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Introduction

Problem setting

Denote by X " W ´1,2 p0, πq, the dual of the Sobolev space W 1,2 0 p0, πq. We consider the following boundary control problem of the heat equation. For any u :" pu 0 , u π q P L 2 loc pp0, `8q, C 2 q -the so-called input (or control) function -and f P X, this equation admits a unique solution y P C pp0, `8q, Xq (see [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF]Prop. 10.7.3]) defined by @t ą 0, ypt, ¨q " T t f `Φt u

(1)

where pT t q tě0 is the Dirichlet Laplacian semigroup and Φ t is the controllabililty operator (see [TW09, Prop. 4.2.5]). For f P X and τ ą 0, we will say that g P X is reachable from f in time τ if there exists a boundary control u P L 2 pp0, τ q, C 2 q such that the solution of (HE) satisfies ypτ, ¨q " g. We denote by R f τ the set of all reachable fonctions from f in time τ . Because of the smoothing effect of the heat kernel, it is clear that for arbitrary control u P L 2 pp0, τ q, C 2 q, we cannot reach any non-regular functions. So, R f τ Ĺ X. In other words, the equation (HE) is not exactly controllable for any time τ ą 0. It is thus natural to seek for more precise information on R f τ . First of all, we remind that this set has some invariance properties. Indeed, [START_REF] Yu | Some problems in the theory of optimal control[END_REF] and [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] have shown that the heat equation (HE) is null-controllable in any time (see [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], [START_REF] Fursikov | Controllability of evolution equations[END_REF] or [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF]Prop. 11.5.4] for the n-dimensional case). This means that : @f P X, @τ ą 0, 0 P R f τ . It is clear from (1) that this latter condition is equivalent to Ran T τ Ă Ran Φ τ . So using (1) again we obtain R f τ " Ran Φ τ , which means that R f τ does not depend on the initial condition f P X. Thus, we can take f " 0 and write R τ " R 0 τ . Moreover, since Φ τ P LpL 2 pr0, τ s, C 2 q, Xq, R τ is a linear space, named reachable space of (HE). Finally, the null-controllability in any time τ ą 0 implies also that this space does not depend on time τ ą 0 (see [START_REF] Fattorini | Reachable states in boundary control of the heat equation are independent of time[END_REF], [START_REF] Seidman | Time-invariance of the reachable set for linear control problems[END_REF], or [HKT17, Rmk 1.1]). Note that these two invariance properties hold for every linear control system wich satisfies the null-controllability in any positive time.

Notations

In the rest of the paper, we denote by D " tz P C | |z| ă 1u the unit disc and by C `" tz P C | Imz ą 0u the upper-half plane. Let Ω be a simply connected domain in the complex plane with at least two boundary points. Write HolpΩq for the algebra of holomorphic functions on Ω. We say that f P HolpΩq belongs to the Hardy space H p pΩq p0 ă p ă `8q if the subharmonic function |f | p admits a harmonic majorant on Ω. We say that f P HolpΩq belongs to the Smirnov space E p pΩq p0 ă p ă `8q if there exists a sequence pγ n q nPN of rectifiable Jordan curves eventually surrounding each compact subdomain of Ω such that the space E p pΩq consists of all the functions holomorphic on C `such that

}f } p p " sup yą0 ż R |f px `iyq| p dx ă 8.
This space is often called the Hardy space of the upper-half plane ([Gar07], [START_REF] Nikolski | Operators, Functions, and Systems: An Easy Reading[END_REF], [START_REF] Ya | Lectures on Entire Functions[END_REF], [START_REF] Koosis | Introduction to H p Spaces[END_REF]), and denoted by H p pC `q. Assume now that Ω is a domain bounded by a rectifiable Jordan curve γ. In this case, each f P E p pΩq (1 ď p ă 8) admits a non-tangential limit almost everywhere on γ (denoted again by f ) which belongs to L p pBΩq, and satisfies the Cauchy formula

@z P Ω, f pzq " 1 2iπ ż γ f puq u ´z du.
2

With this in mind, we will say that f P HolpΩq belongs to the Smirnov-Zygmund space E L log `L pΩq if f P E 1 pΩq and its non-tangential limit on γ belongs to L log `LpBΩq, that is ş γ |f pzq| log `p|f pzq|q|dz| ă `8. Therefore, the following inclusions are clear

@1 ă p ă `8, E p pΩq Ă E L log `LpΩq Ă E 1 pΩq.
For more details on the Hardy space and the Smirnov space, we refer to [Dur70, Chap. 9 et 10]. For the cases of the disc and the upper-half plane, see also [START_REF] Rudin | Real and Complex Analysis[END_REF], [START_REF] Garnett | Bounded Analytic Functions[END_REF], [START_REF] Nikolski | Operators, Functions, and Systems: An Easy Reading[END_REF], [START_REF] Ya | Lectures on Entire Functions[END_REF], [START_REF] Koosis | Introduction to H p Spaces[END_REF].

Finally, the weighted Bergman space A p pΩ, ωq, where ω is a non negative mesurable function on Ω, consists of all functions f P HolpΩq such that

}f } p A p pΩ,ωq " ż Ω |f px `iyq| p ωpx `iyqdxdy ă `8.
When ω " 1, A p pΩ, ωq is the classical Bergman space which we simply denote A p pΩq.

Scientific context

It seems that the first work on this problem is in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF]. Using a moment method, Fattorini and Russel showed that if there exists A ą 0 and B ą 0 such that

@n P N ˚, |a n | ď A expp´pπ `Bqnq (2) 
then the function defined by gpxq " ř `8 n"1 a n sinpnxq is reachable. For δ ą 0, denote by H δ the space of continuous functions which are π-periodic on R, which extend holomorphically on the strip |Imz| ă δ and whose derivatives of even orders vanish in 0 and in π. Adjusting a discrete Paley-Wiener theorem[QZ13, Chap.IV, sect.V, Thm V.1 vi), p. 98] to the orthonormal basis psinpnxqq ně1 , we obtain from (2) that for δ large enough, H δ is included in Ran Φ.

Later, Martin, Rosier and Rouchon improved this result in [MRR16, Thm 1.1]. On the one hand, they showed that the holomorphic functions on the disk

B " ! z P C ˇˇ z ´π 2 ă π 2 e p2eq ´1 )
are reachable. On the other hand, they proved that the reachable functions extend holomorphically to the square (see Figure 1)

D " ! z " x `iy P C ˇˇ x ´π 2 `|y| ă π 2
) .

To summarize, we have HolpBq Ă R τ Ă HolpDq. Dardé and Ervedoza improved again this latter result in [DE18, Thm 1.1] showing that all the functions which are holomorphic on a neighborhood of D are reachable. This result combined with the previous result means that Ran Φ τ is a space of holomorphic functions on D. Finally, the best known result on this problem to our knowledge is given in [START_REF] Hartmann | From the reachable space of the heat equation to hilbert spaces of holomorphic functions[END_REF], where the authors proved that the reachable space is sandwiched between two Hilbert spaces of holomorphic functions on the square D. More explicitly, it satisfies the inclusions

E 2 pDq Ĺ Ran Φ τ Ă A 2 pDq (3) 
(see the previous subsection for the definitions). Key tools used in that paper include a unitary Laplace type integral operator studied by Aikawa, Hayashi and Saitoh [START_REF] Aikawa | The Bergman space on a sector and the heat equation[END_REF], as well as a Riesz basis of exponentials in E 2 pDq discussed by Levin and Lyubarskii [LL75]. The idea of our paper is to avoid the Riesz basis of exponentials and to use complex analysis tools like Cauchy formula, Hilbert transform and Bmethods which will allow us to improve significantly -in terms of function spaces of complex analysis -the lower bound E 2 pDq.

Main results

Let ∆ " z P C ˇˇ| argpzq| ă π 4 ( . The first central result of this paper is the following explicit characterization of the reachable space.

Theorem 1.1. We have Ran Φ τ " A 2 p∆q `A2 pπ ´∆q.

We mention another characterization which was very recently observed by T. Normand (see [Tuc]). Denote by ω 0 and ω π the weights defined by @z P ∆, ω 0 pzq " e

Repz 2 q 2τ τ and @z P π ´∆, ω π pzq " ω 0 pπ ´zq,

then Ran Φ τ " A 2 p∆, ω 0 q `A2 pπ ´∆, ω π q, (5) independently of τ ą 0. Note that the inclusion "Ą" in (5) was already known in [START_REF] Hartmann | From the reachable space of the heat equation to hilbert spaces of holomorphic functions[END_REF].

To prove the Theorem 1.1, the main idea is to write a certain integral operator as a Laplace type transform and to use a Paley-Wiener type theorem.

The central question raised by the above result is the description of the sum A 2 p∆q `A2 pπ ´∆q. We obviously have

A 2 p∆q `A2 pπ ´∆q Ă A 2 pDq, (6) 
and from the results in [START_REF] Hartmann | From the reachable space of the heat equation to hilbert spaces of holomorphic functions[END_REF] it also follows that

E 2 pDq Ă A 2 p∆q `A2 pπ ´∆q,
but how can we decide in general whether a given holomorphic function on D, not necessarily in E 2 pDq, can be written as a sum of two functions in the Bergman spaces on ∆ and π ´∆ respectively? Note that this is a very natural complex analysis question which can now be discussed completely disconnected from the initial control problem. Such a type of problem is related, for instance, to the so-called First Cousin Problem (see [AM04, Thm 9.4.1]), which in our situation turns into a specific Cousin Problem with L 2 -estimates. We will call this problem the First Cousin Problem for Bergman spaces. Following the proof of the classical First Cousin Problem of [START_REF] Amar | Analyse complexe. Cassini[END_REF] and using Hörmander L 2 -estimates for the B-equation, we prove the following partial answer to the description of A 2 p∆q `A2 pπ ´∆q.

Theorem 1.2. Let z 0 " π 2 `i π 2 and z 1 " z 0 " π 2 ´i π 2 be the upper and lower vertices of D. Then A 2 `D, |pz ´z0 qpz ´z1 q| ´2˘Ă A 2 p∆q `A2 pπ ´∆q.

In view of (6) Theorem 1.2 gives an optimal result for functions in the sum of the two Bergman spaces outside z 0 and z 1 . However the constraints in z 0 and z 1 are rather strong, implying in particular that functions in A 2 `D, |pz ´z0 qpz ´z1 q| ´2ȃ re locally bounded at these points.

Our second result, involving completely different tools, allows to show that functions with almost characteristic Bergman space growth, in particular at z 0 and z 1 , are also in the sum.

Theorem 1.3. E L log `LpDq Ă A 2 p∆q `A2 pπ ´∆q.
Note that in view of Theorem 1.1, this result improves the left inclusion (3) obtained in [START_REF] Hartmann | From the reachable space of the heat equation to hilbert spaces of holomorphic functions[END_REF] since E 2 pDq Ă E L log `LpDq. The methods used in the proof of Theorem 1.3 are for the most part harmonic and complex analysis methods. More precisely, we use essentially the Cauchy formula for Smirnov functions, a local regularity result for the Cauchy Transform on the upper-half plane and the embedding H 1 pDq Ă A 2 pDq due to Hardy and Littlewood.

It should be observed that in terms of growth of functions in the different spaces, this result is almost sharp (especially close to the points z 0 and z 1 which are not covered by Theorem 1.2). Indeed, a function in A 2 pDq cannot grow faster than 1 dpz,BDq , while the growth of a function in E L log `LpDq is bounded by 1 dpz,BDq logp 1 dpz,BDq q . This last estimate comes from the Cauchy formula and the Hölder inequality for Orlicz spaces.

As an easy consequence of the above results we would like to state the following corollary.

Corollaire 1.4. We have

E L log `LpDq `A2 `D, |pz ´z0 qpz ´z1 q| ´2˘Ă A 2 p∆q `A2 pπ ´∆q Ă A 2 pDq.
In view of Theorem 1.1, this corollary thus improves (3) found in [START_REF] Hartmann | From the reachable space of the heat equation to hilbert spaces of holomorphic functions[END_REF]. Nevertheless, though A 2 `D, |pz ´z0 qpz ´z1 q| ´2˘functions behave like arbitrary A 2 pDqfunctions outside z 0 , z 1 , and E L log `LpDq-functions allow a growth in a sense close to A 2 pDq-functions in z 0 , z 1 , the above corollary still leaves of course a gap. Note that there is no natural completion of A 2 `D, |pz ´z0 qpz ´z1 q|

´2˘i n A 2 pDq.
The paper is organized as follows. In Section 2, we prove Theorem 1.1. Sections 3 and 4 are devoted to the proofs of Theorems 1.3 and 1.2 respectively.

Sum of Bergman spaces

We start recalling some facts from [START_REF] Hartmann | From the reachable space of the heat equation to hilbert spaces of holomorphic functions[END_REF]. First, it is not difficult to check that the reachable states of the 1-D heat equation can be represented as a Fourier-sine series in the following way:

pΦ τ uqpxq " 2 π ÿ ně1 n "ż τ 0 e n 2 pσ´τ q u 0 pσq dσ  sinpnxq `2 π ÿ ně1 np´1q n`1
"ż τ 0 e n 2 pσ´τ q u π pσq dσ  sinpnxq, τ ą 0, x P p0, πq.

With the elementary formula sin u " pe iu ´e´iu q{p2iq in mind and the Poisson summation formula, the authors of [START_REF] Hartmann | From the reachable space of the heat equation to hilbert spaces of holomorphic functions[END_REF] show that

pΦ τ uqpxq " ż τ 0 BK 0 Bx pτ ´σ, xqu 0 pσq dσ `ż τ 0 BK π Bx pτ ´σ, xqu π pσq dσ,
where

K 0 pσ, xq " ´2 π ˜ÿ ně1 e ´n2 σ cospnxq `1" ´1 π ÿ ně1 e ´n2 σ `einx `e´inx ˘´2 π " ´1 π ÿ nPZ ˚e´n 2 σ e inx ´2 π
, σ ą 0, x P p0, πq.

Hence, setting Ă K 0 pσ, zq " ´b

1 πσ ř mPZ ˚e´p z`2mπq 2 4σ
, we can write (see [HKT17, equation (2.18)])

Φ τ pu 0 , u π q " r Φ τ u 0 `r r Φu π `R0,τ u 0 `Rπ,τ u π (7)
where

" r Φ τ f ı psq " ż τ 0 se ´s2 4pτ ´σq 2 ? πpτ ´σq 3 2 f pσqdσ and " r r Φ τ f  psq " " r Φ τ f ı pπ ´sq rR 0,τ f s psq " ż τ 0 B Ă K 0
Bs pτ ´σ, sqf pσqdσ and rR π,τ f s psq " rR 0,τ f s pπ ´sq.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. The key of the proof is that r Φ τ is an isometry from L 2 p0, τ q to A 2 p∆q and we can compute its range. Indeed, denote by L the normalized Laplace transform defined by Lpf qpsq " 1 ? π ş `8 0 e ´st f ptqdt and G : A 2 pC `q Ñ A 2 p∆q the unitary operator associated to the conformal mapping z Þ Ñ z 2 from ∆ to C `, defined by Gpf qpzq " 2zf `z2 ˘. By the change of variables t " 1 4pτ ´σq , we obtain

@s P ∆, ´r Φ τ f ¯psq " ż τ 0 se ´s2 4pτ ´σq 2 ? πpτ ´σq 3 2 f pσqdσ " s ? π ż `8 1 4τ e ´s2 t ? t f ˆτ ´1 4t ˙dt Define for f P L 2 p0, τ q, pT f qptq " # f pτ ´1 4t q 2 ? t if t ą 1 4τ , 0 if 0 ă t ď 1 4τ .
.

It is easily seen that the operator T is an isometry from L 2 p0, τ q to L 2 pR `, dt t q with range L 2 ``1 4τ , `8˘, dt t ˘. Hence ´r Φ τ f ¯psq " 2sLpT f q `s2 ˘" pGLT f q psq.

The last step is the following Paley-Wiener type theorem for Bergman spaces (which seems to be a "folk theorem", a proof for which may be found in [START_REF] Duren | A Paley-Wiener theorem for Bergman spaces with application to invariant subspaces[END_REF]).

Proposition 2.1. The Laplace transform L is unitary from L 2 `R`,

dt t ˘to A 2 pC `q where C `" tz | Rez ą 0u.
So, if » means that the operator is unitary, we have the following diagram.

L 2 p0, τ q T ÝÑ » L 2 ˆˆ1 4τ , `8˙, dt t ˙Ă L 2 ˆR`, dt t ˙L ÝÑ » A 2 pC `q G ÝÑ » A 2 p∆q
Hence, by composition, r Φ τ is isometric from L 2 p0, τ q to A 2 p∆q, and

Ran r Φ τ " GL " L 2 ˆˆ1 4τ , `8˙, dt t ˙ Ă A 2 p∆q.
We get a similar result for r r Φ τ . In order to discuss the range of Φ τ we thus have to investigate the remainder terms R 0,τ and R π,τ , which, morally speaking, are sums converging very quickly since they involve gaussians centered essentially at πn, n P Z ˚. For these remainder terms we will use the lemma below which is a straightforward modification of Lemma 4.1 of [START_REF] Hartmann | From the reachable space of the heat equation to hilbert spaces of holomorphic functions[END_REF], the main difference being a square root in the integral operator, which does not change the boundedness and the convergence to zero. Lemma 2.2. Let ω 0 and ω π be the weights defined in (4). Then R 0,τ and R π,τ are bounded from L 2 p0, τ q to A 2 p∆, ω 0 q`A 2 pπ´∆, ω π q. Moreover, }R 0,τ } " }R π,τ } Ñ τ Ñ0 0.

Since A 2 p∆, ω 0 q `A2 pπ ´∆, ω π q Ă A 2 p∆q `A2 pπ ´∆q, the inclusion Ran Φ τ Ă A 2 p∆q `A2 pπ ´∆q is a direct consequence of the decomposition (7), the above discussion and Lemma 2.2.

For the converse inclusion, we will prove A 2 p∆q Ă Ran Φ τ and A 2 pπ ´∆q Ă Ran Φ τ . Using that G and L are unitary, we have the decomposition

A 2 p∆q " GL " L 2 ˆR`, dt t ˙ " GL " L 2 ˆˆ0, 1 4τ 
˙, dt t ˙'L 2 ˆˆ1 4τ , `8˙, dt t ˙ " X 0 ' Ran r Φ τ
where we wrote X 0 :" GL " L 2 ``0, 1 4τ ˘, dt t ˘‰ and where, as usual ' means orthogonal sum. Similarly, we have A 2 pπ ´∆q " X π ' Ran r r Φ τ , where X π is the image of X 0 by the transformation f Þ Ñ f pπ ´¨q. Hence, it is enough to prove that X 0 , X π , Ran r Φ τ and Ran r r Φ τ are contained in Ran Φ τ . For this, note that for every u 0 P L 2 p0, τ q, we have r Φ τ u 0 " Φ τ pu 0 , 0q ´R0,τ u 0 .

Since Ap∆, ω 0 q `A2 pπ ´∆, ω π q Ă Ran Φ τ , we get from Lemma 2.2 that R 0,τ u 0 P Ran Φ τ . It follows that Ran r Φ τ Ă Ran Φ τ . The case of Ran r r Φ τ is similar. Finally, for a ą 0, denote by 

X 0 Ă GL " L 2 `0, 1 4τ ˘‰ Ă GL " L 2 `´1 4τ , 1 4τ ˘‰ " G rPW a pC `qs.
Thus, X 0 is a space of entire functions and, as such, is contained in the reachable space. The same argument proves also that the reachable space includes X π , and the proof is complete.

Proof of Theorem 1.3

Let P pzq " z `2iπ. It suffices to prove the following assertion.

@f P E L log `L pDq , f P P A 2 p∆q `A2 pπ ´∆q (8) 
Indeed, assume that (8) is true and let g P E L log `L pDq. Since P is bounded analytic on s D, P g belongs also to E L log `L pDq. Hence, by (8), g " pP gq{P belongs to A 2 p∆q `A2 pπ ´∆q and then to Ran Φ τ by Theorem 1.1, which proves the inclusion. Remark 3.1. With a more refined argument, as used in [HKT17, corollary 3.6] and here in Section 4, we can prove that E L log `L pDq Ă A 2 p∆, ω 0 q `A2 pπ ´∆, ω π q where ω 0 and ω π are defined in (4). This observation also follows from Thm 1.3 and Normand's result (5) (see [Tuc]) So, pick f P E L log `L pDq and let us prove (8).

Decomposition. Let γ be the boundary of D parameterized counterclockwise side by side as follows (see Figure 1). The key idea is to decompose f via the Cauchy formula for functions in E 1 pDq (see [Dur70, Thm. 10.4 p.170]) :

γ 1,`: r0, 1s ÝÑ C t Þ ÝÑ p1 ´tq π 2 p1 `iq γ 1,´: r0, 1s ÝÑ C t Þ ÝÑ p1 ´iq π 2 t γ 2,`: r0, 1s ÝÑ C t Þ ÝÑ πp1 ´tq `t ´p1 `iq π 2 ¯γ2,´: r0, 1s ÝÑ C t Þ ÝÑ p1 ´iq π 2 p1 ´tq `tπ ą ą ă ă 0 D γ 1,´γ2,´π γ 2,γ 1,`∆
@z P D, f pzq " 1 2iπ ż γ f puq u ´z du " 1 2iπ ÿ kPt1, 2u εPt˘u ż γ k,ε f puq u ´z du " 1 2 ÿ kPt1, 2u εPt˘u f k,ε pzq
where we have written

f k,ε pzq " 1 iπ ż γ k,ε f puq u ´z du, k P t1, 2u , ε P t˘u.
For the reader acquainted with Hardy spaces, the crucial observation here is that f k,ε can be seen -modulo rotation and translation -as a scalar product between a (compactly supported) function and a reproducing kernel of the Hardy space, which thus yields a (Riesz-) projection on the Hardy space. It is known that this projection is bounded when f k,ε P L p , p ą 1, but not when p " 1. As will be explained below, on the real line, this boundedness remains valid when f k,ε P L log L and f k,ε is compactly supported. Once we have established this fact, a theorem by Hardy and Littlewood on inclusion between Hardy and Bergman spaces will allow to conclude.

The remainder part of the section will be devoted to show that f 1,ε {P P A 2 p∆q and f 2,ε {P P A 2 pπ ´∆q for ε P t˘u. We cut each sector ∆ and π ´∆ in two disjoint parts, which will be treated separately. For that, given a fixed a ą 0, denote by D a the homothetic dilation of D with center 0 and obtained by adding length a ą 0 to the sides of D (see Figure 2). We will consider the disjoint union ∆ " D a Y ∆zD a (and similarly for π ´∆). The proof is composed of two steps. ' Step 1 : In this step we prove the following claim:

f 1,ε {P P A 2 p∆zD a q (9)
(the case f 2,ε {P P A 2 ppπ ´∆q z pπ ´Da qq follows in a similar fashion).

To do so, remark that there exists a constant C a ą 0 such that for any z R D a , |z| `1 ď C a dpz, BDq. Using the triangular inequality, we have for any k P t1, 2u and

ε P t˘u, @z R D a , |f k,ε pzq| ď 1 π ż γ k,ε ˇˇˇf puq u ´z ˇˇˇ| du| ď }f } L 1 pBDq 1 πdpz, BDq ď C |z| `1 ,
where we have used that L log `L Ă L 1 on a segment. So, since ´2iπ R ∆zD a , we obtain

ż ∆zDa f 1,ε pzq ppzq 2 dApzq ď C ż ∆zDa dApzq |2iπ `z| 2 p1 `|z|q 2 ă `8.
This proves claim (9).

'

Step 2 : This step is more delicate and uses the Cauchy (or Hilbert) transform and the inclusion H 1 pDq Ă A 2 pDq.

We need to show the following claim f 1,ε {P P A 2 pD a q (10) (and f 2,ε {P P A 2 pπ ´Da q). It is enough to treat the case f 1,`, the others follow in a similar way. For g P L 1 pRq, we denote by Cg its Cauchy Transform defined by pCgq pzq "

1 iπ ż R gptq t ´z dt, z P C `:" tz P C | Impzq ą 0u .
For more details on this operator, we refer to [START_REF] Cima | The Cauchy Transform[END_REF].

We first explain briefly how to translate f 1,`t o Cg for some suitable g. It is essentially rotating and translating the line through γ 1,`t o R. To be more explicite, let α 1,`: z Þ Ñ 1 `?2 π e i 3π 4 z. This is a direct similarity transformation which sends D a to C `and in particular γ 1,`o nto r0, 1s (note that the orientation is preserved, e.g. the endpoint 0 of γ 1,`i s sent to 1). Let f γ 1,`p tq " 1 r0,1s ptqf pγ 1,`p tqq. For all z P D a , we have

f 1,`p zq " 1 iπ ż γ 1,`f puq u ´z du " 1 iπ ż 1 0 f pγ 1,`p tqq γ 1,`p tq ´z γ 1 1,`p tqdt " 1 iπ ż R f γ 1,`p tq p1 ´tq π 2 p1 `iq ´z ´´π 2 p1 `iq ¯dt " 1 iπ ż R f γ 1,`p tq t ´α1,`p zq dt " ´Cf γ 1,`¯p α 1,`p zqq
So, since P does not vanish on D a , we obtain

ż Da f 1,`p zq P pzq 2 dApzq ď C ż Da |f 1,`p zq| 2 dApzq " C ż Da ´Cf γ 1,`¯p α 1,`p zqq 2 dApzq " C 2 ż α 1,`p Daq ´Cf γ 1,`¯p zq 2 dApzq, ( 11 
)
where we have used in the last step that α 1,`i s an affine change of variable with constant jacobian. As already written, α 1,`p D a q is a square in the upper-half plane with a segment of the real line as one of its sides. We will next appeal to the following regularity result of the Cauchy transform which is essentially a combination of a result by Calderon-Zygmund [CZ52, Thm 2, p.100] on the boundedness of the Cauchy transform for compactly supported functions from L log L to H 1 , and a result by Hardy-Littlewood on inclusion between H 1 and A 2 on the disk.

Remark 3.3. Note that in this proposition, we do not need to assume any link between the (compact) support of f and the segment I. However, we will apply later on the result for the case when the support of f is included in I (and I " r0, 1s).

We start with a first intermediate result.

Lemma 3.4. Let f P L log `LpRq having compact support. Then the Cauchy Transform Cf satisfies:

sup yą0 ż L ´L |Cf px `iyq|dx ă `8
This result is certainly known to the experts in harmonic analysis. We include its proof for convenience of the reader. It is essentially based on the following theorem by Calderon and Zygmund [CZ52, Thm 2 p.100]. Let fλ pxq " ş |x´y|ą1{λ f pyq{px ´yqdy. Note that lim λÑ0 fλ pxq corresponds to the Hilbert transform of f . Theorem 3.5 (Calderon-Zygmund). If |f |p1 `log `|f |q is integrable over R, then fλ is integrable over every set S of finite measure. Moreover,

ż S | fλ |dx ď A S ż R |f |p1 `log `|f |qdx `BS ,
where A S and B S are constants depending only on S, but neither on f nor on λ.

Proof of Lemma 3.4. For y ą 0, let P y pxq " y πpx 2 `y2 q and Q y pxq "

x πpx 2 `y2 q be the Poisson and the conjugate Poisson kernels (Q 0 corresponds to the kernel of the Hilbert transform). Then we have @z P C `, Cf pzq " Pf pzq `iQf pzq where we have written Pf px `iyq " pP y ˚f qpxq and Qf px `iyq " pQ y ˚f qpxq. So it suffices to show

sup yą0 ż L ´L |Pf px `iyq|dx ă `8 and sup yą0 ż L ´L |Qf px `iyq|dx ă `8.
The first inequality is clear from classical properties of the Poisson kernel (for this it is even enough that f P L 1 pRq, see [Gar07, Thm 3.1]). Consider the second inequality. Recall the following estimate (see for example [Gar07, p. 105]) @y ą 0, @x P R, Q y f px `iyq ´r f y pxq ď CM f pxq where M f is the Hardy-Littlewood Maximal function and r f y is defined by

@x P R, r f y pxq " ż |t´x|ąy Q y px ´tqf ptqdt.
This, together with a classical result on the regularity of M f (see [START_REF] Garnett | Bounded Analytic Functions[END_REF]p. 23]) and Theorem 3.5 above yields the desired result.

We need some more notation. Let L ą 0 such that

I Ă ‰ ´L 2 , L 2 " and supp f Ă ‰ ´L 2 , L 2 "
. Denote by Ω L the square contained in C `with one side being the segment r´L, Ls. Lemma 3.6. Under the conditions of the proposition, we have Cf P E 1 pΩ L q.

Proof of Lemma 3.6. In order to prove Cf P E 1 pΩ L q, pick pω ε q 0ăεăε 0 , ε 0 ă L{2, a sequence of rectifiable Jordan curves given by the sides of the squares contained in Ω L one side of which is ω ε,0 " r´L `ε, L ´εs `iε and ω ε,1 corresponds to the remaining three sides of the square (see Figure 3). Let ω ε " ω ε,0 _ ω ε,1 (concatenation of the two Jordan curves, orientated counterclockwise). Then for any 0 ă ε ď ε 0 , we have dpω ε,1 , supp f q ą 0. Thus, from the very definition of the Cauchy transform and triangular inequality,

sup 0ăεăε 0 ż ω ε,1 |Cf ||dz| ă `8. It remains to show that sup 0ăεăε 0 ż ω ε,0 |Cf ||dz| " sup 0ăεăε 0 ż L´ ´L`ε |Cf pt `iεq|dt ă `8.
Using Lemma 3.4, we conclude that Cf P E 1 pΩ L q As mentioned above, the other ingredient in the proof of Proposition 3.2 is the following interesting result due to Hardy and Littlewood (see [START_REF] Hardy | Some properties of fractional integrals ii[END_REF]thm31], see also [START_REF] Vukotić | The isoperimetric inequality and a theorem of Hardy and Littlewood[END_REF] or [START_REF] Queffélec | Analyse complexe et applications[END_REF]Thm4.11,p. 282] for a more elementary proof).

Theorem 3.7 (Hardy-Littlewood). The Hardy space H 1 pDq embeds continuously into A 2 pDq.

We are now in a position to prove Proposition 3.2.

Proof of Proposition 3.2. In view of Lemma 3.6, we already know that Cf P E 1 pΩ L q. Now, if ϕ : D Ñ Ω L is a conformal mapping, then we will have pCf ˝ϕq ϕ 1 P H 1 pDq. From Theorem [START_REF] Hardy | Some properties of fractional integrals ii[END_REF] we obtain pCf ˝ϕq ϕ 1 P A 2 pDq, or equivalently, by simple change of variable, Cf P A 2 pΩ L q. Since Ω Ă Ω L , we obtain Cf P A 2 pΩq which is what we want to prove.

From the preceding discussions we can now deduce the claim (10). Indeed, recall from (11) that

ż Da f 1,`p zq P pzq 2 dApzq ď C ż α 1,`p Daq ´Cf γ 1,`¯p zq 2 dApzq.
Clearly, when f P L log L with compact support, the same will be true for f γ 1,( which is essentially a truncation of f composed with a rotation/translation). From Proposition 3.2 (with Ω " α 1,`p D a q being a unit square in the upper half plane with base on the real line we deduce (10) (the argument is the same for f 1,´) .

Proof of Theorem 1.3. By (8) it is enough to show that f {P P A 2 p∆q `A2 pπ ´∆q. The decomposition will be given by F 1 " pf 1,``f1,´q {P and F 2 " pf 2,``f2,´q {P . By (9) we have F 1 P A 2 p∆zD a q, and (10) implies that F 1 P A 2 pD A q. The case F 2 is treated in exactly the same way. 

Proof of Theorem 1.2

As already mentioned, we have to solve the First Cousin Problem for Bergman spaces. We refer the reader to [AM04, Thm 9.4.1] where some of the ideas used below can be found. The first step into this direction is to construct a partition of unity associated with Ω " ∆ Y pπ ´∆q ":

Ω 1 Y Ω 2 .
We are thus seeking for positive smooth functions ϕ i , i " 1, 2, such that supppϕ i q Ă Ω i , ϕ 1 `ϕ2 " 1 on Ω. The existence of such a partition is of course a general fact. However, for the convenience of the reader, we give a more explicite construction of ϕ i which also allows to see the optimality of the weight of the Bergman space appearing in Theorem 1.2, at least for our method.

Lemma 4.1. Let z 0 " π 2 `i π 2 and z 1 " π 2 ´i π 2 , the upper and lower vertices of D. Then there exists χ 1 , χ 2 P C 8 pΩq such that, for i P t1, 2u,

1. 0 ď χ i ď 1, suppχ i Ă Ω i 2. χ 1 `χ2 " 1 on Ω 3. @z P D, Bχ 1 Bz pzq ď C |z´z 0 ||z´z 1 |
Proof. Let ψ P C 8 pRq be a cutoff function such that 0 ď ψ ď 1, ψ| p´8, 0s " 0, ψ| r1,`8q " 1. It is clear that ψ 1 is bounded on R. We will now create an explicit support for χ 1 , smaller than ∆zD. For that, let α : p´π 2 , π 2 q Q y Þ Ñ ´1 π py ´π 2 qpy `π 2 q and draw the curves of equations C 1 : x " αpyq `π 2 and C 2 : x " ´αpyq `π 2 . They are symmetric with respect to the line x " π 2 and are included in D (see Figure 4). Now, define χ 1 by

χ 1 px, yq " ψ ˆx `αpyq ´π 2 2αpyq ˙, x, y P ´´π 2 , π 2 
and complete it by 1 on ∆zD and by 0 on pπ ´∆qzD. Let now px, yq P D. We set E for the subset of px, yq P D contained between the two curves C 1 and C 2 . Clearly, when x ă ´αpyq `π 2 , then χ 1 px, yq " 0 on the left half of DzE. Also, when x ą αpyq `π 2 , then, since αpyq ą 0 on p´π 2 , π 2 q,

x `αpyq ´π 2 2αpyq ą 1, and hence χ 1 px, yq " 1 on the right half of DzE. This implies that the function χ 1 is C 8 pΩq, it takes values between 0 and 1, is 1 on ∆zD (actually on ∆zE) and 0 on pπ ´∆qzD (actually on pπ ´∆qzE). If we write χ 2 " 1 ´χ1 , the points 1. and 2. of the lemma are verified. To obtain the last point, observe that outside E the derivatives of χ 1 vanish and if px, yq belongs to E, we have |x ´π 2 | ă |αpyq|. The point 3. follows.

It can easily be seen from the mean value theorem that we cannot hope for a better estimate than 3. in Lemma 4.1, see Remark 4.3 below.

We are now in a position to prove Theorem 1.2. Beforehand, we need to introduce an auxiliary function P pzq " 1 `z2 . Observe that multiplication by P is an isomorphic operation on A 2 `D, |pz ´z0 qpz ´z1 q| ´2˘.

Pick ϕ P A 2 `D, |pz ´z0 qpz ´z1 q| ´2˘, and set ϕ 0 " ϕP . Consider the functions h 1 " χ 2 ϕ 0 on Ω 1 h 2 " ´χ1 ϕ 0 on Ω 2 They satisfy h i P C 8 pΩ i q and ϕ 0 " h 1 ´h2 on D. To conclude we need to solve a B-problem. For that, note that Theorem 4.2. Let U be a domain in C and a ą 0. If f P L 2 loc pU q and ż U |f pzq| 2 p1 `|z| 2 q 2´a dApzq ă `8

then there exists u P L 2 loc pU q which solves the equation Bu Bz " f on U and such that a ż U |upzq| 2 p1 `|z| 2 q ´adApzq ď ż U |f pzq| 2 p1 `|z| 2 q 2´a dApzq.

We now apply this theorem with U " Ω, f " v and a " 2. More precisely, since ϕ 0 P A 2 `D, |pz ´z0 qpz ´z1 q| ´2˘a nd in view of condition 3. of Lemma 4.1, we see that v P L 2 pΩq. Then Hörmander's theorem yields a function u P L 2 pΩ, p1 `|z| 2 q ´2q solving the B-problem. Observe that this also implies that u{P P L 2 pΩq. Define now ϕ 1 " h 1 ´u on Ω 1 and ϕ 2 " h 2 ´u on Ω 2 . These are holomorphic functions since are holomorphic on Ω i . Recall also that h i P L 2 pDq and h i extends trivially to Ω i zD, so that h i {P P L 2 pΩ i q. Since u{P P L 2 pΩq, we thus get f i P A 2 pΩ i q which completes the proof of Theorem 1. Remark 4.3. Condition 3. of Lemma 4.1 is optimal in the sense that lim sup zPD,zÑz i pz ´zi q Bχ 1 Bz pzq ą 0, i " 0, 1, for any arbitrary partition of unity for tΩ 1 , Ω 2 u. This is an easy consequence of the mean value theorem. So, it does not seem possible to improve the result examinating further the First Cousin Problem here.

  Bx 2 " 0 t ą 0, x P p0, πq, ypt, 0q " u 0 ptq, ypt, πq " u π ptq t ą 0, yp0, xq " f pxq x P p0, πq, (HE)

  PW a pC `q " " f P HolpCq ˇˇˇD C ą 0, |f pzq| ď Ce π|z| and ż R |f piyq| 2 dy ă 8 * the Paley-Wiener space on the right-half plane. Then by the classical Paley-Wiener theorem,
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 1 Figure 1: The square D, the path γ and the sector ∆.

Figure 2 :

 2 Figure 2: The squares D, D a and the sector ∆.
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 3 Figure 3: The squares Ω et Ω L , and the path ω ε .

Figure 4 :

 4 Figure 4: Values of χ 1 on Ω, and the curves x " ˘αpyq `π{2.

  So we can define a function v P C 8 pΩq such that We need the following Hörmander L 2 -estimates for the B-equation [Hör07, Thm 4.2.1].

	Bh 1 Bz	"	Bh 2 Bz	" ´ϕ0	Bχ 1 Bz	on D.
	v "	$ ' & ' %	Bh 1 Bz Bh 2 Bz	on Ω 1 , on Ω 2 .

Proposition 3.2. Let f P L log `LpRq have compact support. Let Ω be a square in the upper-half plane one side of which is a segment I Ă R. Then the Cauchy transform Cf belongs to A 2 pΩq.