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Abstract—Ultrasound-guided regional anesthesia (UGRA) be-
comes a standard procedure in surgical operations and pain
management, offers the advantages of nerve localization, and
provides region of interest anatomical structure visualization.
Nerve tracking presents a crucial step for practicing UGRA
and it is useful and important to develop a tool to facilitate
this step. However, nerve tracking is a very challenging task
that anesthetists can encounter due to the noise, artifacts, and
nerve structure variability. Deep-learning has shown outstand-
ing performances in computer vision task including tracking.
Many deep-learning trackers have been proposed, where their
performance depends on the application. While no deep-learning
study exists for tracking the nerves in ultrasound images, this
paper explores thirteen most recent deep-learning trackers for
nerve tracking and presents a comparative study for the best
deep-learning trackers on different types of nerves in ultrasound
images. We evaluate the performance of the trackers in terms
of accuracy, consistency, time complexity, and handling differ-
ent nerve situations, such as disappearance and losing shape
information. Through the experimentation, certain conclusions
were noted on deep learning trackers performance. Overall,
deep-learning trackers provide good performance and show a
comparative performance for tracking different kinds of nerves
in ultrasound images.

Index Terms—Nerve tracking, visual tracking, deep-learning,
ultrasound images, regional anesthesia.

I. INTRODUCTION

Regional Anesthesia (RA) is an important procedure used
in medical operations. RA is performed by the anesthetist
close to a nerve in order to mask the sensation of pain in
that part of the human body, improving postoperative mobility,
and facilitating earlier hospital discharge [1]. Traditionally, RA
performed with a blind guidance which increased the risks of
block failure, nerve trauma, and local anesthetic toxicity [2].
Ultrasound-Guided Regional Anesthesia (UGRA) has become
the current trend to perform regional anesthesia, due to sev-
eral advantages of the ultrasound (US) imaging such as low
cost, no radiation, real-time acquisitions, and portability [3].
However, this procedure requires a long learning process and
years of experience [3], [4]. It remains challenging for the
anesthetist to maintain both the needle and the nerve region
in the ultrasound plane at the same time. As such, the aim of
this study is to develop a tool to assist the anesthetists with
accurate nerve tracking procedure.

Tracking is one of the fundamental tasks in computer
vision and image analysis, and it is used in a wide range
of applications such as video surveillance, medical imaging,
robotics, etc. Tracking is an easy task when the target objects
are isolated and easily distinguishable from the background,

but it is a very challenging task when the image suffers from il-
lumination changes, shape deformation, object disappearance,
viewpoint variation, etc [5].

In the literature, various methods have been proposed to
address these problems, where visual tracking can be cat-
egorized into two models. Motion model that predicts the
states of an object [6]–[8], and an observation model that
take into account object appearance information and corrects
its predictions [9]. The observation model, which has more
impact than the motion model [10], is divided into generative
methods that search for the most similar regions to the tracked
object (such as [10]–[12]), and discriminative models that use
classifiers to differentiate between the tracked object and its
surrounding areas (such as [13]–[17]).

Tracking in US images is a very challenging task due
to the degradation of the visual property of US images.
Various methods have been proposed in the literature regarding
tracking in US images. Guerrero et al. used an elliptical
model with Kalman filter to track the center of vessels in
US images [18]. In [19], the authors tracked left ventricles in
US images by using non-linear filters with a multiple model
data association tracker. In [20], Tang et al. used Markov
random fields to track the tongue contour automatically in
US images. In [21], the authors tracked medical instruments
in three-dimensional US images by searching for long straight
objects using the generalized Radon transform. Roussos et al.
introduced a variant of active appearance modeling to detect
and track the tongue in US images [22]. In [23], the authors
tracked the tongue in US images by incorporating intensity
information with edge gradient to improve active contour.
Duan et al. proposed a region-based method for endocardium
tracking in US images [24]. To the best of our knowledge,
there is one study for tracking the nerves in US images. In [25],
the authors introduced an extensive study on different kinds
of trackers with different kinds of features to track the median
nerve in US images.

Although the traditional visual trackers provide acceptable
results and show good abilities to handle different scene
situations, it is more beneficial to exploit recent trackers
based on deep learning processes, since it has shown excellent
performance in many computer vision applications, such as
image classification [26] and recognition [27].

Recently, Convolutional Neural Networks (CNN) [28] have
received significant attention in computer vision and machine
learning applications such as object detection [29], image
classification [26], and image segmentation [30]. Motivated
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by these breakthroughs, several deep-learning based trackers
have been developed in order to significantly improve the
tracking performance. These works showed promising results
for different tracking applications, such as [31]–[42].

In the literature, few methods introduced tracking using
deep-learning in US images. In [43], the authors built a
deep neural network observation distribution to track the left
ventricle endocardium in US images. In [44], The authors used
deep neural networks to build a new observation model in a
particle filter to track and segment the left ventricle in US
images. To the best of our knowledge, this is the first deep-
learning study on nerve tracking in US images.

Here, we introduce a deep-learning approach to robustly
track nerve structures in US images. We conducted a compar-
ative study of thirteen deep trackers for two types of nerves,
median and sciatic.

The major contributions of this paper can be summarized
as follows:
• Tracking of nerve structure in ultrasound images.
• Comparative study of recent deep-learning tracking tech-

niques.
• Addressing new medical applications (Regional anesthe-

sia).
The structure of our paper is as follow. Section. II details

the deep-learning trackers. Followed by experimental results
and discussion in Section. III. The paper ends with final
conclusions in Section. IV.

II. DEEP VISUAL TRACKERS

This paper aims to track nerves in US images using deep-
learning methods, and as such these methods should be robust
enough to track different nerve situations. The visual tracker
starts by generating the target model in the first frame, then
extracts features in the next frame to find the candidate models,
and find the best match between target and candidates models.
Most existing deep trackers use CNN either to generate appear-
ance models, to match object model with its candidates, or to
distinguish the object from the surrounding areas. Therefore in
the following, 13 deep-learning tracking methods are discussed
where CNN is used.

A. Continuous convolution operators tracker

Continuous Convolution Operators Tracker (C-COT) [31]
employed a new technique that solves the learning problem by
using an interpolation model which enables the integration of
multi-resolution feature maps. This model takes the advantages
of performing the convolution in the continuous spatial domain
to obtain high results in the visual tracking problem. To reach
precise sub-pixel localization, C-COT obtains the predicted
score as a continuous function. Furthermore, C-COT’s multi-
resolution feature maps facilitate each visual feature to choose
the region-size independently.

C-COT integrates the feature map x to the continuous spatial
domain t ∈ [0, T ) by introducing an interpolation model Jd
for each feature channel d

Jd
{
xd
}

(t) =

Nd−1∑
n=0

xd[n]bd

(
t− T

Nd
n

)
(1)

where xd represents visual features, Nd is each feature
resolution, and bd is an interpolation kernel.

To predict the matching scores of the target image region,
the convolution operator Sf {x} is parametrized by a set of
continuous T -periodic multi-channel convolution filters f ,

Sf {x} (t) = f ∗ J {x} =

D∑
d=1

fd ∗ Jd
{
xd
}

(2)

where D is the number of domain dimensions, and the filters
are learned by minimizing the following,

E (f) =

M∑
j=1

αj ‖Sf {xj} − yi‖2L2 +

D∑
d=1

∥∥wfd∥∥2
L2 (3)

where M is the number of training samples, αj is the weight
of sample xj , yi is the labeled detection scores of xj sample
and represented by periodically repeated Gaussian function, w
parameter is used to reduce the effect of periodic assumption,
and the L2-norm is weighted classification error.

B. Efficient convolution operators

Efficient convolution operators (ECO) [32] is based on C-
COT and aims to reduce the C-COT model size, the training
set size, and excessiveness and sensitivity of the model update.
In other words, ECO aims to reduce the redundancy in the
sample set of C-COT.

Unlike C-COT which learns one separate filter for each
feature channel, ECO provides a smaller set c of filters by
using a factorized convolution operator P . Therefore, ECO
replaces Eq. 2 by,

SPf {x} (t) = Pf∗J {x} =
∑
c,d

Pd,cf
c∗Jd

{
xd
}

= f∗PTJ {x}

(4)
C-COT collect new samples in each frame, which leads

to sampling set redundancy. For that, while preserving the
samples diversity, ECO reduces their number in the learning
phase by a generative model of the training sample space. The
generative model finds the filter that minimizes the expected
correlation error,

E (f) = E
{
‖Sf {x}‖ − y ‖2L2

}
+

D∑
d=1

∥∥wfd∥∥2
L2 (5)

The model strategy in C-COT is updated in each frame
which leads to slow tracking procedure. ECO uses a sparse
updating scheme to reach more fast and robust tracking. This
scheme is concluded by updating the model once a sufficient
change happens.



Fig. 1: Illustration of SANet tracker [35].

C. Convolutional network based tracker

Convolutional Network based Tracker (CNT) [33] consid-
ered a simple two-layer convolutional network that developed
a robust sparse representation for visual tracking. CNT uses
CNN network to extract mid-level features from the image.
These features are then distinguished into positive and negative
ones by learning a classifier. Using a k-means algorithm,
CNT initializes fixed filters by extracting a set of normalized
patches from the target region. Around the target region, these
filters define a set of feature maps which encode target local
structural information. These feature maps construct the first
layer, while the second layer consists of the encoded target
local structural information. To adapt to target appearance
variations, an online strategy is employed to update the model.
The online strategy is a sparse representation which adapts a
simple temporal low-pass filtering method,

ct = (1− ρ)ct−1 + ρĉt−1 (6)

where ct is the target template at frame t, ρ is a learning
parameter, and ĉt−1 is the sparse representation of the tracked
target at frame t− 1.

D. Multi-domain convolutional neural networks

Multi-Domain convolutional neural Networks (MDNet) [34]
has five hidden layers which consist of shared layers and
multiple branches of domain-specific layers. These Domains
correspond to individual training sequences and each branch is
representing binary classification to identify the target in each
domain. MDNet has K branches in the last fully connected
layers, where each K branch contains a binary classification
layer. These binary classification layers are to distinguish the
target and the background in each domain. Using a large set of
videos with tracking ground-truths, MDNet trains each domain
to construct a target representation.

MDNet trained CNN using the Stochastic Gradient Descent
(SGD) method, wherein each iteration of each domain is
handled separately. MDNet tracks the target by evaluating the
randomly sampled candidate windows around the target region
in the previous frame. While tracking, MDNet incorporates
the shared layers in the pre-trained CNN with a new binary
classification layer to develop a new network. In order to
update the network, MDNet applies short-term and long-term
update strategies. Furthermore, MDNet adapts bounding box
regression technique for more precise target localization.

E. Structure-aware network

In general, Structure-Aware Network (SANet) [35] follows
the same strategy as MDNet but with an additional recurrent
neural network (RNN) based structure for improving object
representation. Fig. 1 shows the structure of SANet and how
RNNs is utilized. Using multiple RNNs, SANet models object
structure during learning then combines it into CNN. SANet
consists of two fully connected layers and one fully connected
classification layer which concatenated with the recurrent
layers using a skip concatenation strategy. For training, target
tracking, model update, and target localization, SANet adapts
the same strategies as MDNet.

F. Fully-Convolutional Siamese Networks

Fully-Convolutional Siamese Networks (SiameFC) [36] uti-
lize a sliding-window evaluation by using a bilinear layer that
computes the cross-correlation of its two inputs. SiameFC
starts by initializing the interested object location (x′) in the
first frame and the search area in the next frame (z′). A
convolutional embedding CNN function (fρ), with learnable
parameter ρ, is used to represent each feature map for the
inputs. To find the similarity between these inputs, SiameFC
computes the cross-correlation between the two feature maps
fρ(x

′) and fρ(z′) using,

gρ(x
′, z′) = fρ(x

′) ? fρ(z
′) (7)

where ρ is a learnable parameter.
The goal of Eq. 7 is to find the best value between the two

input feature maps. And to achieve this goal, SiameFC offline
trains the network with a huge number of random targets taken
from a large database of videos. A spatial map of labels ci
is assembled for each sample. The training is performed by
minimizing an element-wise logistic loss over the training set,

arg min
ρ

∑
i

` (gρ(x
′
i, z
′
i), ci) (8)

The tracking process is performed by comparing the target
object with the candidate’s locations. These candidates are
located in the search region which is centered in the same
previous target location center but four-times bigger in size.
The new target location is found by taking the candidate with
the highest similarity score.



Fig. 2: Illustration of HDT tracker [40].

G. Correlation filter network

Correlation Filter Network (CFNet) [37] based on Siamese
networks by modifying the correlation filter learner as a
differentiable layer in the deep neural network. The correlation
filter block between the interested object location x′ and the
cross-correlation operator is set as,

hρ,s,b(x
′, z′) = sw(fρ(x

′)) ? fρ(z
′) + b (9)

where the scalar parameters s and b ,the scale and the
bias respectively, are used to make the score range suitable
for logistic regression. z′ is the search areas in the next
frame. fρ is a convolutional embedding CNN function. Also,
w is the standard convolution filter template computed by
the convention filter block from the training feature map
x = fρ(x

′).

H. Discriminant correlation filters network

Discriminant Correlation Filters Network (DCFNet) [38]
is based on Siamese network and aimed to do simultane-
ously convolutional features learning and correlation tracking.
DCFNet added a correlation layer for backpropagation to
Siamese network using an object location probability heat
map.

The discriminant correlation filter w can be obtained by,

ŵl =
ϕ̂l(x)� ŷ∗∑D

k=1 ϕ̂
l(x)� (ϕ̂l(x))∗ + λ

(10)

where ŵl presents filter w of channel l, ϕ ∈ RM×N×D is
the target patch features, y ∈ RM×N is the ideal reaponse,
λ is the regularization coefficient constant, the (ˆ) represents
discrete Fourier transform F , (∗) is the complex conjugate of a
complex number y, and � refers to Hadamard (element-wise)
product.

In the new frame, DCFNet detection process starts by
cropping a search window and finding the features inside it.
Then DCFNet estimates target translation by using correlation
response map maximum value,

g = F−1
(

D∑
l=1

ŵl∗ � ϕ̂l(z)

)
(11)

DCFNet uses incremental filter update which regards it as an
RNN network. DCFNet incrementally updates the filter over
time t during the online tracking which gives the advantages
of maintaining only a small sample set. Filter update can be
found using,

ŵl
p =

∑p
t=1 βŷ∗ � ϕ̂l(xt)∑p

t=1 βt

(∑D
k=1 ϕ̂

k(xt)� (ϕ̂k(xt))
∗

+ λ
) (12)

where βt is the impact of sample xt.

I. Multi-task correlation particle filter

Multi-task Correlation Particle Filter (MCPF) [39] takes the
benefits of controlling the particle sampling in particle filter
using a multi-task correlation filter. The learning process of the
correlation filter leads to using fewer particles which decreases
the computation cost. MCPF learns the correlation filter jointly
by including different feature inter-dependencies.

Multi-task correlation filter (MCF) learned zk to differenti-
ate discriminative training samples xk of target from the back-
ground, where K is the features (CNN or HOG). To find the
features with similar zk which are more stable, MCF applies
circular shifts to zk, where all possible circular shifts of an
image patch of M ×N pixels are xm,n ∈ {0, 1, ...,M − 1}×
{0, 1, ..., N − 1} which represent the possible locations of the
target object. After that, MCF learns the correlation filters for
zk using,

min
{zk}Kk=1

∑
k

1

4λ
z>k Gkzk +

1

4
z>k zk − z>k y + γ ‖Z‖2,1 (13)

where Z = [z1, z2, ..., zK ] is obtained by gathering learned
zk of K different features, λ is a regularization parameter, Gk

is equal to XkX>K , Xk donates all training samples with Gaus-
sian function label y, γ is a tradeoff parameter between reliable
reconstruction and joint sparsity regularization. Finally, to find
multi-task correlation filter zk for each type of feature, Eq. 13
is solved using the Accelerated Proximal Gradient method.

MCPF first step consists of generating the particle, followed
by predicting the particle location using the probabilistic
framework. After that, MCF is applied to each particle with
the aim of shifting the particles to a stable location using



its circular shifts. Then MCPF updates the weights using the
response map,

r =
∑
k

F−1
(
F(zk)�F

(〈
yit, x̄

〉))
(14)

where zk is the learned MCF, x̄ is the target appearance
model, yit is the observation of particle i at time t, � donates
Hadamard (element-wise) product, and F and F−1 are the
Fourier transform and its inverse, respectively.

The optimal state can be formulated as,

E [st | y1:t] ≈
n∑
i=1

witSmcf
(
sit
)

(15)

where each particle sit is shifted Smcf
(
sit
)
, and wit is particle

weights and is proportional to the response of the MCF.
MFCF updates MCF using an incremental strategy which

only utilizes current frame new samples xk,

F (x̄k)
t

= (1− η)F (x̄k)
t−1

+ ηF (xk)
t

F (zk)
t

= (1− η)F (zk)
t−1

+ ηF (zk)
t

(16)

J. Hedged deep tracking

Hedged Deep Tracking (HDT) [40] is based on adaptive
hedge method which solves the online learning problems in
a multi-expert multi-round setting. HDT takes the advantages
of VGG-Net [45] deep architecture to extract feature maps of
convolutional layers from image regions. To generate response
maps, each feature map is convolved by correlation filters to
generate a weak tracker (expert). HDT hedges these trackers
into a stronger one using an online decision-theoretical Hedge
algorithm as shown in Fig. 2. At time t, the target position
(x∗t ,y∗t ) can be found by the position with the best response,

(x∗t , y
∗
t ) =

K∑
k=1

wkt .
(
xkt , y

k
t

)
(17)

where wkt is the weight at time t for expert k. wkt uses
new samples X̄ k in the current frame to update the previous
models which reflect each expert’s decision loss,

Zk∗,∗,d =
Y

X̄ k.X̄ k + λ
� X̄ k∗,∗,d

Wk
t = (1− η)Wk

t−1 + ηZkt
(18)

where Wk
t is the k-th filter which modeled in the Fourier

domain, X̄ represents the new samples in the current frame
k−th convolutional layer, Y is a 2D Gaussian distribution with
zero mean and standard deviation proportional to the target
size, � denotes the Hadamard (element-wise) product, λ is a
tradeoff parameter, and η is the learning rate.

K. Hierarchical convolutional features tracker

Hierarchical Convolutional Features Tracker (HCFT) [41]
utilizes large-scale datasets to learn rich feature hierarchies
of CNNs. HCFT is robust to appearance variations due to
keeping target objects semantics in the last convolutional
layers. Target appearance is encoded using a correlation filter
on each convolutional layer. HCFT uses the hierarchies of
convolutional layers to find the maximum responses that locate
the target.

HCFT employs VGG-Net [45] Convolutional feature maps
to encode target appearance. Followed by finding the maxi-
mum response using correlation filters in the frequency do-
main,

W d =
Y � X̄d∑D

i=1X
i � X̄i + λ

(19)

where D is the number of channels, Y is a Fourier transform
of a Gaussian function y, X is the feature vector of the
d channel, the bar refers to the complex conjugation, � is
Hadamard (element-wise) product, and λ is a regularization
parameter.

HCFT finds the response map in the new frame by providing
the feature vector ‡ (Z̄ using Fourier transform) on the l− th
layer of a patch,

fl = F−1
(

D∑
d=1

W d � Z̄d
)

(20)

The new target location is set to the patch with the maxi-
mum response. HCFT update the model using moving average
technique for the numerator Ad and denominator Bd of the
correlation filter W d,

Adt = (1− η)Adt−1 + ηY � X̄d
t ,

Bdt = (1− η)Bdt−1 + η
∑D
i=1X

i
t � X̄i

t ,

W d
t =

Ad
t

Bd
t +λ

(21)

where t is the frame index and η is a learning rate.

L. Convolutional residual tracker

Convolutional RESidual Tracker (CREST) [42] uses end-to-
end training and reformulates Discriminant Correlation Filters
(DCFs) as a one-layer convolutional neural network. The resid-
ual learning process is adopted to reduce model degradation
and to be more invariant to appearance changes.

DCF learns a filter W by solving the minimization problem

arg min
W

‖W ∗X − Y ‖2 + λ ‖W‖2 (22)

where X is the input sample, Y is its corresponding
Gaussian function label, and λ is the regularization parameter.

CREST initializes the model by extracting features, map-
ping the response, and setting the distribution parameters in the
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Fig. 3: The performance of deep-learning trackers for the median nerve, where accuracy and stability are shown.

base and residual layers. For the new frame, CREST generates
the response map and sets the new target location to the patch
with the maximum response. CREST handles scale changes by
extracting different scale patches around target new location
center. These patches are sent to the response map and the
patch with the maximum response sets to be the target new
scale.

CREST initializes a ground-truth response map in each
frame and the search patch is adopted as a training patch.
These ground-truth maps and the training patch update online
the network.

M. Deep-learning tracker

Deep-Learning Tracker (DLT) [5] adopts the neural net-
works outputs as object features to localize the target object.
DLT learns generic image features using stacked de-noising
autoencoder (SDAE). Followed by transferring the offline
training to online tracking. Using continuously tuned classifi-
cation neural networks and feature extractor, DLT adapted to
target object appearance changes.

DLT starts by collecting features from the target and its
surrounding areas, then pass it to SDAE for offline training.
For the new frame, DLT adopts particle filter technique by
spreading particles around the previous target location. Using
the network, a confident map is determined for each particle
and the new location sets to the particle with the highest
confidence. If all particles have the same confidence, this
concludes an appearance change of the target and the network
should be tuned again.

III. EXPERIMENTS ,RESULTS AND DISCUSSION

In UGRA, the anesthetist starts by using the US probe to
scan a part of the body back and forth in order to locate and

track the nerve. This step is important to stabilize the probe
in a good position to visualize the nerve and insert the needle.

In this paper, we conduct the experiment on two different
nerves which have different characteristics, median and sciatic.
The median nerve is one of the major nerves in the arm,
it starts from the brachial plexus to innervate the intrinsic
muscles of the hand. The sciatic nerve is located in the leg,
more specifically in the popliteal fossa. The median nerve
presents a circular, oval or elliptic shape, whereas the sciatic
nerve sometimes presents an irregular shape which makes it
harder to visualize and to track [46].

This study shows the feasibility of nerve tracking in US
images using deep-learning approaches. This experiment pro-
vides a performance comparison and evaluation of deep-
learning approaches for nerve tracking in ultrasound images.
Each method is analyzed in term of accuracy, consistency, time
cost, and handling different nerve situations. In this section,
we first describe the used dataset and setup, then analyze and
discuss results and performances.

A. Dataset and Setup

Experiments were conducted on sonographic videos of the
median and sciatic nerves obtained from 42 anonymous adult
patients using an ultrasound machine with an MHz transducer
frequency (one video per patient). A total number of 10337
ultrasound images of the nerve were used, which include 25
videos of median nerves with an average of 335 image per
video, and 17 videos of sciatic nerves with an average of 120
image per video. The dataset is ethically approved, and it was
acquired in real conditions at the Medipole Garonne hospital
in Toulouse (France). The ground-truth was provided by two
regional anesthesia experts.

It is well known that the visual properties of US images are
degraded by many effects such as artifacts, signal degradation,
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Fig. 5: The performance of deep-learning trackers for the sciatic nerve, where accuracy and stability are shown.

and speckle noise. These are caused by the coherent source
and noncoherent detector of echo ultrasound imaging systems.
With the aim of performing in real-time, nerve tracking
performed directly on the original US image without any prior
image enhancements.

The experiments were carried out with a core 7 Duo 3.50
GHz processor with 32GB RAM under Matlab. In this exper-
iment, we conduct a comprehensive experimental evaluation
of 13 deep visual trackers introduced in Section. II and one
visual tracker for nerve tracking from [25]. In [25], the authors
tracked the median nerve using hand crafted features, where
AMBP texture descriptor with Particle filter showed the best
results. In this paper, AMBP-PF is tested, as the best method
obtained in [25], to provide a comparative study between hand
crafted features and deep-learning features. The 13 deep visual

trackers have achieved top performance on OTB-100 [47],
TC-128 [48] and VOT2015 [49] datasets. For evaluating each
method, the same parameters provided by the original papers
were used along with the source codes that have been made
available by the original authors. In this experiment, VGG-
Net [45], very deep convolutional networks (up to 19 layers)
are adopted for feature extraction. Overall, this experiment
shows the benefits of exploiting deep-learning visual tracking
in US images.

B. Results

For more accurate and extensive results, two evaluation
procedures are performed in this experiment. The first accu-
racy evaluation is assessed by the bounding box overlap ratio
between the estimated nerve position and the ground-truth. The
overlap ratio is based on pixels percentage in the intersection
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(a) Median Nerve.
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Fig. 6: Precision plot and success plot over 42 US videos on 14 tested trackers.

area. The second evaluation methodology is precision and
success plots [47]. The trackers are ranked in terms of Distance
Precision (DP) and Area Under the Curve (AUC), respectively.
The precision plot represents the percentage that the center
location error is below a predefined threshold (20 pixels in
this experiment), where the center location error uses the
average Euclidean distance between target estimated center
and ground-truth center. The success plot shows if the target
is being tracked successfully by finding if the overlap score
between the estimated bounding box and the ground-truth is
larger than a predefined threshold (0.5 in this experiment).

Fig. 3 illustrates the tracking methods accuracy for median
nerve, where ECO, C-COT, and SANet achieved the best
results, while other methods suffer from less stability and
less performance accuracy. Also, it can be seen that CREST
gave good results but with less stability. On the other hand,
compared to a median nerve, a sciatic nerve is harder to track
due to its location, shape, and appearance which is almost the
same as the surrounding areas in certain frames. In Fig. 5, ECO
provided the best performance and it can be seen that HDT
and MCPF gave a good performance but with less stability.

Fig. 4 shows qualitative results of tracking median and sciatic
nerves using ECO method. As we have previously stated,
Fig. 4 provides the ground-truth.

Fig. 6 reports the precision plot and the success plot over
the median and sciatic nerves videos, where it illustrates a
comparison of all deep trackers. DP and AUC scores for each
tracker are shown in the figure legend. For the median nerve
and among the compared methods, ECO tracker provides the
best results with DP and AUC scores of 95% and 75%. SANet
tracker achieves the second best results in both DP and AUC
scores. For sciatic nerve, ECO and HDT trackers reach more
than 72% for DP score and more than 61% for AUC score.
Overall, it can be noticed ECO tracker outperforms other
trackers and achieves the best results in both precision and
success plots.

C. Discussion

In this paper, we addressed a challenging problem in UGRA
which is nerve tracking. To deal with this problem several
CNN-based methods have been introduced. Tab. I depicts
tracking methods performance for median and sciatic nerves.



(a) 10thframe (b) 200thframe (c) 400thframe

(d) 600thframe (e) Lastframe

Fig. 7: Nerve tracking using MCPF tracker. Although the existence of nerve disappearance, the tracker succeeded to predict
the nerve location (red rectangle for MCPF tracker and a green rectangle for the ground-truth).

For the median nerve, using ECO provides the best results,
where these results are obtained due to transferring prior visual
via pre-training and capturing any appearance changes via
online learning. C-COT adopts the same maneuver as ECO,
but ECO provides a better generalization of the target by
avoiding the over-fitting. Other good trackers for median nerve
are SANet and MDNet which achieved a good score caused
by using a particle filter framework in its design. As well as
this, SANet incorporates with an RNN scheme which leads
to an increase in the tracking accuracy. For the sciatic nerve,
using ECO or HDT achieves the best results, where the HDT
results are obtained as a result of its hedging properties.

TABLE I: Tracking scores (%) comparison between the pro-
posed tracking methods

Nerves

Method Median Sciatic Overall

C − COT [31] 0.94 0.73 0.84
ECO [32] 0.94 0.80 0.87
CNT [33] 0.79 0.73 0.76
MDNet [34] 0.93 0.73 0.82
SANet [35] 0.94 0.76 0.85
SiameFC [36] 0.82 0.74 0.78
CFNet [37] 0.85 0.77 0.81
DCFNet [38] 0.86 0.73 0.79
MCPF [39] 0.89 0.79 0.84
HDT [40] 0.87 0.80 0.83
HCFT [41] 0.85 0.78 0.82
CREST [42] 0.92 0.73 0.83
DLT [5] 0.86 0.75 0.80
PF −AMBP [25] 0.87 0.71 0.82

CNT tracker uses one convolutional layer, while others use
deeper convolutional layers such as ECO and HCFT. In this
experiment, it was observed that using more deep layers results
in a better performance and improves the tracking accuracy.

For the median nerve and comparing between CNN-based
deep trackers and traditional (hand crafted features) trackers
such as particle filter (PF) with Adaptive Median Binary
Pattern (AMBP) features [25], PF-AMBP achieves good re-
sults and outperforms few deep-learning trackers. While for
the sciatic nerve, the CNN-based deep tracking algorithms
achieved a better performance than the traditional trackers in
terms of accuracy and stability thanks to deep features strong
representation. Finally, it can be observed that ECO tracker
provides the best results among CNN-based deep trackers for
both median and sciatic nerve tracking and gives the best stable
results. Overall, the accuracy of CNN-based deep trackers is
competitive and provides good performance for tracking the
median and sciatic nerves.

Time complexity is considered a crucial point and an
important aspect for visual tracking, especially in medical
applications. The used dataset was recorded at 20 frames/s.
Tab. II demonstrates the running time for each method where
it shows that DCFNet provides the best processing time. While
ECO is slow, C-COT, SANet, and HDT are much slower.



TABLE II: Tracking Speed (spf ) between the proposed track-
ing methods

Nerves

Method Median Sciatic

C − COT [31] 0.65 0.67
ECO [32] 0.13 0.14
CNT [33] 0.63 0.65
MDNet [34] 1.00 1.20
SANet [35] 1.63 1.74
SiameFC [36] 0.26 0.31
CFNet [37] 0.45 0.49
DCFNet [38] 0.04 0.05
MCPF [39] 0.60 0.66
HDT [40] 0.89 1.30
HCFT [41] 0.27 0.31
CREST [42] 0.9 1.5
DLT [5] 0.33 0.42
PF −AMBP [25] 0.59 0.63

Important aspects affect the running time for CNN-based
deep tracking algorithms, which are the number of layers and
model update strategy. Some trackers use more deep layers
while others use fewer layers which makes the tracker run
faster. The other important aspect is the tracker model update
strategy, where it can be noticed that updating the model
after each frame is time-consuming. For that, ECO updates its
model every few frames which make the process run faster.
Another strategy to update the model is using Siamese network
to model prior information that accelerates the running process
such as CFNet, DCFNet, and SiameseFCs. While ECO is not
the fastest method but, at the same time, it provides a good
trade-off between tracking accuracy and time complexity.

The experiments faced some challenges when the nerve
disappeared or appeared to be almost as identical as the sur-
rounding areas. Losing the nerve and failing to re-track it leads
to tracking failure, which makes this challenge significant. The
MCPF tracker uses particle filter principle which gives it the
ability to re-track the nerve in case of disappearance. Other
trackers expand their localization to re-track the nerve once
its appears again such as ECO and DCFNet. On the other
hand, CREST tracker failed to re-track the nerve rapidly after
it appeared again. Fig. 7 shows an example of how MCPF
succeeds in tracking the nerve even when the nerve almost
disappeared.

IV. CONCLUSION

Accurate and consistent nerve tracking is essential for safe
and efficient Ultrasound-Guided Regional Anesthesia opera-
tion. In this paper, we perform nerve tracking in ultrasound
images using deep-learning techniques. Recent deep-learning
trackers are introduced to track nerve regions in ultrasound im-
ages. Different procedures were used to evaluate and compare
the deep-learning trackers to demonstrate the effectiveness,
robustness, and speed of the deep trackers. In this study, nerve
tracking was performed directly on the original environment
ultrasound images without any prior image enhancements
which makes it a very challenging task. Our findings show
that ECO, SANet, and C-COT outperform other techniques

for tracking the median nerve, and ECO, HDT, and MCPF
for tracking the sciatic nerve. Overall, deep-learning trackers
showed good performance and handled noise suppression
without pre-filtering the images. In future work, tracking
techniques will be assessed on other types of nerves in order
to improve the performance.
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