
HAL Id: hal-02275517
https://hal.science/hal-02275517v1

Submitted on 30 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Metabolic perceptrons for neural computing in
biological systems

Amir Pandi, Mathilde Koch, Peter L. Voyvodic, Paul Soudier, Jérôme Bonnet,
Manish Kushwaha, Jean-Loup Faulon

To cite this version:
Amir Pandi, Mathilde Koch, Peter L. Voyvodic, Paul Soudier, Jérôme Bonnet, et al.. Metabolic
perceptrons for neural computing in biological systems. Nature Communications, 2019, 10 (1), pp.1-
13. �10.1038/s41467-019-11889-0�. �hal-02275517�

https://hal.science/hal-02275517v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ARTICLE

Metabolic perceptrons for neural computing
in biological systems
Amir Pandi1,5, Mathilde Koch1,5, Peter L. Voyvodic2, Paul Soudier1,3, Jerome Bonnet 2, Manish Kushwaha 1 &

Jean-Loup Faulon 1,3,4

Synthetic biological circuits are promising tools for developing sophisticated systems for

medical, industrial, and environmental applications. So far, circuit implementations commonly

rely on gene expression regulation for information processing using digital logic. Here, we

present a different approach for biological computation through metabolic circuits designed

by computer-aided tools, implemented in both whole-cell and cell-free systems. We first

combine metabolic transducers to build an analog adder, a device that sums up the con-

centrations of multiple input metabolites. Next, we build a weighted adder where the con-

tributions of the different metabolites to the sum can be adjusted. Using a computational

model fitted on experimental data, we finally implement two four-input perceptrons for

desired binary classification of metabolite combinations by applying model-predicted weights

to the metabolic perceptron. The perceptron-mediated neural computing introduced here

lays the groundwork for more advanced metabolic circuits for rapid and scalable multiplex

sensing.
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Living organisms are information-processing systems that
integrate multiple input signals, perform computations on
them, and trigger relevant outputs. The multidisciplinary

field of synthetic biology has combined their information-
processing capabilities with modular and standardized engineer-
ing approaches to design sophisticated sense-and-respond beha-
viors1–3. Due to similarities in information flow in living systems
and electronic devices4, circuit design for these behaviors has
often been inspired by electronic circuitry, with substantial efforts
invested in implementing logic circuits in living cells4–6. Fur-
thermore, synthetic biological circuits have been used for a
range of applications including biosensors for detection of
pollutants7,8 and medically relevant biomarkers9,10, smart
therapeutics11,12, and dynamic regulation and screening in
metabolic engineering13,14.

Synthetic circuits can be implemented at different layers of bio-
logical information processing, such as: (i) the genetic layer com-
prising transcription15 and translation16, (ii) the metabolic layer
comprising enzymes17,18, and (iii) the signal transduction layer
comprising small molecules and their receptors19,20. Most designs
implemented so far have focused on the genetic layer, developing
circuits that perform computations using elements such as feedback
control21, memory systems22,23, amplifiers24,25, toehold switches26,
or CRISPR machinery27,28. However, gene expression regulation is
not the only way through which cells naturally perform computa-
tion. In nature, cells carry out parts of their computation through
metabolism, receiving multiple signals and distributing information
fluxes to metabolic, signaling, and regulatory pathways17,29,30.
Integrating metabolism into synthetic circuit design can expand the
range of input signals and communication wires used in biological
circuits, while bypassing some limitations of temporal coordination
of gene expression cascades31,32.

The number of inputs processed by synthetic biological circuits
has steadily increased over the years, including physical inputs
like heat, light, and small molecules such as oxygen, IPTG, aTc,
arabinose and others. However, most of these circuits process
input signals using digital logic, which despite its ease of imple-
mentation lacks the power that analog logic can offer1,33,34. The
power of combining digital and analog processing is exemplified
by the perceptron, the basic block of artificial neural networks
inspired by human neurons35 that can, for instance, be trained on
labelled input datasets to perform binary classification. After the
training, the perceptron computes the weighted sum of input
signals (analog computation) and makes the classification deci-
sion (digital computation) after processing it through an activa-
tion function.

Here we describe the development of complex metabolic cir-
cuitry implemented using analog logic in whole-cell and cell-free
systems by means of enzymatic reactions. For circuit design, we
first employ computational design tools, Retropath36 and Sensi-
path37, that use biochemical retrosynthesis to predict metabolic
pathways and biosensors. We then build and model three whole-
cell metabolic transducers and an analog adder to combine their
outputs. Next, we transfer our metabolic circuits to a cell-free
system38,39 in order to take advantage of the higher tunability and
the rapid characterization it offers40–42, expanding our system to
include multiple weighted transducers and adders. Finally, using
our integrated model fitted on the cell-free metabolic circuits we
build a more sophisticated device called the metabolic perceptron,
which allows desired binary classification of multi-input meta-
bolite combinations by applying model-predicted weights on the
input metabolites before analog addition, and demonstrate its
utility through two examples of four-input binary classifiers.
Altogether, in this work we demonstrate the potential of synthetic
metabolic circuits, along with model-assisted design, to perform
complex computations in biological systems.

Results
Whole-cell processing of multiple input metabolites. To iden-
tify the metabolic circuits to build, we use our metabolic pathway
design tools, Retropath36 and Sensipath37. These tools function
using a set of sink compounds at the end of a metabolic pathway,
here metabolites from a dataset of detectable compounds43, and a
set of source compounds that can be used as desired inputs for
the circuit. The tools then propose pathways and the enzymes
that can catalyze the necessary reactions, allowing for pro-
miscuity. Our metabolic circuit layers are organized according to
the main processing functions: transduction and actuation (Fig.
1a). Transducers are the simplest metabolic circuits that function
as sensing enabling metabolic pathways (SEMP)44, consisting of
one or more enzymes that transform an input metabolite into a
transduced metabolite. The transduced molecule, in turn, is
detected through an actuation function that is implemented using
a transcriptional regulator.

We used benzoate as our transduced metabolite, its associated
transcriptional activator BenR, and the responsive promoter pBen
to construct the actuator layer of our whole-cell metabolic
circuits45. To compare the shape of the response curve, we
constructed the actuator layer in two formats: (i) an open-loop
circuit (Fig. 1b) and (ii) a feedback-loop circuit (Supplementary
Fig. 1). When compared to the open-loop format, the feedback-
loop circuit has previously been shown to exhibit a linear
dose–response to input21,46. We found that while the feedback-
loop format does linearize the actuator response curve, it also
reduces its dynamic range (Supplementary Fig. 1). Furthermore,
the growth inhibition observed at high concentrations makes it
difficult to recover the lost dynamic range by further addition of
benzoate (Supplementary Fig. 6). Therefore, we selected the open-
loop format due to its higher dynamic range of activation in the
tested range of benzoate concentration (Fig. 1c), setting the
maximum concentration of benzoate used in this work to the
saturation point of this open-loop circuit.

We have previously implemented sensing-enabling metabolic
pathways in whole cells for detection of molecules like cocaine,
hippurate, parathion and nitroglycerin44. Building on that work,
here we implemented three upstream transducers that convert
different input metabolites into benzoate for detection by the
actuator layer already tested. The transducer layers were
composed of enzymes HipO for hippurate (Fig. 1d), CocE for
cocaine (Fig. 1e), and an amidase coded by vdh gene for
benzaldehyde (Fig. 1f). Compared to the benzoate output signal,
we found that the transduction capacities of the three transducers
were 99.6%, 49.2%, and 77.8%, respectively (Supplementary
Fig. 2), indicating a partial dissipation in signal.

A whole-cell metabolic concentration adder. A metabolic con-
centration adder is an analog device composed of more than one
transducer that converts their respective input metabolites into a
common transduced output metabolite. For our whole-cell con-
centration adder, we combined two transducers to build a
hippurate-benzaldehyde adder actuated by the benzoate circuit
(Fig. 2a). Unlike digital bit-adders that exhibit an ON–OFF digital
behavior, our metabolic adders exhibit a continuous analog
behavior that is natural for metabolic signal conversion47 (Fig. 2b
and Supplementary Fig. 3). Increasing the concentration of one of
the inputs at any fixed concentration of the other shows an
increase in the output benzoate, and thus in the resulting fluor-
escence (Fig. 2b and Supplementary Fig. 3).

The maximum output signal for our analog adder, when
hippurate and benzaldehyde were both at the maximum
concentration of 1000 µM, was lower than the maximum signal
produced by hippurate and benzaldehyde transducers alone
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(Supplementary Fig. 2). However, as seen above, the difference
between the maximum signal of their transducers and the
actuator was smaller. The dissipation in signal could either be
because of resource competition (as a result of adding more
genes) or because of enzyme efficiency (as a result of poorly
balanced enzyme stoichiometries). To test these two hypotheses,
we investigated the effect of the enzymes on cellular resource
allocation. For this purpose, the cocaine transducer and the
hippurate-benzaldehyde adder were characterized by adding
benzoate to these circuits (Supplementary Figs. 4 and 5).
Comparing the results of these characterizations with the
benzoate actuator reveals that dissipation in signal from the
transducers to the actuators is due to enzyme efficiency
(Supplementary Fig. 4), whereas that from the adders to the
actuators is due to resource competition (Supplementary Fig. 5).
The effect of the metabolic circuits on cell physiology are
presented as the specific growth rate (μ) of the cells harboring
the circuits at different concentrations of inputs (Supplementary
Figs. 6 and 7). Compared to the specific growth rate of cells
containing empty plasmids (μ= 1.05 ± 0.32 h−1, the mean and
standard deviation of three repeats), adding the metabolic circuits
alone results only in a mild growth reduction. However, adding
the metabolic circuits with their input metabolite(s) has a much

more pronounced effect on growth reduction, particularly at high
concentrations.

In order to gain a quantitative understanding of the circuits’
behavior, we empirically modeled their individual components to
see if we were able to successfully capture their behavior. We first
modeled the actuator (gray curve in Fig. 1c) using Hill
formalism48 as it is the component that is common to all of
our outputs and therefore constrains the rest of our system. We
then modeled our transducers, considering enzymes to be
modules that convert their respective input metabolites into
benzoate, which is then converted to the fluorescence output
already modeled above. This simple empirical modeling strategy
would be able to explain our transducer data, including the effects
of enzyme efficiency, but not to account for observations made in
Supplementary Fig. 5, which is why we also included resource
competition is our models to explain circuits with one or more
transducers. To this end, we extended the Hill model to account
for resource competition following previous works49,50, with a
fixed pool of available resources for enzyme and reporter protein
production that is depleted by the transducers. This extension is
further presented in the Methods section. We fitted our model on
all transducers, with and without resource competition (i.e.,
individual transducers, or transducers where another enzyme
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Fig. 1 Whole-cell actuator and metabolic transducers. a Designed synthetic metabolic circuits using Retropath36 or Sensipath37 consist of a transducer
layer and an actuator layer. b Open-loop circuit construction of the benzoate actuator, which is used downstream of transducer metabolic circuits in this
work. For the open-loop circuit, the gene encoding transcription factor (TF) is expressed constitutively under control of the promoter J23101 and RBS
B0032. c Dose-response plot of the open-loop circuit for the benzoate actuator. The gray curve is a model-fitted curve (see Methods section) for the open-
loop circuit. d–f Whole-cell metabolic transducers for hippurate (d), cocaine (e) and benzaldehyde (f) represented in dose-response plots (orange circles)
and their associated dose-response when there is no enzyme present (blue circles). The blue dotted lines refer to the maximum signal from the actuator
(c). The transducer output, benzoate, is reported through the open-loop circuit actuator. The genes encoding the enzymes are expressed under constitutive
promoter J23101 and RBS B0032. All data points and the error bars are the mean and standard deviation of normalized values from measurements taken
from three different colonies on the same day. Source data are provided in the Source Data file
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competes for the resources). This model (presented in gray lines
in Figs. 1d–f and 2c), which was not trained on adder data but
only on actuator, transducer, and transducers with resource
competition data, recapitulates it well. This indicates that the
model accounts for all important effects underlying the data. The
full training process is presented in the Methods section, and a
table summarizing scores of estimated goodness of fit of our
model is presented in Supplementary Table 1.

Cell-free processing of multiple metabolic inputs. Cell-free
systems have recently emerged as a promising platform38 that
provide rapid prototyping of large libraries by serving as an
abiotic chassis with low susceptibility to toxicity. We took
advantage of an E. coli cell-free system with the aim of increasing
the computational potential of metabolic circuits in several ways
(Fig. 3a). Firstly, a higher number of genes can be simultaneously
and combinatorially used to increase the complexity and the
number of inputs for our circuits. Secondly, the lower noise
provided by the absence of cell growth and maintenance of cel-
lular pathways51 improves the predictability and accuracy of the
computation. Thirdly, having genes cloned in separate plasmids
enables independent tunability of circuit behavior by varying the
concentration of each part individually. Finally, cell-free systems
are highly adjustable for different performance parameters and
components. In all, these advantages of cell-free systems enable us
to develop more complex computations than the whole-cell
analog adder.

Following from our recent work52, we first characterized a cell-
free benzoate actuator to be used downstream of other metabolic
transducers. Figure 3a shows a schematic of the cell-free benzoate

actuator composed of a plasmid encoding the BenR transcrip-
tional activator and a second plasmid expressing sfGFP reporter
gene under the control of a pBen promoter. This actuator showed
a higher operational range than the whole-cell counterpart
(Fig. 1c). The optimal concentration of the TF plasmid (30 nM)
and the reporter plasmid (100 nM) were taken from our recent
study52. Following successful implementation of the actuator, we
proceeded to build five upstream cell-free transducers for
hippurate, cocaine, benzaldehyde, benzamide, and biphenyl-2,3-
diol (Fig. 3c–g) that convert these compounds to benzoate. Each
of the five transducers used 10 nM of enzyme DNA per reaction,
except the biphenyl-2,3-diol transducer that used two metabolic
enzymes with 10 nM DNA each.

Compared to its whole-cell counterpart (Fig. 1f), in the cell-free
transducer reaction (Fig. 3e) benzaldehyde appears to sponta-
neously oxidise to benzoate without the need of the transducer
enzyme vdh. This behavioral difference between the whole-cell
and cell-free setups could be due to the difference in redox states
inside an intact cell and the cell-free reaction mix53,54.
Furthermore, benzamide and biphenyl-2,3-diol transducers
exhibit reduction in fluorescence outputs at very high
(1000 μM) input concentrations.

Cell-free weighted transducers and adders. After characterizing
different transducers in the cell-free system that enable building a
multiple-input metabolic circuit, we sought to rationally tune the
transducers. Cell-free systems allow independent tuning of each
plasmid by pipetting different amounts of DNA. We applied this
advantage to weight the flux of enzymatic reactions in cell-free
transducers (Fig. 4a). The concentration range we used was taken
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from our recent study52, in order to have an optimal expression
with minimum resource competition. We built four weighted
transducers for hippurate (Fig. 4b), cocaine (Fig. 4c), benza-
mide (Fig. 4d) and biphenyl-2,3-diol (Fig. 4e). Increasing the
concentration of the enzymes produces a higher amount of
benzoate from the input metabolites, and hence higher GFP
fluorescence. Compared to the others, the hippurate transducer
reached higher GFP production at a given concentration of the
enzyme and the input, and biphenyl-2,3-diol reached the
weakest signal. For the biphenyl-2,3-diol transducer built with
two enzymes (Fig. 4e), both enzymes are added at the same
concentration (e.g., 1 nM of enzyme DNA indicates 1 nM each
of plasmids encoding enzymes bphC and bphD). For a given

concentration of the input there is a range within which the
concentration of the enzyme DNA(s) can be varied to tune the
weight of the input (Supplementary Fig. 8).

Data in Fig. 4 show that similar output levels can be achieved
for different input concentrations, provided the appropriate
transducer concentrations are used. In the next step, we applied
this finding to build hippurate-cocaine weighted adders by
altering either the concentration of the enzymes or the
concentration of the inputs (Fig. 5a). The fixed-input adder is
an analog adder in which the concentration of inputs, hippurate
and cocaine, are fixed to 100 µM and the concentration of the
enzymes is altered (top panel in Fig. 5b). In this device, the weight
of the reaction fluxes is continuously tunable. We then
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characterized a fixed-enzyme adder by fixing the concentration of
the enzymes’ DNA (1 nM for HipO, 3 nM for CocE; the cocaine
signal is weaker, which is why a higher concentration of its
enzyme is used) and varying the inputs, hippurate and cocaine
(top panel in Fig. 5c). However, it is important to note that the
observed GFP is not a direct output from the weighted adders.
Instead, the adder output is transformed by the actuator to
produce the GFP signal. Since the benzoate actuator has a
sigmoidal response curve (Fig. 3b), the transformation by the
actuator layer makes the visible output appear more switch-like
(ON/OFF).

In order to have the ability to build any weighted adder with
predictable results, we developed a model that accounts for the
previous data. We first empirically modeled the actuator (gray
curve in Fig. 3b) since all other functions are constrained by how
the actuator converts metabolite data (benzoate) into a detectable

signal (GFP). We then fitted our model with individual weighted
transducers (Supplementary Fig. 9) and predicted the behaviors
of the weighted adders (bottom panel in Fig. 5b, c). The results
shown in Fig. 5b, c indicate that our model describes the adders
well, despite being fitted only on transducer data. Supplementary
Table 2 summarizes the different scores to estimate the goodness
of fit of our model. Briefly, the model quantitatively captures the
data but tends to overestimate values at intermediate enzyme
concentration ranges and does not capture the inhibitory effect
observed at the high concentration of benzamide or biphenyl-2,3-
diol, as this was not accounted for in the model.

Using the above strategy, we can build any weighted adder for
which we have pre-calculated the weights using the model on
weighted transducers. We use this ability in the following section
to perform more sophisticated computation for a number of
classification problems.
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varying the amount of each enzyme pipetted per reaction. Weighted transducers are characterized by varying the concentration of the enzymes in
transducers which then are reported through the benzoate actuator. The range of the concentrations was varied to get optimal expression and minimum
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transducer. All data are the mean of normalized values from three measurements. (RFU relative fluorescence unit). Source data are provided in the Source
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Cell-free perceptron for binary classifications. The perceptron
algorithm was first developed to computationally mimic the
neuron’s ability to process information, learn, and make deci-
sions55. Perceptrons are the basic blocks of artificial neural net-
works enabling the learning of deep patterns in datasets by
training the model’s input weights56. Like a neuron, the percep-
tron receives multiple input signals (xi) and triggers an output
depending on the weighted (wi) sum of the inputs35. A percep-
tron can be used to classify a set of input combinations after it is
trained on labeled data. In binary classification, the weighted sum
is first calculated (Σwi.xi) and an activation function (f), coupled
with a decision threshold d, finally makes the decision: ON if f
(Σwi.xi) > d, OFF otherwise (Fig. 6a). The activation function can

be linear or non-linear (Sigmoid, tanh, ReLU, etc.) depending on
the problem57, although a sigmoid is generally used for
classification.

Since our weighted transducer models have already been fitted
on the cell-free experimental data, we checked if we could use
them to calculate the weights needed to classify different
combinations of two inputs: hippurate and cocaine. We tested
our model on five different 2-input binary classification problems
(Supplementary Fig. 10). For each problem, the two types of data
were represented as a cluster of dots on the scatter plot, with the
axes representing the two inputs. The fitted model was then used
to identify weights needed to be applied to the weighted
transducers such that a decision threshold ‘d’ exists to classify
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the two clusters into red (ON, >d) or blue (OFF, ≤d). In each
binary classification, three iso-fluorescence lines threshold the
data into the binary categories: ON and OFF (Supplementary
Fig. 10). These theoretical classification problems demonstrate the
ability of our perceptron model to successfully carry out binary
classification. It is worth noting that a binary classifier whose
input(s) and output are binary values can also be represented as a
logic gate. Therefore, the theoretical classification functions
implemented here can also be interpreted as logic gate functions.
For example, the third classifier in the figure can also be
represented as the equivalent logic function (H OR C)
(Supplementary Fig. 10c).

Using the integrated model from our weighted transducers and
adders, we next sought to design four-input binary classifiers
using a metabolic perceptron, and test them experimentally. Our
metabolic perceptron is a device enabling signal integration of
multiple inputs with associated weights, represented by enzyme
DNA concentrations (Fig. 6b). The 4-input adder performs the
weighted sum and the benzoate actuator acts as the activation
function of the metabolic perceptron. Similar to the 2-input
binary classifications above (Supplementary Fig. 10), the weights
of the four inputs can be adjusted to implement different
classification functions. To illustrate the potential of building
perceptrons with metabolic weighted adders, we computed adder
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weights using our model for two different classifiers: a simple
classifier equivalent to a full OR gate (Fig. 6c), and a more
complex classifier. To define the second classifier, we used our
fitted model to simulate with different weights various 4-input
functions that combined AND and OR behaviors. Our simulation
outcomes were most reliable for hippurate and cocaine inputs
since we had previously verified our model predictions on the
fixed enzyme and fixed input adders (Figs. 4 and 5).
Consequently, we decided to test the classification function
equivalent to a [cocaine AND hippurate] OR benzamide OR
biphenyl-2,3-diol gate (Fig. 6d). Weight calculation methods are
reported in the Methods section.

Finally, we used the cell-free system to implement the
classifiers using the calculated weights and to execute the
computations. While our perceptrons are trained in silico, they
are executed in the cell-free system to predict the outcome of a
given set of input signals. This is comparable to how computa-
tional perceptrons also proceed in the two phases of training and
prediction. For the classifiers, the input metabolites are fixed to
100 µM, as it allows the best ON–OFF behavior for all inputs and
weight-tuning according to model simulations. The model
accurately predicted weights to obtain the simple full OR
classifier behavior (Fig. 6d), as well as cocaine, benzamide, and
biphenyl-2,3-diol weights for the second complex classifier. The
initial weights computed by the model are presented in
Supplementary Fig. 11. The optimal weight of HipO (hippurate
transducing enzyme) was calculated to be 0.1 nM of its DNA
plasmid, which leads to higher signals than predicted, particularly
for the ON behavior with only hippurate. To further characterize
the HipO weights at still lower concentrations of the enzyme, we
performed an additional complementary characterization (Sup-
plementary Fig. 12). Our aim here was to find a weight for HipO
through which a classifier outputs a low signal (OFF) with only
hippurate and high signal (ON) when coupled with other inputs.
We arrived at 0.03 nM DNA for HipO enzyme which exhibited
this shifting behavior between OFF and ON (Fig. 6d and
Supplementary Fig. 12). Using our model-guided design and
rapid cell-free prototyping on the HipO weight, we were able to
design two 4-input binary classifiers. In Fig. 6c, d red circles are
the weights predicted with 0.03 nM for HipO and the bars are
experimental results. As noted earlier, the sigmoidal nature of the
benzoate actuator’s response curve (Fig. 3b) is key to achieving
the OFF and ON behavior exhibited by our binary classifiers. All
actual values of the model and the experiments are provided in
Supplementary Table 7.

Discussion
Computing in synthetic biological circuits has largely relied on
digital logic-gate circuitry for almost two decades5,58, treating
inputs as either absent (0) or present (1). While such digital
abstraction of input signals provides conceptual modularity for
circuit design, it is less compatible with the physical-world input
signals that vary between low and high values on a continuum33.
As a result, digital biological circuits must carefully match
input–output dynamic ranges at each layer of signal transmission
to ensure successful signal processing2,30. More recently, the
higher efficiency of analog computation on continuous input has
been recognized59, and some analog biological circuits have
started emerging21. In this regard, using metabolic pathways for
cellular computing seems like a natural progression for analog
computation in biological systems21,30.

In this study, we investigated the potential of metabolism to
perform analog computations using synthetic metabolic circuits.
To that end, we first established a benzoate actuator to report the
output from our metabolic circuits in both whole-cell and cell-

free systems (Figs. 1c and 3b). Upstream of the actuator, we
constructed hippurate, cocaine, and benzaldehyde transducers in
the whole-cell system (Fig. 1d–f) and a metabolic analog adder by
combining the benzaldehyde and hippurate transducers (Fig. 2).
Similarly, we constructed hippurate, cocaine, benzaldehyde,
benzamide, and biphenyl-2,3-diol transducers in the cell-free
system (Fig. 3c–g) and weighted adders by combining them
(Fig. 5). Compared to the numerous digital biological devices,
which compute through multi-layered genetic logic circuits, the
metabolic adder is a simple one-layered device with fast
execution times.

Our computational models fitted only on the actuator and
transducer data predicted adder behaviors with high accuracy
(Supplementary Tables 1 and 2). This further enabled us to cal-
culate the required weights for more complex metabolic percep-
trons that compute weighted sums from multiple inputs and use
them to classify the multi-input combinations in a binary manner
(Fig. 6 and Supplementary Fig. 11). Although we used fixed
concentrations of inputs to demonstrate the ability of our per-
ceptrons to classify, models fitted on characterization data from
weighted transducers should enable one to build classifiers for
other concentrations in the operational range of the transducers
(Supplementary Fig. 13). Indeed, as shown in Figs. 4 and 5, for
different input concentrations in the operational range the weight
of the input can be tuned through the concentration of the
enzyme DNA. To the best of our knowledge, the metabolic adders
and perceptrons presented in this work are the first engineered
biological circuits that use metabolism for analog computation.

Unlike genetic circuits that experience expression delays2,
metabolic circuits have the advantage of faster response times
since the genes have already been expressed in the system. Yet,
metabolic circuits can be connected with the other layers of cel-
lular information processing (like genetic or signal transduction
layers) when needed, to build more complex sense-and-respond
behaviors. The actuator layer of our perceptrons is a good
example of this, where the calculated weighted sum is converted
to fluorescence output via the genetic layer. In addition, we took
advantage of the properties of cell-free systems, such as higher
tunability and lack of toxicity52,60, to rapidly build and char-
acterize multiple combinations of transducer–actuator circuits.
Cell-free systems can be lyophilized on paper and stored at
ambient temperature for <1 year for diagnostic applications16.
This expands the potential scope of cell-free metabolic percep-
trons for use in multiplex detection of metabolic profiles in
medical or environmental samples16,52.

Here, we have built a single-layer perceptron, with positive
weights, that can classify different profiles of input metabolites by
applying different weights to each transducer. In the future, by
adding competing or attenuating reactions that reduce the con-
centration of the transduced metabolite in response to an input, it
may be possible to expand the training space by applying negative
weights to certain inputs61. Furthermore, a single-layer percep-
tron can only classify data that is linearly separable62, which
means that it should be possible to draw a line between the two
classes of data points in order for the perceptron to classify them
(Supplementary Fig. 10). In contrast, multi-layer perceptrons can
approximate any function63 and can be used for more complex
pattern recognition tasks64. With the use of bioretrosynthesis-
based computational tools for metabolic pathway design, like
Retropath36 and Sensipath37, it is theoretically possible to build
multi-layer metabolic perceptrons that can classify complex pat-
terns of metabolic states in vivo, or identify different metabolite
concentrations in analytical samples (Supplementary Fig. 14).
Finally, it may also be possible to apply in situ learning (within
the whole-cell or cell-free environment) by applying winner
selection strategies on successful classifiers65.
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However, the use of the metabolic layer for biological com-
puting is currently underexplored. To expand the computing
potential of metabolic circuits, many more metabolic parts and
devices (transducers, adders, and actuators) will need to be
exhaustively characterised and databases built with descriptions
of activities, dynamic ranges, cross-talk, chassis dependence, cell-
free composition dependence, and other functional parameters.
Here, we provide a detailed method for the identification of novel
parts and the step-wise building of new devices, and make our
scripts available. These can form the stepping-stone for building a
larger framework for fully automated design of metabolic circuits,
similar to the Cello tool for automated genetic circuit design15.

Methods
Designing synthetic metabolic circuits. Retropath36 and Sensipath37 were used
to design the metabolic circuits between potential input metabolites and detectable
metabolites as outputs43. These tools function using a set of sink compounds, a set
of source compounds, and a set of chemical rules43,66 implementing enzyme-
mediated chemical transformations. They then use retrosynthesis to propose
pathways and the enzymes that can catalyze the necessary reactions, allowing
promiscuity, between compounds from the sink and compounds from the source.
To design the adder, the Retropath software was used with a set of detectable
compounds as the sink and the molecules we wish to use as circuit inputs as the
source. The results were potential pathways and the associated enzymes, which
were then analyzed for feasibility. The sequences of the enzymes were codon-
optimized, synthesized and implemented in E. coli or taken from a previous study.

Molecular biology. All plasmids were made using Golden Gate assembly in E. coli
Mach1 chemically competent cells (strain W, genotype: F− φ80(lacZ)ΔM15
ΔlacX74 hsdR(rK−mK

+) ΔrecA1398 endA1 tonA). Whole-cell constructs were
cloned in BioBrick standard vectors pSB1K3 (kanamycin resistance, pMB1 repli-
cation origin, high-copy plasmid, ~32 plasmids per genome67) and pSB4C5
(chloramphenicol resistance, pSC101 replication origin, low-copy plasmid, ~3.4
plasmids per genome67) and the genes encoding TF and all the enzymes were
expressed under constitutive promoter J23101 and RBS B0032. All cell-free plas-
mids were cloned in pBEAST52 (a derived vector from pBEST68, ampicillin
resistance, pMB1 replication origin, high-copy plasmid, ~32 plasmids per gen-
ome67). BenR cell-free plasmid and its cognate responsive prompter, pBen,
expressing super-folder GFP were taken from our recent work52. All other cell-free
enzymes were cloned under constitutive promoter J23101 and RBS B0032.
Sequence and source of all the genes and parts are available in Supplementary
Table 5 and the plasmids used in this study (Addgene deposit) are listed in Sup-
plementary Table 6. Synthetic sequences were provided by Twist Bioscience.
Enzymes for cloning including Q5 DNA polymerase, BsaI, and T4 DNA ligase were
purchased from New England Biolabs. DNA plasmids for cell-free reactions were
prepared using the Macherey-Nagel maxiprep kit.

Characterization of whole-cell circuits. For each circuit separate colonies of
E. coli TOP10 (strain K-12, genotype: F− mcrA Δ(mrr-hsdRMS-mcrBC)
φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK rpsL (StrR)
endA1 nupG) strains harboring the circuit plasmids were cultured overnight at
37 °C in LB with appropriate antibiotic. The next day each culture was diluted 100×
in LB with antibiotics. 95 µL of fresh cultures were distributed in 96-well plate
(Corning 3603) and the plate was incubated to reach the OD600 ~ 0.1 in a plate
reader (Biotek Synergy HTX). Then 5 µL of the input metabolites (100× ethanol
solutions 5x diluted in LB) were added and the plate was incubated for 18 h at
37 °C. During the incubation, the OD600 and GFP fluorescence (gain: 35, ex:
458 nm, em: 528 nm) were measured. Benzoate, hippurate, cocaine hydrochloride,
benzaldehyde, benzamide and biphenyl-2,3-diol (2,3-dihydroxy-biphenyl) were
purchased from Sigma-Aldrich. Permission to purchase cocaine hydrochloride was
given by the French drug regulatory agency (Agence Nationale de Sécurité du
Médicament et des Produits de Santé). For all chemicals, serial dilutions of
100× concentrations were prepared in ethanol. The formula presenting the results
of the circuits’ characterization is shown in data normalization section. The mean
and standard deviation of all normalized data are provided in Supplementary
Table 7.

Cell-free extract and buffer preparation. Cell-free E. coli extract was produced
using published methods52,69,70. Briefly, an overnight culture of BL21 Star (DE3)::
RF1-CBD3 E. coli was used to inoculate 4 L of 2xYT-P media in six 2 L flasks at a
dilution of 1:100. The cultures were grown at 37 °C with 220 rpm shaking for
~3.5–4 h until the OD600= 2–3. Cultures were centrifuged at 5000 × g at 4 °C for
12 min. Cell pellets were washed twice with 200 mL S30A buffer (14 mM Mg-
glutamate, 60 mM K-glutamate, 50 mM Tris, pH 7.7), centrifuging after each wash
at 5000 × g at 4 °C for 12 min. Cell pellets were then resuspended in 40 mL S30A
buffer and transferred to pre-weighed 50 mL Falcon conical tubes where they were

centrifuged twice at 2000 × g at 4 °C for 8 and 2 min, respectively, removing the
supernatant after each. Finally, the tubes were reweighed and flash frozen in liquid
nitrogen before storing at −80 °C.

Cell pellets were thawed on ice and resuspended in 1 mL S30A buffer per gram
of cell pellet. Cell suspensions were lysed via a single pass through a French press
homogenizer (Avestin; Emulsiflex-C3) at 15,000–20,000 psi and then centrifuged at
12,000 × g at 4 °C for 30 min to separate out cellular cytoplasm. After
centrifugation, the supernatant was collected and incubated at 37 °C with 220 rpm
shaking for 60 min. The extract was recentrifuged at 12,000 × g at 4 °C for 30 min,
and the supernatant was transferred to 12–14 kDa MWCO dialysis tubing
(Spectrum Labs; Spectra/Por4) and dialyzed against 2 L of S30B buffer (14 mMMg-
glutamate, 60 mM K-glutamate, ~5 mM Tris, pH 8.2) overnight at 4 °C. The
following day, the extract was re-centrifuged one final time at 12,000 × g at 4 °C for
30 min, aliquoted, and flash frozen in liquid nitrogen before storage at −80 °C.

The buffer for cell-free reactions is composed such that final reaction
concentrations were as follows: 1.5mM each amino acid except leucine, 1.25mM
leucine, 50mM HEPES, 1.5mM ATP and GTP, 0.9mM CTP and UTP, 0.2mgmL−1

tRNA, 0.26mM CoA, 0.33 mM NAD, 0.75mM cAMP, 0.068mM folinic acid, 1mM
spermidine, 30 mM 3-PGA, and 2% PEG-8000. Additionally, the Mg-glutamate (0–6
mM), K-glutamate (20–140mM), and DTT (0–3mM) levels were serially calibrated
for each batch of cell-extract for maximum signal. One batch of buffer was made for
each batch of extract, aliquoted, and flash frozen in liquid nitrogen before storage at
−80 °C.

Characterization of cell-free circuits. Cell-free reactions were performed in
15.75 µL of the mixture of 33.3% cell extract, 41.7% buffer, and 25% plasmid DNA,
input metabolites, and water. The reactions were prepared in PCR tubes on ice and
15 µL of each was pipetted into 384-well plates (Thermo Scientific 242764). GFP
fluorescence out of each circuit was recorded in the plate reader at 30 °C (gain:
50, ex: 458 nm, em: 528 nm). The background (cell-free reaction without any
plasmid) corrected fluorescence data were normalized by 20 ng µL−1 of a plasmid
expressing strong constitutive sfGFP (under OR2-OR1-Pr promoter52) and were
plotted after 8 h incubation. The mean and standard deviation of all normalized
data are provided in Supplementary Table 7.

Data normalization. For whole-cell data, we use the following normalization:

Fluorescence inputð Þ ¼ GFP inputð Þ � GFPðLBÞ
OD inputð Þ � ODðLBÞ � GFP empty plasmidð Þ � GFPðLBÞ

OD empty plasmidð Þ � ODðLBÞ
Reference: cells harboring empty plasmids

For cell-free data, we consider relative fluorescence unit (RFU):

RFU inputð Þ ¼ GFP inputð Þ � GFP extractð Þ
GFP referenceð Þ � GFP extractð Þ

Reference: 20 ngµL−1 of a plasmid expressing the constitutive sfGFP under OR2-
OR1-Pr promoter52.

Simulation tools and parameter fitting. All data analysis and simulations were
run on R (version 3.2.3). Dose–response curves were fitted using ordinary least
squares errors and the R optim function (from Package stats version 3.2.3, using
the L-BFGS-B method implementing the Limited-memory Broyden Fletcher
Goldfarb Shanno algorithm, which is a quasi-Newton method). For the random
parameter sampling around the mean fit, values were sampled from within
±1.96 standard error of the mean of the parameter estimation. The seed was set so
as to ensure reproducibility. All simulations were run in the Rstudio development
environment.

All parameters are presented in Supplementary Tables 3 and 4.

Whole-cell model. The whole-cell model is composed of three parts: the actuator,
the transducers (which all obey the same law) and the resource competition.

Actuator totalð Þ ¼ totalð Þhill a

KMð Þhill a þ totalð Þhill a
´ fcþ 1

 !
´ basal

where total is the concentration of the considered input (in µM), KM is the con-
centration that allows for half-maximum induction (in µM), also termed IC50,
hill_a is the Hill coefficient that characterizes the cooperativity of the induction
system, fc is the dynamic range (in AU) and basal is the basal GFP fluorescence
without input (benzoate).

Transducer inputð Þ ¼ input ´ range enz

Where input is the input concentration in µM and range_enz is a dimensionless
number characterizing the capacity of the enzyme to transduce the signal. When
combining transducers with the actuator, transducer results are added before being
fed into the actuator equation, just as benzoate concentrations are added before
being converted to a fluorescent signal in the cell.

To account for resource competition, given our experimental results where
there is little competition with one enzyme and significant competition with two,
we used an equation including cooperativity of resource competition. This reduces
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the fold change of the actuator as there are less resources available for producing
transcription factors and GFP.

Result outð Þ ¼ rangeres ´ out ´
Eð Þnr

Eð Þnrþ coceþ benz þ ratio � hipoð Þnr
� �

where out is the result of the actuator transfer function before accounting for
resource competition, range_res, E, nr characterize the Hill function that accounts
for competition, coce, benz and hipo are the enzyme plasmid concentrations. ratio
accounts for the differences in burden from different enzymes, its value around 0.8
is close to the ratio between enzyme lengths (1500 for benzaldehyde transducing
enzyme and 1200 for HipO).

Cell-free model. The model is composed of two parts: the actuator and the
transducers.

Actuator totalð Þ ¼ totalð Þhill a

KMð Þhill aþ totalð Þhill a ´ fcþ 1

 !
´ basalþ lin ´ 0:0001 ´ total

where total is the concentration of the considered input metabolite (in µM), KM is
the concentration that allows for half-maximum induction (in µM), also termed
IC50, hill_a is the Hill coefficient that characterizes the cooperativity of the
induction system, fc is the dynamic range (in AU) and basal is the basal GFP
fluorescence without input (benzoate). Lin accounts for the linearity observed in
the actuator behavior at concentrations saturating the Hill transfer function.

Transducer inputð Þ ¼ rangeenzyme ´
Eð ÞnE

KEð ÞnEþ Eð ÞnE
�� �

´
inputð Þninput

KIð Þninputþ inputð Þninput
�� �

Where range_enzyme is a dimensionless number characterizing the capacity of the
enzyme to transduce the signal. The activity of the enzyme is characterized by a
Hill function as increasing concentrations do not lead to a linear increase but
enzymes saturate (E is the enzyme quantity in nM, KE and nE are its Hill con-
stants), and similarly, input is the input metabolite concentration in µM with KI

and n_input as its Hill constants.
When combining transducers, transducer results are added before being fed

into the actuator equation, just as benzoate concentrations are added before being
converted to the fluorescent signal in the cell.

Model parameters fitting process. Our fitting process is detailed in the Readme
files supporting our modeling scripts provided in GitHub and is summarized here.
It is done in the two steps presented here: first fitting of the actuator then fitting of
the transducers.

As the first step, the actuator transfer function model (benzoate transformed
into fluorescence) is fitted 100 times on the actuator data (Figs. 1c and 3b), with all
actuator parameters allowed to vary. The mean, standard deviation, standard error
of the mean and confidence interval were saved at 95% of the estimation of those
parameters. For transducer fitting (all transducers in cell-free and all except cocaine
in whole-cell, data from Fig. 1d, f, resource competition from Figs. 2b, c and 4b–e),
we constrained the actuator characteristics in the following way: upper and lower
allowed values are within the 95% confidence interval (or plus or minus one
standard deviation from the mean for fold change and baseline in cell-free as it
allowed a wider range, accounting for the decrease in actuator signal in transducer
experiments without affecting the shape of the sigmoid). The initial values for the
fitting process were sampled from a Gaussian distribution centered on the mean
parameter estimation and spread with a standard deviation equal to the standard
error of this parameter estimation. We then allowed fitting of all transducer
parameters freely and of the actuator parameters within their 95% confidence
interval.

Once this is done, all common parameters (actuator transfer function and
resource competition) were sampled using the same procedure and fitting on the
cocaine transducer was performed. To show that parameters are well constrained
(proving they minimally explain the data from Fig. 1e), Supplementary Figs. 15 and
16 show results of sampling parameters from the final parameters distribution
(without fitting at that stage) and how they compare to the data.

Objective functions and model scoring. In order to evaluate and compare our
models, we used the following functions.

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
1 ytruei � ypredi

� �2
n

vuut
It measures how close the model is to the experiments. It allows for comparison of
different models on the same data, the one with the smaller RMSD being better, but
does not allow comparison between experiments.

R2 ¼ 1�
Pn

1 ytruei � ypredi

� �2
Pn

1 ytruei � ytruemean

� �2
R2 allows measuring the goodness of fit. When the prediction is only around the
sample mean, R2= 0. When the predictions are close to the real experimental

value, R2 gets closer to 1, whereas it can have important negative values when the
model is really far off.

Weighted R2 ¼ 1�
Pn

1
ytruei �ypredið Þ2

std2iPn
1

ytruei �ytruemeanð Þ2
std2i

:

It is a variant of R2 that weights samples according to their experimental error,
giving more weight or more certain samples. It otherwise has the same properties
as R2.

Error percentage ¼ abs
ytruei � ypredi

ytruei

 !
´ 100

This measures the percentage of error for each point. We present the average on all
experiments in Supplementary Tables 1 and 2.

Perceptron weights calculation. In order to calculate the weights for the classi-
fiers presented in Fig. 6, we followed the following procedure. First, we defined the
expected results (expressed in OFFs and ONs). We also defined a list of weights to
test for each enzyme (here, between 0.1 and 10 nM, as tested in our weighted
transducers). Then, for each combination of enzyme weights, we simulated the
outcome of the classifiers for all possible input combinations using our previously
fitted model. We then tested various possible thresholds and kept the enzyme
combinations for which a threshold exists that allows for the expected behavior. As
the last step, we manually analyzed the classifier to keep the ones both a high
difference between ON and OFF, and a minimal enzyme weight to prevent
resource competitions issues that could arise as we are adding more genes than
previous experiments. In order to perform clusterings presented in Supplementary
Fig. 11, we sampled values uniformly within the stated ranges ([0, 2 µM] for low
values and [80, 100 µM] for high values). We then simulated the results to assess
the robustness of our designs. The best set of weights from this procedure to
achieve the desired classification function (the ‘trained’ weights) are then used for
the cell-free implementation.

The difference between our metabolic perceptron and an in silico perceptron is
that the latter exhibits a perfect activation behavior: digital (0/1), sigmoidal, ReLU,
or another activation function; its weights can be tuned exactly as desired. In our
implementation of the cell-free metabolic circuits, many biological details
complicate the relationship between the inputs and the activator output. We
therefore used more detailed step-wise empirical modeling to account for the
biology in our system rather than an off-the-shelf perceptron code that would be
unable to capture all the subtleties in our data.

Binary clustering experiments. In order to perform the binary/2D clustering
experiments, we sampled values uniformly within the stated ranges ([0, 2 µM] for
low values and [80, 100 µM] for high values). For different weight (HipO and
CocE) values, we simulated the fluorescence output of each of those
cocaine–hippurate combinations. Moreover, for different threshold values (3, 3.5
and 4, as presented in Supplementary Fig. 10), we numerically solved for the
benzoate concentration such that

transfer benzoateð Þ ¼ fluorescence threshold

and then for values of cocaine and hippurate such that

transducer cocaineð Þ þ transducer hippurateð Þ ¼ benzoate

This equation with two unknowns gives us a curve of cocaine and hippurate values
that would lie on our decided threshold for this set of weights. All combinations on
the top right of that curve will be classified to ON and all combinations below will
be classified as OFF.

Biological and chemical identifiers. In order to allow easier parsing of our article
by bioinformatics tools, we provide here the identifiers of our biological sequences
and chemical compounds.

Benzoate (Benzoic acid): InChI=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,
(H,8,9)

Hippurate (Hippuric acid): InChI=1S/C9H9NO3/c11-8(12)6-10-9(13)7-4-2-1-
3-5-7/h1-5H,6H2,(H,10,13)(H,11,12)

Cocaine: InChI=1S/C17H21NO4/c1-18-12-8-9-13(18)15(17(20)21-2)14(10-
12)22-16(19)11-6-4-3-5-7-11/h3-7,12-15H,8-10H2,1-2H3/t12-,13+,14-,15+/m0/
s1

Benzaldehyde: InChI=1S/C7H6O/c8-6-7-4-2-1-3-5-7/h1-6H
Biphenyl-2,3-diol: InChI=1S/C12H10O2/c13-11-8-4-7-10(12(11)14)9-5-2-1-3-

6-9/h1-8,13-14H
Benzamide: InChI=1S/C7H7NO/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H2,8,9)
BenR (Benzoate sensitive transcription factor, Pseudomonas putida) identifier:

UniProtKB - Q9L7Y6
HipO (Hippurate hydrolase (EC: 3.5.1.32), Campylobacter jejuni) identifier:

UniProtKB - P45493
CocE (Cocaine esterase (EC: 3.1.1.84), Rhodococcus sp.) identifier: UniProtKB

- Q9L9D7
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vdh (Aryl-aldehyde oxidase (EC: 1.2.3.9), Acinetobacter johnsonii SH046)
identifier: UniProtKB - D0RZT4

bphC (Biphenyl-2,3-diol 1,2-dioxygenase (EC: 1.13.11.39), Pseudomonas sp.)
identifier: UniProtKB - P17297

bphD (2-Hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (EC: 3.7.1.8),
Pseudomonas putida) identifier: UniProtKB - Q52036

Benzamide transforming enzyme (Amidase (EC: 3.5.1.4), Rhodococcus
erythropolis) identifier: UniProtKB - B4XEY3

Sequence and source of all the genes and parts are available in Supplementary
Table 5 and the plasmids used in this study (Addgene deposit) are listed in
Supplementary Table 6 available at (https://www.addgene.org/browse/article/
28203589/ and https://www.addgene.org/browse/article/28196338/).

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1c-f, 2b-c, 3c-g, 4b-e, 5b-c and 6c-d and Supplementary
Figures 1–9, 12, and 13 are provided as a Source Data file. New plasmids built in this
study are available from Addgene. Other raw data are available from the corresponding
authors upon reasonable request.

Code availability
All scripts and data for generating results presented in this paper are available at https://
github.com/brsynth/metabolic_perceptrons.
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