UN 55%15

of the world's population is currently residing in urban areas as opposed to16

30% in 1950. By 2050 this percentage is estimated to reach 68% [35]. The17

increase in population often leads to urban sprawl and city managers have to18

constantly extend water access and sanitation services to new peripheral areas.19

Getting accurate and updated information on the underground wastewater and20

stormwater networks is a cumbersome task, especially in cities undergoing urban21

expansion [24, 30]. With the development of smart city technologies, a growing22

number of towns are getting equipped with electronic sensors which are able23

to log and transmit data continuously. It thus becomes easier to monitor the24

evolution of environmental variables in quasi real time and to make adequate25

decisions based on the prevailing conditions. However, data on the location and26

the geometric features of water networks are still incomplete or missing [10].27

This is especially due to the fact that many countries only recently passed bills28

on the localization accuracy and precision that contractors need to report back29

when they undertake works in the vicinity of underground utility networks. In30

France for instance, this bill was passed in 2012 [22].31
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Attempts have been made to find the optimal design configuration for wastew-32

ater and stormwater networks based on topographic and hydraulic constraints33

or economic costs [40, 2, 21, 27, 31]. Network layout optimisation problems have34

been thoroughly investigated in operational research since the 1950s [16, 7]. In35

combinartorial optimisation this equates to finding the minimum spanning tree36

of an undirected, connected graph and is known as such as put forward by37

Borvka in 1926 [32] and later by Kruskal and Prim [23, 36] (see a review in38

[17, 7]) or finding the shortest path to connect N-points commonly known as39

the Steiner tree problem [19, 13].40

Some authors have generated virtual urban networks [26, 39]. However, in ap-41

plications where the actual network has to be mapped, exogenous factors such42

as existing network branches may render these solutions quite inefficient. Fewer43

attempts have been made in the literature to reproduce the layout of actual44

drainage networks, on urban or farmed catchments [6]. In [4], [8] and [11] the45

node to link information was provided by urban databases or local operators. In46

the case of [10], who have developed a Bayesian Mapping model for buried util-47

ity networks using utility records coupled with MTU sensor data and manhole48

surveys, the node to link connection was established through hypothesis testing49

using the Expectation Maximization Algorithm. Their results were validated50

against 2 site specific data.51

When working on an urban catchment where very little information about52

the network configuration is available, one solution may be to infer it based on53

visible features such as manhole covers. Recent works have shown that these54

could be localized by using new processing techniques and high resolution aerial55

imagery [29, 33, 34]. Although the precise location of all the manhole covers is56

not mandatory to build accurate hydraulic models of the wastewater network,57

this is far from being the only piece of information required by modelling soft-58
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ware products. The conveyance should be assessed via parameters such as pipe59

size, shape and roughness. Pipe slope is also a parameter of great importance60

as classical hydraulic models cannot compute gravity fed flow on counter-slopes,61

unless pumping stations are installed.62

In this paper, we put forward a methodology to generate a map of a wastew-63

ater or a stormwater network based on manhole cover or sewer inlet locations.64

The paper is structured as follows: the optimization algorithm and the cost65

functions are presented in section 2.1. Section 2.2 presents the stochastic ver-66

sion of this algorithm, allowing input data and rules uncertainty propagation67

up to the generated network design. A test using real world data from two68

French towns is presented in section 3 followed by a discussion and conclusions69

in section 4.70

2. Network cartography from georeferenced points71

Starting from a set of georeferenced points (manhole covers) and assuming72

the position of the network's general outfall, a methodology is put forward to73

retrieve the links between the points, i.e. the network pipes or edges. In a74

first, purely deterministic approach, the algorithm starts from the outfall point75

and chooses to link points with edges that minimize different cost functions.76

Secondly, this method is generalized with stochasticity introducing a probabil-77

ity based on the edges' costs allowing uncertainty propagation in the network78

generation.79

We first assume that manhole covers are located accurately and are given as a80

set S of georeferenced points Mi(xi, yi), that constitute the nodes of the network81

to be mapped. Manhole localization may be done manually or automatically82

by using Very High Resolution aerial images as presented in [15, 34]. The83

general chart of the algorithm is presented in Figure 1 and the different steps84
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of the method are detailed in the following subsections. The full procedure is85

automated and written in Python language. Using the input points in ESRI86

shapefile format, it returns a new shapefile with an associated attribute table87

for the created segments.

Points.shp

Delaunay triangulation Roads.shp
Buildings.shp
Elevation.tiff

Cost assignement to each edge

Edge selection

Network.shp
+ Attribute table

Point

Does
P = Next(Point) 

exist?

Add P to treated points list
Select [Point,P] as edge

Point <- P

True

False

False

True

New branch
from a treated
point TP?

Point = TP
Call Link2Network

Edge selection starting from outfall point

Figure 1: General chart (left) and edge selection algorithm (right). At the end of the process
the Link2Network function is called for all remaining untreated points.

88

2.1. Creation of a valued directed graph89

In a first step, a Delaunay triangulation is computed from the set S. This90

operation consists in connecting the points of set S to form triangles such as91

no point Mi is inside the circumcircle of any triangle. In Euclidian distance, a92

Delaunay triangulation can be proven to be a spanning graph of set S. However,93

as this rule has no set rationale for wastewater networks, points located within94

a radius set by the user are also considered as possible neighbouring points. The95

edges thus formed give a consistent subset of all the possible connections between96

points of S, called initial graph in the following. Then, a value c(MiMj) is97

assigned to each edgeMiMj which defines the ”cost” to make wastewater flowing98

from Mi to Mj . Of course, the edge is directed so that c(MiMj) 6= c(MjMi).99

At this stage, the cost function is based on two criteria: i) length: favouring100
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smallest edges, and ii) slope: favouring gravity fed flow within current industry101

rules used in France. If no other information than manhole cover position is102

considered available, the points elevation is assessed from a Digital Elevation103

Model (DEM) and assumed related to that of the pipes. This is a strong hy-104

pothesis, often used in hydrological modelling [9] but that is not entirely true105

for stormwater networks where ground slopes may be countered by adjusting106

the trench dimensions or adding pumping devices. Thus, water may flow in the107

opposite direction to surface flow/slope. However, in data scarce situations this108

approximation is retained as it is the only possibility. This assumption was ver-109

ified by calculating the coefficient of determination between the DEM elevation110

and the pipe's inlet depths for the data we had access to. The results show111

that R2=0.97 for Prades-Le-Lez. In the following, a third criterion based on112

the angle between two adjacent pipes will be added. When information on land113

use is available, which is the case in France via IGN BD-TOPO©, penalties are114

assigned to edges that cross roads (Pr) or buildings (Pb) using a buffer created115

around the roads' polylines. Note that similar criteria have also been used by116

[8] to generate a synthetic stormwater map.117

The cost function is then defined as:118

c(MiMj) = αLCLij + αSCSij + Pr + Pb (1)

Where:119

• CLij
is the cost associated to the length Lij of edge MiMj . In Southern120

France, the maximal distance recommended between two manhole covers121

is about 80 m [5]. In the framework of network cartography with partial122

information on the manhole covers' position e.g. obtained through remote123

sensing data, the cost associated with the length increases linearly from 0124

to 1 between 0 m and Lmax (see Figure 2a), where Lmax is chosen equal125
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to 160 m, in the following:126

CLij =


Lij

Lmax
if Lij < Lmax

1 else

(2)

Lmax is set to twice the recommended value as a tolerence to the older127

portions of networks which were designed before the fairly recent recom-128

mendation was made and to take into account non-reported manhole cover129

positions.130

• CSij
is the cost associated to the slope Sij of edge MiMj . The recom-131

mended slope to ensure gravity fed flow is between 0.3% and 0.7% and132

should not be greater than 5% nor negative (counterslope); the cost asso-133

ciated to the slope is thus defined as (see Figure 2b):134

CSij
=



0 if 0.3% < Sij < 0.7%

|Sij−0.7%|
10%−0.7% if 0.7% < Sij < 10%

− |Sij−0.3%|
1.3% if − 1% < Sij < 0.3%

1 if −1% > Sij OR Sij > 10%

(3)

Note that the cost associated to the slope may be relaxed if the slope135

is estimated using ground elevation that may not be representative of136

underground elevation.137

• Pr is defined as the length of edge that is outside a road divided by a138

distance d. In this application d=20 m so that Pr is greater than one if139

more than 20 m of an edge are outside the road buffer.140

• Pb is defined as the percentage of edge that crosses a building multiplied141

by a number N . In this application N=4, so that Pb is greater than one142
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if more than 25% of the edge is crossing a building.143

• The alpha coefficients are mere weighing coefficients. The user may set144

the alpha values without resorting to calibration simply by choosing the145

relative weight of each criterion. Alpha values reflect also the quality of146

the used datasets. For instance, if the slopes used to remap the network147

are known to be more accurate than the manhole cover locations which148

determine the pipe lengths, a higher alpha value may be given to slope149

alpha αS and a lower value to the length alpha (αL) and vice versa. The150

alpha values may also be determined by referring to the local rules of151

practice and their evolution through time, or based on the development152

history of a given town. In France the rules of practice are based on153

national technical guidelines. At regional level, good practice rules may154

be established as well. Hence, there is little room for improvisation or155

modification for a given town. However, if for other countries these rules156

are set at regional or district level than the user may change them. If these157

guidelines change over time, it is also possible to modify the weighing of the158

parameters. If partial field data is available, they may also be evaluated by159

calibration or trial and error, provided the thresholds of the cost functions160

are modified accordingly.161

0 Lmax
0

0.2

0.4

0.6

0.8

1

(a) CL function of Lij (m)

−2 0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

(b) CS function of Sij (%)

0 90 180 270 360
0

0.2

0.4

0.6

0.8

1

(c) Cθ function of θkij (o)

Figure 2: Cost functions, related to edge length (left), slope (middle) and angle (right). Note
that the angle cost function cannot be computed directly on the initial graph but is used
during the pipe selection procedure, to chose between candidate edges.
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This first step results in an directed graph with valued edges among which162

the network pipes will be selected. The attribute table of the generated shapefile163

contains useful information for each edge, such as point ID and elevation, edge164

length and slope, as well as cost values and road and building penalty values165

(see Table 1).166

Symbol Definition
Mu (resp. Md) Upstream (resp. downstream) point ID
zu (resp. zd) Estimate of upstream (resp. downstream) point elevation
Lud and CLud

Edge's length and associated cost
Sud and CSud

Edge's slope and associated cost
Prud

Road penalty
Pbud

Building penalty

Table 1: Attributes associated to the initial graph shapefile for each edge (MuMd).

The pipe selection algorithm (Figure 1 right) from the possible edges is167

applied to link the points of set S starting from the outfall.168

Cost function given by equation (1) is used to select the edge ij starting169

from the current point i. At this step the following new criterion Cθkij
is added.170

The coefficients 0.8 and 0.4 have been chosen to get the specific shape of the171

cost function plotted in Figure 2c, favouring 180o angles between two adjacent172

edges ki and ij, and 90o angles to a lesser extent, and giving the highest penalty173

to acute angles:174

Cθkij
=



1 if |360− θ| < 30

0.8 |90−θ|60 + 0.2 if |90− θ| < |180− θ|

0.4 |180−θ|90 if |180− θ| < |90− α| and |180− θ| ≤ |270− θ|

0.8 |270−θ|60 + 0.2 if |270− θ| < |180− θ|
(4)

The ”angle cost” Cθij of a given edge ij is computed as the sum of the costs175

Cθkij for all points k already linked to point i. The total cost function C(MiMj)176
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given in equation (1) is thus modified as follows:177

c(MiMj) = αLCLij + αSCSij + αθCθij + Pr + Pb (5)

Starting from the outfall, the edge with the lowest cost is chosen as pipe178

network provided that it is lower than a maximal admissible cost MaxCost.179

In the following MaxCost is set equal to one, so that, given the penalties on180

the road or building crossings, the points located on the roads are first linked181

together. All the linked points are labeled as Treated Point and stored in a182

list. When it is not possible to connect a new pipe to point i with an admissible183

cost, the algorithm browses the list of already treated points to find a new184

path, called Branch, still favouring points located inside the road buffer. When185

all the possible branches have been explored, the algorithm browses the list of186

non treated points to connect them to the network using the Link2Network187

function with a relaxed constraint on road crossing. The pseudo code of the188

main treatment and of the Next function are presented in algorithms 1 and 2.189

If some points are still unlinked at the end of this process, the point with the190

lowest elevation value is automatically defined as a new outfall, as stormwater191

networks might have more than one outlet on a given catchment. The linking192

operation starts over for all the remaining points (if any).193

The entire process thus yields a multigraph with possible unlinked points194

corresponding to the false positives of a previous detection step. Although some195

authors consider these as ”infeasable solutions” when optimizing network design196

[1], they do correspond to real-world situations where, due to urban growth, the197

network layout may be altered over time.198
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Algorithm 1 Pseudo code of main treatment (gen stands for the NetworkGen-
erator class)

1: PtBranch ← [outfall]
2: while MainTREATMENT do
3: BRANCH ← False
4: idPt ← PtBranch[-1] # last point added to the list
5: Next ← pointNext(gen, TreatedPt, idPt)
6: if Next then # there is a Next on the same branch
7: gen.NetWk.append(gen.edges[(Next, idPt)])
8: gen.edges[(Next, idPt)].branchID = branchID
9: TreatedPt.append(Next)

10: PtBranch.append(Next)
11: else
12: # if no more point can be added, try to start a new branch from

already treated points
13: i = 0
14: while (not BRANCH and i < len(TreatedPt)) do
15: idPt ← TreatedPt[i]
16: i← i+ 1
17: Next ← pointNext(gen, TreatedPt, idPt)
18: if Next then
19: BRANCH ← True # New branch
20: gen.NetWk.append(gen.edges[(Next, idPt)])
21: TreatedPt.append(Next)

22: if not BRANCH then # no new branch found
23: # browse untreated points to link them to network
24: couple ← Link2Network(gen, TreatedPt)
25: if couple then
26: TreatedPt.append(couple[0])
27: gen.NetWk.append(gen.edges[(couple[0], couple[1])])
28: else
29: MainTREATMENT = False

2.2. Stochastic approach199

Each step of the previously developed process is subject to uncertainty: the200

cost function was defined from best practice recommendations given in the form201

of intervals that may not always be strictly followed; pipe slopes might not be202

reported accurately or could be determined using ground elevation data; maps203

of manhole positions might be erroneous or incomplete. Validation maps pro-204

duced at the district or city scale may also have cartographic errors due to edge205
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Algorithm 2 Pseudo code of function Next

1: NextPt ← NONE
2: Weight ← MaxCost
3: for Neigh in gen.neighbour[idPt] and not in TreatedPt do
4: # Find DownPt, the downstream point of idPt and compute angle
5: angleCost = gen.angleCost(DownPt, idPt, Neigh)
6: # Find Neigh2, a possible upstream point of idPt
7: for Neigh2 in gen.neighbour[idPt] do
8: if idPt is the downstream point of Neigh2 then
9: # add angle cost for all already present edges

10: angleCost ← angleCost + gen.angleCost(Neigh2,idPt,Neigh)

11: # Compute total cost
12: gen.computeCost(gen.edges[(Neigh, idPt)])
13: # keep the minimum cost (or use the probability in the stochastic ver-

sion)
14: if gen.edges[(Neigh, idPt)].cost < Weight then
15: Weight ← gen.edges[(Neigh, idPt)].cost
16: NextPt ← Neigh

return NextPt

matching and rubber-sheeting. It is thus admitted that the layout of the ac-206

tual wastewater network cannot be retrieved perfectly. The aim of the process is207

then to propagate input data and rules' uncertainty and consequently map a set208

of probable network that explicitly represent the uncertainty in the wastewater209

networks accordingly. This enables to further propagate this mapping uncer-210

tainty into the hydraulic software to reproduce the main discharge uncertainty211

at outfall.212

In this stochastic approach, for a given downstream node Mi we define a213

probability distribution function PMiMj for each edge MiMj of the initial graph,214

based on the edge's cost value:215

PMiMj =

1
cMiMj∑
j

1
cMiMj

(6)

Lower costs are assigned to the edges that meet the constraints imposed on216

length, slope and angle, hence their selection as pipe has a higher occurrence217
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probability. These correspond to a small-set of edges, which would have had a218

lower selection probability if the process was purely random.219

For a given point Mi, instead of choosing the edge with the minimum cost,220

the upstream point Mj is randomly sampled from possible neighbours in the221

initial graph using multinomial laws with parameters from equation (6). Several222

runs of the algorithm are performed so that, at the end of the process, a set of223

probable networks is thus obtained.224

2.3. Validation procedure225

The mapped network is validated against the actual map via positional errors226

and changes in network hierarchy.227

Positional errors are calculated using the criteria of completeness, correct-228

ness and quality, put forward in [18] to evaluate automatically extracted road229

networks, and total error is defined using [28]: [25]230

Completeness =
TP

TP+FN
(7a)

Correctness =
TP

TP+FP
(7b)

Quality =
TP

TP+FP+FN
(7c)

Error =
FN+FP

RL
(7d)

where TP represents true positives (i.e. the length of correctly mapped pipes),231

FN false negatives (length of pipes that are not mapped by the algorithm but232

that do exist in the validation database), FP false positives length of pipes233

that are mapped by the algorithm but that are not reported in the validation234
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database) and where RL stands for Real Length i.e. the total length of pipes235

as reported in validation database. Completeness represents the percentage of236

the reference network which lies within the buffer around the mapped pipe.237

Correctness represents the percentage of correctly mapped pipes, i.e., the per-238

centage of the mapped pipes which lie within the buffer around the reference239

network. Quality is a measure of the overall goodness of the final result. It240

takes into account completeness and correctness.241

The optimum value is 1 for the three first criteria and is 0 for the error. In242

this application the buffer is flat and double sided. Its width is set to w =5 m,243

i.e. ±2.5 m. This means that mapped pipes are considered to be identical to244

the real pipes if they fall within a 5 m strip. This distance may not meet the245

precision limits imposed by current legislation in developed countries (such as246

the U.S. Clean Water Act, or the French environmental legislation [22] revised247

in 2018). However, these maps may be used to plan database updating field248

work. In addition, in many developing countries, no maps exist at all and even249

a 5 m tolerance may be considered as an improvement.250

Network hierarchy is based on Shreve's magnitude [38], which is a numer-251

ical measure of its branching complexity and implicitly accounts for topology.252

The network is assumed to be a mathematical tree and channels or branches,253

which have no upstream junctions or tributaries, have an order of 1. When two254

branches of order i and j join, the resulting downstream branch has an order255

i + j. Changes in network hierarchy will be directly reflected by the outlets256

order.257

3. Application and results258

The methodology is first tested on the town of Prades-le-Lez in South East-259

ern France (34o41’51”N;3o41’51”E) and validated on the town of Ramonville-260
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Saint-Agne in the South West of France (43o34’04”N;3o54’07”E).261

The Prades-le-Lez database for the existing manhole locations is provided262

by Montpellier Méditerranée Métropole, the local operator. The town limits the263

manhole cover positions and the initial graph are presented in Figure 3. The264

database includes 792 manhole covers and 23.45 km of pipes with a mean length265

of 28 m and standard deviation of 15 m. All the other geographical data used in266

this study are available through the French National Institute of Geography's267

databases (BD-TOPO® and ALTI-RGE®). The network is not fully connected268

as can be seen on Figure 3 in the eastern part of the town.269

The Ramonville-Saint-Agne database has been obtained through the French270

government's open access gateway (https://www.data.gouv.fr/fr/). Ramonville-271

Saint-Agne is a small town located in the urban area of Toulouse, the 4th biggest272

city in France. Despite its small size, it has a high population density, 2140,7273

inhabitants.km−2 in 2015 i.e. 13829 inhabitants over 6km2 and is under con-274

stant urban pressure due to its proximity with the city of Toulouse. The network275

consists of 1878 nodes and 58.9 km of pipes, with a mean length of 30 m and276

standard deviation of 16 m.277

The distance between the two towns is of 249 km. They are both part of the278

two most dynamic metropolitan areas of France, with a mean annual population279

growth of 2.9 % between 2010 and 2015 for Ramonville-Saint-Agne and 2.8%280

for Prades-le-Lez. In comparison, the city of Paris scores -0.3% over the same281

period and its metropolitan area 0.5%. Both catchments are larger and their282

networks are bigger than most of the study cases reported in the literature283

[3, 8, 31, 37].284

3.1. Prades-le-Lez285

In both applications, the road buffer width for the road penalty Pr is set286

to 8 m (±4 m). Using the 792 manhole cover locations, 9946 oriented edges287
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Figure 3: The two study catchments, Ramonville-Saint-Agne (Left) and Prades-Le-Lez
(Right). Limits of the municipality, manhole cover positions as reported in the stakeholder's
database and corresponding initial graphs.

are defined. The best ones, having the optimal cost values, will be selected as288

pies for the mapping process. In the following subsections, first the optimal α289

values are identified, then the ”optimal” networks with regards to the various290

criteria are presented. Finally the set of probable networks obtained using the291

stochastic procedure is analyzed.292

3.2. Selection of optimal α values293

A sensitivity analysis of the results is performed with respect to the three294

parameters αL, αS and αθ which are varied from 0 to 1 by step of 0.1, while295

16



respecting a total sum value of 1. Figure 4 represents the results in terms of296

error (eq. 7d).297

Err

0.19

0.15

0.20

0.16

0.21

0.17

0.22

0.18

,

Figure 4: Results according to different values of α in term of error (eq. 7d). Each parameter
α is equal to one at the corresponding top of the triangle and zero at the opposite base. The
best results are obtained with αL = 0.5, αS = 0.2 and αθ = 0.3.

The best result is obtained for αL = 0.5, αS = 0.2 and αθ = 0.3, with an298

error equal to 0.158. This corresponds also to best quality (0.85) and correctness299

(0.92) and to a completeness value of 0.92. The resulting network is presented300

in Figure 5a.301

Note that all four criteria have better values with this algorithm than when302

using the Kruskal algorithm with ranked error criteria on slope presented in [14].303

Low αS values would suggest that the slope is less important than distance when304

linking the network nodes which does not seem quite logical for a gravity fed305

flow network. A possible explanation is that we used terrain slope values, via306

the Digital Elevation Model, which are not representative of pipe slopes. Indeed,307

pipe layers often adjust the trench dimensions to imposed slope values through308

digging and filling. Thus, associating a cost function to the terrain slope values309

does not impact the simulation outputs greatly in terms of position.310

Best completeness (0.93) is obtained with αL = 0.2, αS = 0.2 and αθ = 0.6311
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Figure 5: Best result: a) in term of error, quality and correctness, obtained with αL = 0.5,
αS = 0.2 and αθ = 0.3; b) in terms of completeness obtained with αL = 0.2, αS = 0.2 and
αθ = 0.6.

(Figure 5b). The higher αθ and lower αL values result in a network that has312

more right angle connections but edges of similar length: in comparison with the313

best error results, the difference between the minimal edge values are of 0.1 m,314

while the maximum values are 0.6 m different. Given the positional errors and315

the precision of the data, these differences are thought to be not significant.316

There are however 6 non-connected manhole covers when angles are given a317

higher weight compared to 2 when distance is given a higher weight.318

In both instances isolated pipe segments can be found, highlighting the fact319

that the proposed procedure allows for disconnected graphs in order to repro-320

duce sub-networks, such as the one located in the eastern part of the catchment.321

However, with lower αL values the number of disconnected parts increases from322

2 to 5. These are not false connections but rather incomplete connections as323

can be seen when overlaying the simulated networks maps to the actual map.324
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Additional dissimilarities with the ground truth (see Figure 6 and following sub-325

section) also rise from the fact that the mapping algorithm considers that flow326

is gravity fed while the real network has a mainforce in the western part of the327

catchment.328

3.3. Network connectivity and layout329

In terms of network layout and connectivity, the maximum Shreve's magni-330

tude of both the ”Best Network” and the ”Most Complete” network are within331

the same order of magnitude as the real network's: Shreve's magnitude at the332

outlet is of 131 for the actual network, 134 for the best network and 149 for the333

most complete network (see Figure 6). However, while the real network has its334

highest orders on the western part of the catchment, both simulated networks335

have higher orders in their eastern branch. This is because the error criteria we336

have used to assess the results, rely only on position and not on flow direction.337

Indeed connections are allowed even for pipes with counter slopes. Thus 43%338

of the connected pipes have a slope cost value of 1 for the ”Best Network” and339

39.7% for the ”Most complete” network. All of these pipes are true positives340

and do exist in the validation database and 59% of them have reported negative341

slope values.342

343

To impose correct flow directions in the network, solutions with higher alpha344

αs values should be selected. Our results however indicate that all solutions with345

αs ≥ 0.7 and αL < 0.2 fail to connect the upstream and downstream parts of the346

network resulting in lower Shreve's magnitudes at the outlet and networks with347

less spatial extent. The corresponding Shreve's magnitudes vary between 33 and348

59. Given the catchment's topographic configuration, relaxing the condition on349

gravity fed flow is the only possibility of insuring connectivity throughout the350

network. However, none of our solutions is able to reproduce the impact of the351
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a)

b) c)

Figure 6: Comparison of Shreve's number between the actual and mapped networks. a) actual
network; b) best mapped network obtained in terms of error, quality and correctness; c) best
mapped network obtained in terms of completeness.

mainforce and to insure flow in the lower western part of the catchment. Such352

a-priori knowledge may be translated by assigning an overall null cost value to353

the corresponding edges thus forcing the connection algorithm to select them.354

The same procedure may be used if information is also available on the location355

of pumping stations.356

3.4. Uncertainty propagation357

Using best α parameters determined previously, the algorithm in its stochas-358

tic version is run 500 times. When some edges are selected either in one direction359

or in the other, the two occurrence probabilities are summed, as no information360

is available in the validation database on the actual network topology and flow361
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directions. Thus 1570 non oriented pipes are selected from the 9946 edges of362

the initial graph. The results are plotted in Figure 7.363

Frequency
0,2% - 20%

20% - 40%

40% - 60%

60% - 80%

80% - 100%

0 250 500125 Metres

Figure 7: Results of uncertainty propagation. Darker lines correspond to pipes with higher
occurrence frequency.

For the sake of clarity, only pipes selected at least for one network are rep-364

resented, according to their occurrence frequency in the 500 runs. 708 of these365

pipes are reported in the validation database and 862 are not. The occurrence366

probabilities of these True and False pipes are plotted in Figure 8 in boxplot367

format.368

The results indicate that the True Positive distribution median is equal to369

86%, meaning that 50% of pipes of the validation database are selected by the370

stochastic process in more than 86% of the 500 simulations. More than 25% are371
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selected each time and 25% have an occurrence frequency lower than 55.95%.372

Half of the false pipes have an occurrence frequency lower than 16.8%.373

0

20

40

60

8080

86

16.8

100

Occurrence
frequency (%)

True Positive edges False Positive edges

Figure 8: Results of the uncertainty propagation. Frequencies of True Positive and False
Positive pipes

It can be seen in Figure 7 that the pipes with the highest occurrence prob-374

ability (90% to 100%) correspond to the starting segment of the outlet and to375

the branches with no tributaries that are the outer pipes of the network. The376

median length of these pipes is 31.2 m (mean = 32.8 m; σ=15.7; N=332). The377

pipes with the lowest occurrence probability (0.2% to 20%) are those linking378

nodes with very similar elevation values or that have counter slope sections. On379

average they are longer with a median length of 41.2 m (mean length=42.7 m,380

σ=18.7, N=737).381

38 of the 8376 non selected edges are reported in the validation database382

and 34 of them have a prohibitive CL value as they fall outside the road buffer,383

some run in fact parallel to the buffer (see Figure 9).384

The results of the uncertainty propagation show that, in our case study, half385

of the generated network pipes are certain. They also show that about 85 % of386
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Figure 9: Examples of initial graph edges that are never selected as pipes while being part
of the validation database.

graph edges linking manhole cover locations are certain not to host a network387

pipe. These results are however case study and input data dependent.388

4. Validation389

In order to test the robustness of the method we randomly sampled 75%,390

50% and 25% of the manhole positions i.e. 592, 395 and 198 points respec-391

tively. We ran the algorithm again with the parameters corresponding to the392

lowest error, best quality and correctness i.e αL = 0.5, αS = 0.2 and αθ = 0.3.393

When omitting intermediate manhole covers, the possibility of crossing roads394

and buildings increases, as manholes are mandatory at pipe junctions and cross-395
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roads. The cost function value associated to length, slope and angles may also396

increase. The MaxCost parameter is thus taken respectively equal to 1.5, 2 and397

4 for the 75%, 50% and 25% samples. The results are presented in figure 10 and398

show that:399

• When using 75% of the positions, 581 pipes are created and 2 points re-400

main unconnected. The positional errors increase with completeness drop-401

ping to 0.79 while quality and correctness reach 0.6 and 0.72 respectively.402

The overall error is of 0.51.403

• When using 50% of the positions, 379 pipes are created and 3 points are404

left unconnected. The error increases to 1.05 and correctness, quality and405

completeness drop to 0.48, 0.37 and 0.63 respectively.406

• When using 25% of the manhole cover locations 196 pipes get created and407

no points are left unconnected. The resulting network has very low quality408

criteria (error = 1.87, Correctness = 0.23, Quality = 0.17, Completeness409

= 0.37) but is not fragmented because of the increase of the MaxCost410

parameter.411

These results show that the outcome of our method is dependent on the412

density of points used to generate the network. If less than half of the manhole413

positions are detected through field data or photo-interpretation, the algorithm414

will fail to reproduce a map of acceptable quality. However, as can be seen in415

Figure 10, the overall layout of the network is still visible and the main trunks416

are mapped even when using 25% of the original dataset.417

A second validation test consisted in running the algorithm on the town of418

Ramonville-Saint-Agne. We ran the algorithm again with the same parameters419

i.e αL = 0.5, αS = 0.2 and αθ = 0.3.420

The corresponding error is of 0.28, quality is 0.76, correctness is 0.84 and com-421
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Figure 10: Results obtained with 75% (a,d), 50% (b,e) and 25% (c,f) of the database points.
Up: initial points (red) and mapped network (green), down: validation against real network.

pleteness 0.89. 1817 pipes are mapped by the algorithm and there are only 32422

un-connected manhole covers 30 of which are located outside the road buffer and423

are less likely to be selected by the algorithm. This is a common problem as424

50.2 % of the false negatives, i.e. pipes that do exist in the validation database425

but that the algorithm did not map, are located outside the road buffer. 24%426

correspond to short pipes (< 20 m) and 1% to pipes >80 m. The proportions427

are similar for the false positives, with 40% of short pipes and 0.9% of pipes428

with a length >80 m. 30% of the false positive have acute angles and 42% have429

a slope cost The results of the sensitivity test on Ramonville-Saint-Agne pre-430
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sented in Figure 11. They show that three triplets give the best results in terms431

of lowest error and highest completeness (0.89), correctness (0.85) and quality432

(0.77) : αL = 0.8, αS = 0.0 and αθ = 0.2; αL = 0.8, αS = 0.1 and αθ = 0.1433

and αL = 0.7, αS = 0.1 and αθ = 0.2. The range of error values calculated434

on this catchment is higher than those calculated on Prades-Le-Lez. However435

using lower coefficients for slope i.e. lower αS values, still yields better results.436

Err

Best results

0.35

0.27

0.37

0.29

0.39

0.31

0.41

0.33

Figure 11: Error values according to different values of α for Ramonville-Saint-Agne (eq. 7d).

Figure 12 shows the networks generated using both the parameters found437

for Prades-Le-Lez and with the first triplet. The higher influence of distance vs438

slope is again thought to be due to the use of surface elevation data which is439

not necessarily representative of the pipe slopes : 43 % of the true positives in440

figure 12b have a slope cost function value of 1. Unfortunately 92% of the slope441

values are missing in the validation database. The remaining 8% have a mean442

slope value of 2% (σ= 2.56%; N=95).443

In terms of connectivity however, the results are very poor. This is due to444

the fact that, on the one hand, Ramonville-Saint-Agne’s actual network is not445

fully connected according to the digital maps we obtained despite the existence446

of three mainforces. On the other hand, as highlighted previously, the DEM447

26



0

0.5

1

TP FN FP

(a)

0

0.5

1

TP FN FP

(b)

Figure 12: Results obtained on Ramonville-Saint-Agne with a) αL = 0.5, αS = 0.2 and
αθ = 0.3 ; b) αL = 0.8, αS = 0.0 and αθ = 0.2.

data indicates that more than 40 % of the true positives, i.e. pipes that do448

exist in reality have counter slopes. Hence, our algorithm creates 308 network449

branches but the highest Shreve order we calculate is 7 while the sub-network450

of the validation database has a Shreve order of 387.451

5. Discussion and conclusion452

In this work we put forward a method to build a map of an underground453

network using a set of georeferenced points. The method has been developed454

to help contractors, managers or scientists infer the location of the wastewater455

network and may be used at the scale of any administrative entity: borough,456

town or water board where information is missing.457

The method we developed requires less input data than some of the methods458

described in the literature which consider the network layout as an optimiza-459

tion problem based on pipe size or network cost [2, 20, 40, 31, 37]. However,460

the connectivity data we have produced in this work is not enough to run a461

hydraulic or hydrological model of the network. A procedure to recreate the462

networks full geometry i.e. pipe diameter, rim and invert elevation and depth,463
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and insure proper conveyance is currently under development with a method464

that does not involve any calibration to determine these values and relies only465

on hydraulic continuity rules and industry practices. Similarly to the approach466

followed by [3] we use scripts to propagate pipe attribute data. The code is467

currently being validated. The main challenge is to translate these industry468

practices into cost functions as we have done in this work. Note that the func-469

tions are generic and the thresholds may be changed according to the practices470

of a given country. Thus our algorithm may be used to generate the topology471

of the network which may be used in hydraulic modelling or integrated in asset472

management databases. Though the later should ideally contain information473

on pipe location, geometry and condition, in many developing and developed474

countries they do not exist or have very fragmentary data. Pipe condition and475

age are not always reported for instance. It would be presumptuous on our part476

to claim that we would be able to generate such information using only manhole477

cover positions. We are currently addressing this issue using text-mining and478

NLP techniques [12].479

The algorithm presented in this work is very efficient in terms of computation480

time as only 6 min are required to build a single network of 792 nodes and481

calculate the corresponding validation criteria, using a standard PC (INTEL482

CORE I7-5930K, 3.5GHz with 16Gb RAM). For the stochastic approach, the483

Delaunay graph being built once for all, the time is reduced to about 4 min per484

probable network.485

Two types of information are necessary to run our algorithm: the location486

of the network nodes i.e. manhole covers and the slope of the underlying pipes.487

This is the geometric feature which is most difficult to determine at this stage.488

It is also the most sensitive parameter both to control gravity fed flow and to489

model it. In some examples [2, 21, 27, 40], slope has been calibrated according to490
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discharge and velocity. This procedure is not indicated in our case because the491

main point of mapping the wastewater network is to use it in urban hydrological492

modelling to simulate discharge values based on measured precipitation data and493

not pre-determine them. Slope is often one of the least documented variables494

in French urban databases available in open access. In the case of Prades-le-495

Lez for instance, only 46% of the records have slope values and most of them496

are incoherent. This complicates both the validation process and the attempts497

made to find a rule or a method to predetermine slope values. Assuming that498

terrain and underground slopes are parallel would be a suitable hypothesis as499

long as there are no local constraints such as bedding planes or obstacles like500

other buried networks, which could result in different layouts. Despite our best501

efforts, we could not find any open access geotechnical reports, which could502

give us an indication on bedding planes. One solution would be to infer slope503

values based on the ground elevation and laying depths, knowing that in certain504

instances the laying depth is modified to insure adequate slope values and flow505

conditions. A linear relationship was established between the roadway elevation506

and the pipe's upstream and downstream inlet depths (R2=0.97) for Prades-le-507

Lez. This result is promising and the method will be tested on other catchments.508

It does require accurate fine scale elevation data but a growing number of towns509

and county councils are providing this type of information through their open510

data web sites. In France for instance, based on the modified law n2016-1321511

of October 7 2017, all local authorities employing more than 50 agents have to512

put administrative documents and public data online by October 2018. The513

lack of accurate data on pipe slopes may be compensated by information on514

the location of pumps or mainforces. The network's topology may be corrected515

by assigning an overall null cost value to the corresponding edges thus forcing516

the connection algorithm to select them. The same procedure may be used517
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if the information on flow directions is available. This algorithm is mainly518

developed for combined sewer outflows. It may also be used to map the layout519

of stormwater networks provided inlet grates are used as additional location520

indicators. The validation dataset we have used is one of the largest used in the521

literature to validate network mapping algorithms. The low error values and522

high scores for completeness, correctness and quality indicate that the method523

is robust and may be adapted and tested on other study zones.524
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d’assainissement. In M. Brando, C., Frontini, F., Roche, editor, Atelier569

Humaintés Numériques Spataialisées (HumaNS’2018), pages 15–19, 2018.570

[13] M. Brazil, R. Graham, D. Thomas, and M. Zachariasen. On the history of571

the Euclidean Steiner tree problem. Archive for History of Exact Sciences,572

68(3):327–354, 2014.573

[14] B. Commandré, N. Chahinian, J.S. Bailly, M. Chaumont, G. Subsol, F. Ro-574

driguez, M. Derras, L. Deruelle, and C. Delenne. Automatic reconstruction575

of urban wastewater and stormwater networks based on uncertain manhole576

cover locations. In 14th IWA/IAHR International Conference on Urban577

Drainage, ICUD 2017, volume 2012, 2017.578

[15] B. Commandre, D. En-Nejjary, L. Pibre, M. Chaumont, C. Delenne, and579

N. Chahinian. Manhole cover localization in aerial images with a deep580

learning approach. International Archives of the Photogrammetry, Remote581

Sensing and Spatial Information Sciences - ISPRS Archives, 42(1W1):333–582

338, 2017.583

[16] B. Golden, M. Ball, and L. Bodin. Current and future research directions584

in network optimization. Computers and Operations Research, 8(2):71–81,585

1981.586

[17] R. L. Graham and P. Hell. On the History of the Minimum Spanning Tree587

Problem. Annals of the History of Computing, 7(1):43–57, 1985.588

[18] O. Heipke, C., Mayer, H., Wiedemann, C., Jamet. Evaluation of auto-589

matic raod extaction. International Archives Photogrammetry and Remote590

Sensing, 32:47–57, 1997.591

32



[19] F. K. Hwang and D. Richards. Steiner tree problems. Networks, 22(1):55–592

89, 1992.593
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