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Abstract

We establish exponential inequalities for the supremum of martingales and square martingales
obtained from counting processes, as well as for the oscillation modulus of these processes. Our in-
equalities, that play a decisive role in the control of errors in statistical procedures, apply to general
non-explosive counting processes including Poisson, Hawkes and Cox models. Some applications
for U -statistics are discussed.
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1 Introduction

Counting processes naturally arise in a lot of applied fields and the understanding of their evolution
is the object of a lot of modelling problems. In this context, exponential inequalities are of great
interest, especially for the control of errors in statistics. Exponential inequalities for the distribution
of random variables have been of interest for many years (see Hoeffding [1963] for one of the first
result in this field), and they are still a very active research area for various types of processes, like
sums of i.i.d. random variables, empirical processes, U -statistics, Poisson processes, martingales and
self-normalised martingales, with discrete or continuous time. For example, for discrete time processes
with i.i.d. random variables, exponential inequalities have been obtained for the empirical process or
for U -statistics of order two in Hanson and Wright [1971], Giné and Zinn [1992], Arcones and Giné
[1993], Talagrand [1996], Ledoux [1997], Klass and Nowicki [1997], Bretagnolle [1999], Massart [2000]
or Giné et al. [2000] to cite a few. We may refer also to Massart [2007] or Bercu et al. [2015] for a
wide review of exponential inequalities for discrete time martingales.

In this paper we focus on counting processes in continuous time. Our aim is to provide exponential
inequalities with explicit constants for general counting processes, specifically for their associated local
martingales, for their local square martingales and for their oscillation modulus. The first one is
useful for statistical applications like density estimation as exploited for instance in Reynaud-Bouret
[2003]. The second one involving local square martingales allows to control U-statistics (see Houdré
and Reynaud-Bouret [2003]) which have a long history. For instance, the estimation of a quadratic
functional of a density (Laurent [2005]), or in testing problems (see Fromont and Laurent [2006] for a
goodness-of-fit test in density or Fromont et al. [2011] for an adaptive test of homogeneity of a Poisson
process), the estimator, as well as the test statistics are naturally U -statistics of order two. As to
the third contribution concerning the oscillation modulus, applications may concern multiple testing
problems where some procedures are based on the oscillation modulus of counting processes, which
entails the need to control the supremum and the whole oscillation modulus of these processes, and not
only their marginals. In a non-asymptotic framework, it is necessary to obtain inequalities with explicit
constants. The keystone for controlling the statistical error is then to use exponential bounds for the
right model, but the results obtained on square martingales are generally not the simple consequence of
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those obtained for simple martingales. To achieve our goal, we first exhibit local martingale properties
of the exponential of counting processes, then we state exponential inequalities for the supremum of
those processes, leading to exponential bounds for the oscillation modulus.

A first exponential inequality for martingales of counting processes in continuous time can be
found in Theorem 23.17 of Kallenberg [1997], that concerns semimartingales M under the restrictive
assumption that [M ]∞ ≤ 1 almost surely. The specific case of the Poisson process is studied in
Reynaud-Bouret [2003]. More general counting processes are considered in Van De Geer [1995] or
Reynaud-Bouret [2006]. In these contributions, the exponential bounds are derived from techniques
adapted from the empirical process, with extensions of Bernstein’s exponential inequality for general
martingales. As a consequence of the results of Van De Geer [1995], exponential inequalities with
explicit constants have been established in Reynaud-Bouret [2006] for the supremum of counting
processes with absolutely continuous compensators, as well as for the supremum of a countable family
of martingales associated with counting processes.

However the case of the square martingale is not addressed in these previous results. As to
the existing results concerning exponential inequalities for U-statistics, many of them come from
results on sequences of i.i.d. random variables. Indeed, in the specific case of the Poisson process, a
sharp exponential inequality with explicit constants holds for U -statistics of order two and for double
integrals of Poisson processes in Houdré and Reynaud-Bouret [2003]. The Poisson process is seen as
a point process (Ti)i≥1 on the real line, allowing to use the inequalities obtained for U -statistics of
i.i.d. random variables like Rosenthal’s inequality and Talagrand’s inequality, after conditioning by
the total random number of point. Unfortunately this approach is no longer valid when we consider
more general counting processes than the Poisson process.

This contribution unifies the above approaches since our exponential inequalities apply to general
counting processes (including the Poisson process, non-explosive Cox and Hawkes processes under
mild assumptions like bounded intensities for instance), and we consider both martingales and square-
martingales. Comparing to the existing literature, we do not make any assumption about the indepen-
dence of the underlying point process and we use quite different proofs involving stochastic calculus
instead of adapting previous techniques in discrete time. Moreover, we get sharper inequalities when
applied to the setting of existing works. For instance concerning the exponential inequality for the
martingale, we get a non-asympotic inequality with explicit constants and we obtain a tail of order
x log(x) instead of x in Van De Geer [1995]. As an application of our results, we obtain a control of
the supremum of some U -statistics and double integrals based on other counting processes than the
Poisson process. We also provide an inequality for the oscillation modulus, which allows a fine control
of quadratic statistics based on counting processes.

The remainder of this article is organized as follows: in the next section, we introduce some
general notations, while Section 3 is devoted to the exponential martingales of counting processes.
The exponential inequalities of our martingales and their associated square martingales are presented
in Section 4, while Section 5 details applications to U-statistics and oscillation modulus. Finally, we
have gathered all the proofs in Section 6.

2 Notations

Let (Ω,F ,P) be a filtered probability space where F = (Ft)t≥0 is a complete right-continuous filtration,
N = (Nt)t≥0 be a non-explosive F-adapted counting process whose jump times are totally inaccessible,
and Λ = (Λt)t≥0 be its F-compensator. We consider H = (Hs)s≥0, a bounded predictable process,
bounded by the non-random real number ‖H‖∞,[c,d] on the interval [c, d], that is sups∈[c,d] |Hs| ≤
‖H‖∞,[c,d] almost surely. If c = 0 and T ≥ 0, ‖H‖∞,[0,T ] will be written ‖H‖∞,T for short. The
non-random real number ‖H‖2,[c,d] will stand for a bound of the L2 norm of H in L2(Λ([c, d])), that

is
∫ d
c |Hu|2dΛu ≤ ‖H‖22,[c,d] < +∞ almost surely.
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Recall that for a semimartingale X, we define [X]t by

[X]t =< Xc >t +
∑

0<s≤t
|∆Xs|2

where < Xc > is the quadratic variation of the continuous martingale part of X and ∆Xs = Xs−Xs−

is the jump of X at s. We will use the fact that if X is a local martingale with jumps bounded by
1 and H is a bounded predictable process, then (

∫ t
0 HsdXs)t≥0 is a local martingale. If in addition

E[
∫ t

0 H
2
sd[X]s] < +∞ for every t ≥ 0, then (

∫ t
0 HsdXs)t≥0 is a martingale with E[(

∫ t
0 HsdXs)

2] < +∞
for every t ≥ 0 (see [Protter, 2005, Corollary 3 p.73]). Recall also that for a C2 function f and a càdlàg
semimartingale (Yt)t≥0, the Itô formula ([Bass, 2011, Theorem 17.10]) entails

f(Yt) = f(Y0) +

∫ t

0+
f ′(Ys−)dYs +

1

2

∫ t

0+
f ′′(Ys−)d < Y c >s +

∑
0<s≤t

[f(Ys)− f(Ys−)− f ′(Ys−)∆Ys].

For f = exp and a semimartingale Y satisfying < Y c >≡ 0 and Y0 = 0, this leads to

eYt = 1 +

∫ t

0+
eYs−dYs +

∑
0<s≤t

eYs− [e∆Ys − 1−∆Ys]. (1)

Finally we define for every n ≥ 1

Sn(Y ) = inf{t > 0, eYt− ≥ n}

with the convention inf ∅ = +∞. If (eYt−)t≥0 is a finite process, then Sn(Y ) is a stopping time (see
[Bass, 2010, Theorem 2.4]) satisfying lim

n→+∞
Sn(Y ) = +∞ almost surely.

3 Martingale properties

Let T > 0. We consider in this section the three processes M = (Mt)t≤T , M̃ = (M̃t)t≤T and
≈
M =

(
≈
Mt)t≤T defined for t ≤ T by

Mt =

∫ t

0
Hsd(Ns − Λs),

and the two double integrals

M̃t = (

∫ t

0
Hsd(Ns − Λs))

2 −
∫ t

0
H2
sdNs

= M2
t −

∫ t

0
H2
sdNs

=

∫ t

0
2Ms−Hsd(Ns − Λs), (2)

and

≈
Mt = (

∫ t

0
Hsd(Ns − Λs))

2 −
∫ t

0
H2
sdΛs

= M2
t −

∫ t

0
H2
sdΛs

=

∫ t

0
(2Ms−Hs +H2

s )d(Ns − Λs). (3)
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By definition N − Λ is a local martingale. Since the jumps of N are totally inaccessible, we know
that Λ is continuous and N −Λ has jumps bounded by 1. The local martingale N −Λ is then a locally
square integrable local martingale of finite variations. As a consequence, M is a local martingale of

finite variations, and M̃, as well as
≈
M, is a semimartingale of finite variations.

Our main goal is to establish in the next section some exponential inequalities for these three
semimartingales. We will use Chernoff’s bounds in order to do that, so we are first interested by some

exponentials associated with the three processes M, M̃ and
≈
M. We start first with the process M in

the following lemma, proving that the exponential of M is a local martingale. We follow the proof of
Theorem VI.2 in Brémaud [1981] where the case of an absolutely continuous compensator Λ is treated.
We may also refer to Sokol and Hansen [2012] to find in that case some conditions on the counting
process and its intensity to obtain an exponential which is a martingale.

Lemma 1. Let Z be the process defined for a fixed real number λ and all t ≤ T by

Zt = λMt −
∫ t

0
(eλHs − 1− λHs)dΛs.

Then for every n ≥ 1, the process (exp(Zt∧Sn(Z)))t≤T is a martingale.

Let us define now for a > 0

Ta = inf{t ≥ 0 : |Mt| > a} ∧ T.

Since the jumps of N are totally inaccessible, Ta is a stopping time ([Bass, 2011, Proposition 16.3]).
As a consequence of Lemma 1, replacing H by the process 2Ms−Hs1s≤Ta which is also a bounded
predictable process and using (2), we obtain the next lemma which sets out a stopped martingale
associated with the exponential of M̃.

Lemma 2. Let Z̃ be the process defined for a fixed real number λ and all t ≥ 0 by

Z̃t = λM̃t −
∫ t

0
(e2λHsMs − 1− 2λHsMs)dΛs.

For every positive a and every n ≥ 1, the process (exp(Z̃t∧Ta∧Sn(Z̃)))t≥0 is a martingale.

Finally we present the analogue of Lemma 2 for the process
≈
M, which is a consequence of (3) and

Lemma 1.

Lemma 3. Let
≈
Z be the process defined for a fixed real number λ and all t ≥ 0 by

≈
Zt = λ

≈
Mt −

∫ t

0
(eλHs(Hs+2Ms) − 1− λHs(Hs + 2Ms))dΛs.

For every positive a and every n ≥ 1, the process (exp(
≈
Z
t∧Ta∧Sn(

≈
Z)

))t≥0 is a martingale.

4 Exponential inequalities

We have gathered in this section our main results, that is the exponential inequalities for the three

processes M , M̃ and
≈
M. The rates that appear in these inequalities are governed by the rate function

I defined for x ≥ 0 by
I(x) = (1 + x) log(1 + x)− x.

We start with a technical lemma that provides useful properties for the proofs of the main theorems.
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Lemma 4. Let It(H,λ) be defined for t ≥ 0 by
∫ t

0 (eλHs − 1 − λHs)dΛs. For t ≤ T and every real λ,
we get the almost sure inequality

|It(H,λ)| ≤
‖H‖22,T
‖H‖2∞,T

g(|λ|‖H‖∞,T ) (4)

where g(x) = ex − 1− x. Moreover the function g satisfies for every positive A,B and x

inf
λ>0

(Ag(Bλ)− λx) = −AI(
x

AB
). (5)

We present now in Theorem 1 an exponential inequality for the local martingale M , with its
two-sided version.

Theorem 1. For every positive x and T , we have the following inequalities:

P( sup
0≤t≤T

Mt ≥ x) ≤ exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

x)) (6)

and

P( sup
0≤t≤T

|Mt| ≥ x) ≤ 2 exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

x)). (7)

Such exponential inequalities have already been obtained for martingales with bounded jumps in
Kallenberg [1997], Van De Geer [1995] and Reynaud-Bouret [2006]. In Kallenberg [1997], the bound

is of the form exp(− Ax2

1+Bx) for some constants A and B, and is available for a semimartingale M such
that [M ]∞ ≤ 1 almost surely, which is not our case here. In Van De Geer [1995], the bound is of
the form A exp(−Bx) for some constants A and B and x large enough. Finally in Reynaud-Bouret
[2006], the inequality is of the form P(supt∈[0,T ] supaM

a
t ≥ A

√
x + Bx) ≤ exp(−x) for a countable

family of martingales (Ma
t )t≥0. Comparing to all these results, in the case of the large deviations, that

is when x tends to infinity, (6) and (7) provide a sharper bound with a more accurate tail, namely
in x log x instead of x. When x tends to zero, these bounds are similar (up to constants), taking the
form A exp(−Bx2).

The next Theorem deals with the square martingale M̃. The same inequality is obtained for −M̃ ,
leading to a two-sided inequality.

Theorem 2. For every positive x and T , we have the following inequalities:

P( sup
0≤t≤T

M̃t ≥ x) ≤ 3 exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

√
x

2
)) (8)

and

P( sup
0≤t≤T

−M̃t ≥ x) ≤ 3 exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

√
x

2
)), (9)

thereby we have the following two-sided exponential inequality:

P( sup
0≤t≤T

|M̃t| ≥ x) ≤ 6 exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

√
x

2
)). (10)

If we compare (7) and (10), we can notice that the upper bound in (10) involves
√
x instead of

x in the inequality (7), leading to different bounds when x tends to zero, contrary to the case of the

large deviations. Finally the next Theorem 3 is the analogue of Theorem 2 for the martingale
≈
M.
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Theorem 3. For every positive x and T , we have the following inequalities:

P( sup
0≤t≤T

≈
Mt ≥ x) ≤ 3 exp(−

‖H‖22,T
‖H‖2∞,T

I(
‖H‖2∞,T
‖H‖22,T

√
1 + 8x/‖H‖2∞,T − 1

4
)) (11)

and

P( sup
0≤t≤T

−
≈
Mt ≥ x) ≤ 3 exp(−

‖H‖22,T
‖H‖2∞,T

I(
‖H‖2∞,T
‖H‖22,T

√
1 + 8x/‖H‖2∞,T − 1

4
)), (12)

thereby we have the following two-sided exponential inequality:

P( sup
0≤t≤T

|
≈
Mt| ≥ x) ≤ 6 exp(−

‖H‖22,T
‖H‖2∞,T

I(
‖H‖2∞,T
‖H‖22,T

√
1 + 8x/‖H‖2∞,T − 1

4
)). (13)

Comparing now (7) and (13), we observe that M and
≈
M are behaving in the same way for x tending

to zero. When x tends to infinity, (13) provides a similar bound (up to a constant) to (10), which is

quite surprising in view of the relationship
≈
M = M̃ +

∫
H2d(N − Λ). Moreover this relationship, (7)

with H2 instead of H, all along with (10) and x
2 , will also lead to an exponential inequality but less

sharp than (13) because ‖H‖42,T ≤ ‖H2‖22,T .

5 Examples of applications

5.1 U-statistics of order two

The main hypothesis of the previous theorems is to suppose that the countable process is non-explosive
with totally inaccessible jumping times. This allows us to consider for instance Poisson, Cox or Hawkes
processes with a bounded intensity. If N is a Poisson process, some sharp exponential inequalities
have already been obtained in Houdré and Reynaud-Bouret [2003] for double stochastic integrals of

the form Zt =
∫ t

0

∫ y−
0 h(x, y)d(Nx−Λx)d(Ny−Λy) where h is a (non-random) bounded Borel function.

The Poisson process N is viewed as a point process (Ti)i≥1, so that Zt is a U -statistic for the Poisson
process: Zt =

∑
0≤Ti<Tj≤t g(Ti, Tj) for some function g. We may then use the inequalities obtained for

U -statistics after conditioning by the total random number of points, leading to a similar inequality
as the one in Giné et al. [2000]. However, Zt takes the form of a U -statistics for any counting process
N , and not only for the Poisson process.

In the particular case where h is a stochastic kernel of the form h(x, y) = H(x)H(y), M̃ may be
written M̃t = 2Zt, i.e. it is a double stochastic integrals or a U -statistics of order two. Although we
are not limited to the Poisson case, by the Meyer theorem (see [Protter, 2005, page 104]), the jumps of
a Poisson process are totally inaccessible so that we may apply Theorem 2. Comparing to Giné et al.
[2000] or Houdré and Reynaud-Bouret [2003], where the supremum of (Zt)t≥0 is not considered and h
is not random, the inequality (8) provides sharper bounds for the large deviations with an additional
log x in our inequality. Indeed in Giné et al. [2000] or Houdré and Reynaud-Bouret [2003], the bound

is of the form L exp(− 1
L min( x

1/2

A1/2 ,
x2/3

B2/3 ,
x
C ,

x2

D2 )) for some explicit constants A, B, C, D and L.
Such exponential inequalities for U -statistics are very useful for statistical applications. For in-

stance the estimation of the L2 norm
∫
f2(x)dx of the density of i.i.d. random variables via selection

model is considered in Laurent [2005] and Fromont and Laurent [2006]. The estimator of a quadratic
distance is naturally a U -statistics of order two and the exponential inequality of Houdré and Reynaud-
Bouret [2003] is a main tool for the study of the property of the estimator. In the Poisson model too, as
in Fromont et al. [2011] where the homogeneity is tested, the method is based on an approximation of
the L2-norm of the intensity of the underlying Poisson process. Since our theorems in Section 4 apply
to more varied counting processes, these quadratic form estimation procedures can be generalized to
more general contexts than the Poisson framework.
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5.2 Oscillation modulus control

The main theorems of Section 4 provide also an upper bound for the oscillation modulus of the three

processes M, M̃ and
≈
M. We consider c, d and x three non-negative real numbers, and the counting

process Nc(t) = Nt+c − Nc whose compensator is Λc(t) = Λt+c − Λc. The following theorem gives
upper bounds for the oscillation modulus of the processes M and M̃. As far as we know, this is the
first time such an exponential inequality is stated for counting processes. An analogous inequality can

be obtained for
≈
M by following the same way of proof.

Theorem 4. For every non-negative x, c and d, we have the following inequality for the oscillation
modulus of M :

P( sup
(s,t)∈[c,d]2

|Mt −Ms| ≥ x) ≤ 2 exp(−
‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

x

2
)). (14)

For the process M̃, we get the following exponential upper bound

P( sup
(s,t)∈[c,d]2

|(
∫ t

s
Hud(Nu − Λu))2 −

∫ t

s
H2
udNu| ≥ x) ≤ 10 exp(−

‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

√
x

8
)), (15)

leading to the exponential inequality for the oscillation modulus of M̃ :

P( sup
(s,t)∈[c,d]2

|M̃t − M̃s| ≥ x) ≤ 10 exp(−
‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

√
x

16
))

+ 2 exp(−
‖H‖22,d
‖H‖2∞,d

I(

√
‖H‖∞,[c,d]‖H‖∞,d
‖H‖2,d‖H‖2,[c,d]

√
x

8
))

+ 2 exp(−
‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(

√
‖H‖∞,[c,d]‖H‖∞,d
‖H‖2,d‖H‖2,[c,d]

√
x

8
)). (16)

In view of Theorems 1 and 2, the previous inequalities show that considering the oscillation modulus
instead of the processes M and M̃ themselves does not affect the rates (in x) of the exponential
bounds, but only changes the constants. We obtain in Theorem 4 explicit constants with respect to
the integrand H as well as the interval [c, d], which may be useful for applications.

6 Proofs

Proof of Lemma 1 The process Z is defined as λMt −
∫ t

0 (eλHs − 1 − λHs)dΛs where λ is a fixed
real number. Z is a càdlàg semimartingale of bounded variations because H is bounded and Λ, as
well as M, is of bounded variations. The continuity of Λ entails the equality ∆Zs = λHs∆Ns. We get
then from (1) that

eZt = 1 +

∫ t

0
eZs−dZs +

∑
0<s≤t

eZs− [eλHs∆Ns − 1− λHs∆Ns]

= 1 +

∫ t

0
eZs− [λdMs − (eλHs − 1− λHs)dΛs] +

∫ t

0
eZs− (eλHs − 1− λHs)dNs

= 1 +

∫ t

0
eZs− (eλHs − 1)d(Ns − Λs).

7



For n ≥ 1, the stopping time Sn(Z) is defined by Sn(Z) = inf{t > 0, eZt− ≥ n}. Then for every
s ≤ Sn(Z) ∧ T, eZs− ≤ n. Moreover, for every t ≤ T,

eZt∧Sn(Z) = 1 +

∫ t

0
eZs− (eλHs − 1)1s≤Sn(Z)∧Td(Ns − Λs).

To conclude, the result follows from [N − Λ] = N and the inequality

E[

∫ ∞
0

e2Zs− (eλHs − 1)21s≤Sn(Z)∧TdNs] ≤ n2(eλ‖H‖∞,T + 1)2E[NT ] < +∞

since N is non-explosive (i.e. E[Nt] < +∞ for all t ≥ 0)

Proof of Lemma 4 Let s ≤ t ≤ T and λ ∈ R. We use the following inequality:

∣∣∣eλHs − 1− λHs

∣∣∣ =

∣∣∣∣∣∣
∑
j≥2

(λHs)
j

j!

∣∣∣∣∣∣
=

∣∣∣∣∣∣(λHs)
2

2!
+H2

s

∑
j≥3

λjHj−2
s

j!

∣∣∣∣∣∣
≤ (|λ||Hs|)2

2!
+ |Hs|2

∑
j≥3

|λ|j |Hs|j−2

j!
(17)

≤ H2
s (
λ2

2!
+

1

‖H‖2∞,T

∑
j≥3

|λ|j‖H‖j∞,T
j!

),

that is ∣∣∣eλHs − 1− λHs

∣∣∣ ≤ H2
s

‖H‖2∞,T

∑
j≥2

|λ|j‖H‖j∞,T
j!

.

Integrating with respect to dΛs we obtain

|It(H,λ)| ≤
‖H‖22,T
‖H‖2∞,T

g(|λ|‖H‖∞,T )

where g(x) = ex − 1 − x. For the proof of (5), consider the function h defined for λ > 0 by
h(λ) = Ag(Bλ) − λx. Since h′(λ) = AB(eBλ − 1) − x, we get that the minimum of h is reached for
λ = 1

B log(1 + x
AB ) =: λ0 and h(λ0) = −AI( x

AB )

Proof of Theorem 1 Recall that It(H,λ) is defined by
∫ t

0 (eλHs−1−λHs)dΛs. We define the process
Z as in Lemma 1 by Zt = λMt − It(H,λ) and the stopping time Sn(Z) for n ≥ 1 by Sn(Z) = inf{t >
0, eZt− ≥ n}. Since (Sn(Z))n≥1 is a non-decreasing sequence of stopping times with lim

n→+∞
Sn(Z) = +∞

almost surely, the sequence (sup0≤t≤T∧Sn(Z)Mt)n≥1 is constant for n large enough. We then get by
monotony

P( sup
0≤t≤T

Mt ≥ x) = lim
n→+∞

P( sup
0≤t≤T∧Sn(Z)

Mt ≥ x) = sup
n≥1

P( sup
0≤t≤T

Mt∧Sn(Z) ≥ x).

8



Using Lemma 4 (4), we obtain for all λ > 0, x > 0 and n ≥ 1,

P( sup
0≤t≤T

Mt∧Sn(Z) ≥ x) = P( sup
0≤t≤T

eλMt∧Sn(Z)−It∧Sn(Z)(H,λ)+It∧Sn(Z)(H,λ) ≥ eλx)

≤ P(e

‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T )

sup
0≤t≤T

eZt∧Sn(Z) ≥ eλx).

Doob’s maximal inequality and Lemma 1 then lead to

P( sup
0≤t≤T

Mt∧Sn(Z) ≥ x) ≤ exp(
‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T )− λx)

for every λ > 0 with g(x) = ex − 1− x, so taking the limit in n and the infimum in λ, we get by (5)

P( sup
0≤t≤T

Mt ≥ x) ≤ inf
λ>0

exp(
‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T )− λx)

= exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

x))

that is (6). Applying this inequality with −H instead of H, we obtain also

P( sup
0≤t≤T

−Mt ≥ x) ≤ exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

x)).

Then (7) follows from the inequality

P( sup
0≤t≤T

|Mt| ≥ x) ≤ P( sup
0≤t≤T

Mt ≥ x) + P( sup
0≤t≤T

−Mt ≥ x)

Proof of Theorem 2 Let us begin with the proof of (8). We define Z̃ as in Lemma 2 by Z̃t =
λM̃t − It(2HM,λ), thereby (Sn(Z̃))n≥1 is a sequence of non-decreasing stopping times such that

lim
n→+∞

Sn(Z̃) = +∞ almost surely. We proceed then as in the proof of Theorem 1. For all positive λ,

a and x

P( sup
0≤t≤T

M̃t ≥ x) = sup
n≥1

P( sup
0≤t≤T

M̃t∧Sn(Z̃) ≥ x) (18)

≤ P(Ta < T ) + sup
n≥1

P( sup
0≤t≤T

M̃t∧Ta∧Sn(Z̃) ≥ x ∩ Ta = T )

≤ P( sup
0≤t≤T

|Mt| ≥ a) + sup
n≥1

P( sup
0≤t≤T

e
λM̃t∧Ta∧Sn(Z̃) ≥ eλx). (19)

Using the inequality (17), we get for t ≤ T and λ > 0

It∧Ta∧Sn(Z̃)(2HM,λ) =

∫ t∧Ta∧Sn(Z̃)

0
(e2λHsMs − 1− 2λHsMs)dΛs ≤

‖H‖22,T
‖H‖2∞,T

g(2λa‖H‖∞,T ).

Then Lemma 2 and Doob’s maximal inequality yield for every λ > 0 and n ≥ 1

P( sup
0≤t≤T

e
λM̃t∧Ta∧Sn(Z̃) ≥ eλx) ≤ P( sup

0≤t≤T
e
Z̃t∧Ta∧Sn(Z̃) ≥ e

λx−
‖H‖22,T
‖H‖2∞,T

g(2λa‖H‖∞,T )

)

≤ exp(
‖H‖22,T
‖H‖2∞,T

g(2λa‖H‖∞,T )− λx)

9



whereby

sup
n≥1

P( sup
0≤t≤T

e
λM̃t∧Ta∧Sn(Z̃) ≥ eλx) ≤ inf

λ>0
exp(

‖H‖22,T
‖H‖2∞,T

g(2λa‖H‖∞,T )− λx)

= exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T

2a‖H‖22,T
x))

thanks to (5). Coming back to the inequality (19), Theorem 1 then entails for every a > 0,

P( sup
0≤t≤T

M̃t ≥ x) ≤ 2e
−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T

‖H‖2
2,T

a)

+ e
−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T

2a‖H‖2
2,T

x)

.

We choose a =
√

x
2 in order to obtain (8). For the proof of (9), we consider Z̃t = −λM̃t−It(2HM,−λ)

for λ > 0. We get similarly, thanks to Lemma 4 and Lemma 2

P( sup
0≤t≤T

e
−λM̃t∧Ta∧Sn(Z̃) ≥ eλx) ≤ P( sup

0≤t≤T
e
Z̃t∧Ta∧Sn(Z̃) ≥ e

λx−
‖H‖22,T
‖H‖2∞,T

g(2λa‖H‖∞)

)

≤ e
‖H‖22,T
‖H‖2∞,T

g(2λa‖H‖∞,T )−λx

and the end of the proof is similar to the one of (8). To conclude, (10) follows from the inequality

P( sup
0≤t≤T

|M̃t| ≥ x) ≤ P( sup
0≤t≤T

M̃t ≥ x) + P( sup
0≤t≤T

−M̃t ≥ x)

Proof of Theorem 3 We follow the steps of the proof of Theorem 2, adapting the computations

to this case. Let us begin showing the inequality (11). We introduce
≈
Z as in Lemma 3 with

≈
Zt =

λ
≈
Mt−It(H(H+2M), λ) and its associated sequence of stopping times Sn(

≈
Z) to obtain for all positive

a, λ and x

P( sup
0≤t≤T

≈
Mt ≥ x) ≤ P( sup

0≤t≤T
|Mt| ≥ a) + sup

n≥1
P( sup

0≤t≤T
exp(λ

≈
M
t∧Ta∧Sn(

≈
Z)

) ≥ eλx). (20)

Using the inequality (17), we get for t ≤ T and λ > 0∫ t∧Ta∧Sn(
≈
Z)

0
(eλHs(Hs+2Ms) − 1− λHs(Hs + 2Ms))dΛs ≤

‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T (‖H‖∞,T + 2a)).

Then Lemma 3 and Doob’s maximal inequality yield for every λ > 0 and n ≥ 1

P( sup
0≤t≤T

exp(λ
≈
M
t∧Ta∧Sn(

≈
Z)

) ≥ eλx) ≤ P( sup
0≤t≤T

exp(
≈
Z
t∧Ta∧Sn(

≈
Z)

) ≥ e
λx−

‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T (‖H‖∞,T +2a))

)

≤ exp(
‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T (‖H‖∞,T + 2a))− λx).

As a consequence

sup
n≥1

P( sup
0≤t≤T

exp(
≈
M
t∧Ta∧Sn(

≈
Z)

) ≥ eλx) ≤ inf
λ>0

exp(
‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T (‖H‖∞,T + 2a))− λx)

= exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T

‖H‖22,T (2a+ ‖H‖∞,T )
x))

10



thanks to (5). The inequality (20) and Theorem 1 then entail for every a > 0,

P( sup
0≤t≤T

≈
Mt ≥ x) ≤ 2e

−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T

‖H‖22
a)

+ e
−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T

‖H‖2
2,T

(2a+‖H‖∞,T )
x)

.

We choose a = x
2a+‖H‖∞,T

i.e. a =
−‖H‖∞,T +

√
‖H‖2∞,T +8x

4 in order to get (11). For the proof of (12),

let
≈
Z be defined by

≈
Zt = −λ

≈
Mt − It(H(H + 2M),−λ) for λ > 0. We obtain similarly with Lemma 4

and Lemma 3

P( sup
0≤t≤T

exp(−λ
≈
M
t∧Ta∧Sn(

≈
Z)

) ≥ eλx) ≤ P( sup
0≤t≤T

exp(
≈
Z
t∧Ta∧Sn(

≈
Z)

) ≥ e
λx−

‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T (‖H‖∞,T +2a))

)

≤ exp(
‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T (‖H‖∞,T + 2a))− λx)

and the end of the proof is similar to the one of (11). To conclude, (13) also comes from the inequality

P( sup
0≤t≤T

|
≈
Mt| ≥ x) ≤ P( sup

0≤t≤T

≈
Mt ≥ x) + P( sup

0≤t≤T
−
≈
Mt ≥ x)

Proof of Theorem 4 Let us prove (14) first. We use the relationship Mt −Ms =
∫ t
c Hu(dNu −

Λu)−
∫ s
c Hu(dNu − Λu) to get

sup
(s,t)∈[c,d]

|Mt −Ms| ≤ 2 sup
t∈[c,d]

|
∫ t

c
Hu(dNu − Λu)|

= 2 sup
t∈[0,d−c]

∣∣∣∣∫ t

0
Hu+c(dNc(u)− dΛc(u))

∣∣∣∣ .

Since Nc satisfies the same assumptions than N, we may apply (7) with Nc, Λc and the process
u 7→ Hu+c in order to obtain

P( sup
(s,t)∈[c,d]2

|Mt −Ms| ≥ x) ≤ 2 exp(−
‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

x

2
)),

that is (14). Let us prove (15) now. We shall consider the following relationship

(

∫ t

s
Hud(Nu − Λu))2 −

∫ t

s
H2
udNu = M̃c(t)− M̃c(s)− 2(Mt −Ms)

∫ s

c
Hu(Nu − Λu)

where M̃c(t) = (
∫ t
c Hud(Nu − Λu))2 −

∫ t
c H

2
udNu = (

∫ t−c
0 Hu+cd(Nc(u)− Λc(u)))2 −

∫ t−c
0 H2

u+cdNc(u).
This yields for a > 0

P( sup
(s,t)∈[c,d]2

|(
∫ t

s
Hud(Nu − Λu))2 −

∫ t

s
H2
udNu| ≥ x)

≤ P(2 sup
t∈[c,d]

|M̃c(t)| ≥
x

2
) + P( sup

s∈[c,d]
|
∫ s

c
Hu(Nu − Λu)| ≥ a) + P( sup

(s,t)∈[c,d]2
|Mt −Ms| ≥

x

4a
).

We get then from (10), (7) and (14)

11



P(2 sup
t∈[c,d]

|M̃ c
t | ≥

x

2
) ≤ 6 exp(−

‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

√
x

8
)),

P( sup
s∈[c,d]

|
∫ s

c
Hu(Nu − Λu)| ≥ a) ≤ 2 exp(−

‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

a))

and

P( sup
(s,t)∈[c,d]2

|Mt −Ms| ≥
x

4a
) ≤ 2 exp(−

‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

x

8a
)).

If we choose a =
√

x
8 , we obtain

P( sup
(s,t)∈[c,d]2

|(
∫ t

s
Hud(Nu − Λu))2 −

∫ t

s
H2
udNu| ≥ x) ≤ 10 exp(−

‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

√
x

8
)), (21)

that is (15). To conclude with the oscillation modulus of M̃ , we may use similarly

M̃t − M̃s = (

∫ t

s
Hud(Nu − Λu))2 −

∫ t

s
H2
udNu + 2(Mt −Ms)Ms

and

P( sup
(s,t)∈[c,d]

|M̃t − M̃s| ≥ x) ≤ P( sup
(s,t)∈[c,d]2

|(
∫ t

s
Hud(Nu − Λu))2 −

∫ t

s
H2
udNu| ≥

x

2
)

+ P( sup
s∈[0,d]

|Ms| ≥ a) + P( sup
(s,t)∈[c,d]2

|Mt −Ms| ≥
x

4a
).

Using (15), (7), (14) and choosing a =

√
x
8

‖H‖∞,[c,d]

‖H‖∞,d

‖H‖2,d
‖H‖2,[c,d]

we get

P( sup
(s,t)∈[c,d]

|M̃t − M̃s| ≥ x) ≤ 10 exp(−
‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

√
x

16
))

+ 2 exp(−
‖H‖22,d
‖H‖2∞,d

I(

√
‖H‖∞,[c,d]‖H‖∞,d
‖H‖2,d‖H‖2,[c,d]

√
x

8
))

+ 2 exp(−
‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(

√
‖H‖∞,[c,d]‖H‖∞,d
‖H‖2,d‖H‖2,[c,d]

√
x

8
))
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