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Abstract

The diffusive impurity transport as a function of the charge and mass numbers is in-

vestigated in an ion driven or an electron driven turbulence, in the limit of zero impurity

temperature gradient. It is found that the impurity transport decreases slightly with in-

creasing mass number, and depends much strongly on the charge number. Moreover, this

transport depends on the nature of the instability that drives turbulence. The impurity flux

due to Trapped Electron Mode (TEM) turbulence increases with the charge number Z. In

contrast, it is found to decrease with Z in the Trapped Ion Mode (TIM) dominated. In order

to explain these observations, the quasilinear flux is derived and is compared with results

obtained from the nonlinear simulations. Quasi-linear theory qualitatively reproduces the

gyro-kinetic numerical observations.

I. INTRODUCTION AND MODEL

In tokamak plasmas, all particles that are not electrons or do not contribute to the

reaction of fusion are defined as impurities. For instance argon or neon can be introduced

in the plasma edge as impurity seeding used for tayloring the radiation profile near the

plasma-facing components. The propagation of these particles into the plasma core can be

problematic. Moreover, transport and accumulation of tungsten from the wall to the core

can also be prohibitive, for concentrations as low as 3 × 10−5 [1]. In contrast helium ash

produced by the reactions of fusion must be transported from the core to the wall. Therefore

impurity accumulation in the plasma core must be avoided and impurity transport is an issue

that needs to be understood. For example, the direction of this transport, i.e. inwards or
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outwards, can be predicted by neoclassical theory, depending on both main ion density

gradient and temperature gradient. In addition, turbulence also contributes to impurity

flux.

In this work, we focus on turbulence issues. The thermodiffusive pinch and the curvature-

driven pinch, respectively second and third terms on the RHS in Eq.(1),

Γ = −D∂n
∂r

+ CT
∂T

∂r
+ CP (1)

are neglected in our calculations, so that impurity transport Γ calculations only include

diffusive transport (first term on the RHS of Eq.1, Γ = −D ∂n
∂r
). Moreover, our model is

collision less, meaning that neoclassical transport is not taken into account. The expected

increasing importance of the turbulent transport of impurities in a reactor plasma motivates

our study. Turbulent impurity transport is expected to have a larger weight in future reactor

size plasmas than in present devices [2], in which neoclassical transport is relatively higher.

Isotopic effects (hydrogenic mass effects) on impurity transport have been studied [3], but

these investigations are limited to Z = 2 − 3, whereas we aim at covering a larger range.

The dependence of impurity transport on the impurity species have been studied as well

[2, 4–13], but without decoupling the impacts of Z and A, or focusing on the peaking

factor. In a previous paper [14], we have shown how a large concentration of tungsten can

change the nature of the turbulence in the case of active species. In the present article we

perform scalings for the impurity diffusion coefficients with the impurity charge and the mass

numbers, and with the TEM or TIM driven modes, in the case where impurity concentrations

do not affect the nature of the turbulence. Impurity turbulent fluxes are investigated via

both gyro-bounce-kinetic simulations and quasi-linear theory. The gyrokinetic code we use is

named TERESA (Trapped Element REduction in Semi lagrangian Approach) [15]. It should

be noted that the results of nonlinear simulations are often compared with the quasi-linear

theory, which is relevant because its estimations of turbulent fluxes in most cases remain

in good agreement with nonlinear gyrokinetic simulations [16] as well as with experimental

results [17], despite crude simplifications, and even if in some cases discrepancies between

nonlinear simulations and quasi-linear predictions are observed [2].

To complete this introduction and for the benefit of the reader, we summarize below the

main assumptions and equations of the gyrokinetic model [14] needed to understand the new

investigations and results described in the rest of the article. The reader can find further

information in the references [14, 15, 18–28].
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The model is relevant for relatively low frequency modes, such as Trapped-Ion Modes

(TIM) and Trapped-Electron Modes (TEM). TEM and TIM are instabilities that are char-

acterized by frequencies ω of the order of ωd, the precession frequency. And this latter

frequency is smaller than ωb, the bounce frequency, which itself is smaller than the cyclotron

frequency ωc. Therefore it is possible to gyro-average and bounce-average the Vlasov equa-

tion, thus filtering out the fast cyclotron and bounce frequencies, and the small space scales

ρc (gyro-radius) and δb (banana width). These assumptions lead to a reduction of dimen-

sionality, from 5D gyro kinetics, to 4D gyrobounce-gyrokinetics. We consider an adiabatic

response of the passing particles, thus our reduced model with trapped kinetic particles

covers both TIM/TEM regimes simultaneously but precludes other instabilities such as Ion-

Temperature-Gradient (ITG) or Electron-Temperature-Gradient (ETG) instabilities.

The Vlasov equation reads:

∂fs
∂t

− [J0,sϕ, fs]α,ψ +
ΩdE

Zs

∂fs
∂α

= 0 (2)

fs is the gyro-bounce-averaged particle distribution function. The subscript s = i, e, z stands

for the species considered (main ion, electron, or impurity), and ϕ is the plasma potential.

E is the particle kinetic energy. α = φ− qθ, with φ the toroidal angle, θ the poloidal angle,

and q the safety factor. ψ is the magnetic flux, function of the radius: ψ = 1 stands for the

core plasma and ψ = 0 for the plasma edge. Zs is the charge number. Ωd =
Zsωd,s
E

, with ωd,s

the toroidal precession frequency for the species s [29]. For the main ion species, we choose

Ωd = 1, and we neglect the variation of Ωd over the radius (Ωd only depends on the sign of

the charge).

The gyro-bounce-averaging operator writes:

J0,s =

(
1− E

T0,s

δ2b0,s
4
∂2ψ

)−1(
1− E

T0,s

q2ρ2c0,s
4a2

∂2α

)−1

(3)

where ρc0,s and δb0,s are the Larmor radius and the banana width (expressed in units of ψ), T0,s

is the equilibrium temperature at ψ = 0, normalized to an arbitrary reference temperature T0.

ω0 = T0/(eR
2
0Bθ) corresponds to the ion precession frequency at the reference temperature

T0 (time is normalized to ω0), and Lψ = aR0Bθ is the radial length of the simulation box in

units of ψ. ψ is normalized to Lψ.
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The normalized quasi-neutrality constraint writes:

2√
π

∑
s

(
ZsCs

∫ ∞

0

J0,sfsE
1/2dE

)
=

Cad (ϕ− εϕ < ϕ >α)− Cpol
∑
s

CsτsZ
2
s∆sϕ (4)

with Cs = ns/n0,e the concentration of the species s (ns is the population density, n0,e the

electron density at equilibrium), Cpol = eω0Lψ/T0, Cad = Cpol
1−fT
fT

∑
s(Z

2
sCsτs) where fT is

the fraction of trapped particles and τs = T0/T0,s. The Laplacian operator expresses the

difference between the particle density and the gyro-bounce-center density, corresponding

to an effective polarization. εϕ is a control parameter which governs the response of the

adiabatic passing particles. Regarding this response, the reader can find further information

in the references [14, 25, 30]. Hereafter, only the case εϕ = 0.3 is considered.

In section II, linear results and nonlinear simulations are presented. It is shown how

impurities behave as a function of the mass and charge numbers. In section III, the quasi-

linear impurity fluxes are derived and compared with nonlinear numerical results. Finally, a

brief summary of the results along with a conclusion are given in section IV.

II. IMPURITY TRANSPORT AS A FUNCTION OF THE CHARGE NUMBER

AND THE MASS NUMBER

We choose to implement the equilibrium distribution function as follows:

Feq,s =
n0,s

T
3/2
0,s

exp

(
− E

T0,s

)[
1 +

(
κn,s +

(
E

T0,s
− 3

2

)
κT,s

)
ψ

]
(5)

For electrons and main ions, κT,ei =
1
Te,i
∂ψTe,i have finite values. For impurities, we choose

κT,Z = 0 so that no thermodiffusion will appear for impurity transport. κn,s is defined as

1
ns
∂ψns. The curvature driven pinch is also neglected in this model, since a Taylor expansion

at ψ = 0 of a Maxwellian distribution yields

F ∗
eq,s = Feq,s −

n0,s

T
3/2
0,s

eΩdE

T0,s
ψ exp

(
− E

T0,s

)
(6)

The latter term is responsible for curvature-driven pinch, and is neglected in Eq.5. There-

fore, impurity transport calculations only include diffusive transport. The transport across

the magnetic field is therefore adequately characterized as diffusivity.
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For the linear study, we use the linear dispersion derived in [14]. It reads:

D = 0 = Cn −
∑
s

ZsCsτs

∫ ∞

0

J2
n,s

κn,s + κT,s(ξs − 3
2
)

Ωd
Zs
(ξs −Ws)

e−ξsξ
1
2
s dξ (7)

with

Cn =

√
π

2

[
Cad + Cpoln

2
∑
s

CsτsZ
2
sρ

2
c0,s + Cpolk

2
∑
s

CsτsZ
2
s δ

2
b0,s

]
(8)

Here, ξ = E
T0,s

, Ws = Zsω
nΩdT0,s

, n being the mode number in the α-direction, k = π the

most unstable radial mode and ω the complex mode frequency. This dispersion relation will

be solved to find the growth rates and real frequencies of the TEM and TIM instabilities

for two different cases we investigate in this paper. For linearly solving Eq.(7), we scan

the (ωr, ωi) plane, searching for values of ω such that the RHS of Eq.(7) vanishes within

machine precision. For this purpose a method that finds the minimum of a scalar function

of several variables, starting at an initial state, and uses the simplex search method [31], is

used. Actually we start the scan from several initial values in the (ωr, ωi) plane in order to

get all the possible roots. Among these solutions one finds the couple (ωr, ωi) for which the

instability growth rate ωi is maximum. We simultaneously look at the region where ωr is

negative (TEM instability) and the region where ωr is positive (TIM instability). We retain

the maximum of ωi for each of the two regions.

CD Ce CZ κn,D κn,e κn,Z
T0D,Z
T0,e

0.9964 1.0 10−5 0.1 0.099604 −1 1.0

TABLE I: Main parameters used for the linear study and nonlinear simulations. The

subscripts D, e and Z stand for deuterium, electron and impurities, respectively.

ρc,D ρc,e ρc,Z=2 ρc,Z=4 ρc,Z=8 ρc,Z=10 ρc,Z=12

6× 10−3 10−4 9.49× 10−3 4.74× 10−3 2.38× 10−3 1.90× 10−3 1.58× 10−3

TABLE II: Larmor radii used for the linear study and nonlinear simulations, for deuterium

(D), electrons (e) and impurities (Z). The values of the Larmor radii are at the thermal

velocity and the approximation of constant orbit widths is used.
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δb,D δb,e δb,Z=2 δb,Z=4 δb,Z=8 δb,Z=10 δb,Z=12

6× 10−2 10−3 9.49× 10−2 4.74× 10−2 2.37× 10−2 1.90× 10−2 1.58× 10−2

TABLE III: Banana widths used for the linear study and nonlinear simulations, for

deuterium (D), electrons (e) and impurities (Z). The values of the banana widths are at

the thermal velocity and the approximation of constant orbit widths is used.

Here and in the remainder of the paper, we consider a plasma composed of deuterium as

the main ion species, electrons and impurity species. In our calculations and simulations,

all species are considered as active species, meaning that each species is described by its

own distribution function, and each species is taken into account in the quasi-neutrality

constraint.

We choose five different simulated impurities with the same mass number (A = 20) but

with 5 different charge numbers Z = 2, 4, 8, 10 and 12. Regarding the A-dependence, an

other set of simulations is considered with the same charge number (Z = 4) but with 5

different mass numbers A = 10, 30, 50, 70 and 90 in order to cover the same
√
A/Z range as

in the case of the Z-dependence. Other parameters used as inputs for the linear code and

the nonlinear code are given Tab.I, Tab.II and Tab.III. Species concentrations and density

gradients are chosen according to quasi-neutrality, assuming that n0,e = 1, κn,D = 0.1,

CZ = 10−5 and κn,Z = −10−5 for all impurities. The minus sign for κn,Z means that the

impurity density is larger at the plasma edge than at the plasma core, according to the fact

that main impurities come from the wall. It should be noted that the results presented

hereafter do not depend on the sign of κn,Z , and the plus sign could have been chosen. Other

quantities from Tab.I are evaluated according to quasi-neutrality:

∑
s

ZsCs = 0 (9)

which also leads to a constraint on κn,s:

∑
s

ZsCsκn,s = 0 (10)

The two different cases investigated in this paper are now presented.

The first one corresponds to ∂ψTD = 0.135 and ∂ψTe = 0.18. The dispersion relation
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FIG. 1: Instability growth rates plotted against the mode number n, in the case

∂ψTe = 0.18 and ∂ψTD = 0.135, for TEM (solid line) and TIM (dotted line). For these

temperature gradients the most unstable mode n = 74 is a trapped electron mode (TEM).

(Eq.7) is numerically solved and TEM are found to be more unstable than TIM. This case is

referred to as the TEM case (Fig.1). For these temperature gradients the most unstable mode

is n = 74, the instability growth rate is γ = 28.4 ω0, and the real frequency ωr = −68.4 ω0.

In this case and with the ITER parameters, it should be noted that the order of magnitude

of ωr/ωb is about 0.2 for deuterium, and 0.005 for electrons. Thus, even if ωr is much less

than ωb in the case of electrons, for deuterium ions the condition of the mode frequency

lower than the bounce frequency is less safely met. Nevertheless, with different electron/ion

mass ratios leading to lower modes and smaller ωr/ωb, the results and the trends presented

hereafter are very similar.

For the second case, ∂ψTD = 0.18 and ∂ψTe = 0.135. The dispersion relation is numerically

solved and TIM are found to be more unstable than TEM. This case will be referred to as

the TIM case (Fig.2). For these temperature gradients the most unstable mode is n = 60,

the instability growth rate is γ = 23.4 ω0, and the real frequency ωr = 56.9 ω0.

The results of the nonlinear simulations are now presented. A semi-lagrangian method

for the numerical resolution of the Vlasov equation is used [32]. These simulations have
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FIG. 2: Instability growth rates plotted against the mode number n, in the case

∂ψTe = 0.135 and ∂ψTD = 0.18, for TEM (solid line) and TIM (dotted line). For these

temperature gradients the most unstable mode n = 60 is a trapped ion mode (TIM).

been performed with Nψ = 256, Nα = 1024, NE = 192. The numerical simulations are done

using a thermal and density bath as boundary conditions: the temperature and density are

fixed at ψ = 0 and ψ = 1. Dirichlet boundary conditions are imposed on the potential.

The simulation parameters correspond to a radial box size of 166 Deuterium Larmor radii.

First we noticed (not shown in this paper) that for both cases the most unstable modes

displayed by the nonlinear TERESA simulations in the linear phase correspond to the linear

growth rates given by the linear analysis, as well as the direction of propagation, along the

α-direction for TIM instabilities and in the opposite direction for TEM instabilities. Then in

the nonlinear state the fastest growing modes couple to the other eigenmodes, driving them

up to the saturation level.

In order to evaluate impurity transport, while smoothing out fast turbulent fluctuations,

we plot the cumulative flux along the ψ-direction (meaning along the radial direction) given

by:

Γcumul =

∫ t

0

Γ(t∗)dt∗ (11)
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with [21]:

Γ(t) = − 2√
π

∫ 2π

0

dα

∫ ∞

0

f∂α(J ϕ)E1/2dE (12)

A. Trapped electron mode case
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c
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u
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0t

 (
t* )d

t*

10
-5

Z = 2

Z = 8

Z = 4

Z = 12

Z = 10

FIG. 3: Impurity cumulative flux
∫ t
0
Γ(t∗)dt∗ plotted against time in the case of a TEM

turbulence. Different charge numbers are considered, with the same mass number A = 20.

The higher charge impurity has larger impurity flux.

We focus on the TEM case. The results regarding the Z-dependence are presented in

Fig.3. First a linear phase is observed, followed by the saturation phase, at about t = 0.6

ω−1
0 . The system reaches a nearly steady state from t = 0.8 ω−1

0 . Then the cumulative flux

increases almost linearly, meaning that impurity particle flux is nearly constant. The slopes

are determined from t = 0.8 to t = 1.1 ω−1
0 , and we can then evaluate the impurity flux ΓZ .

As we assume a pure diffusive transport, the global diffusion coefficient is given by:

DZ = − ΓZ
∂ψnZ

(13)

The diffusion coefficients for the TEM case are presented in Fig.4. The diffusion coefficient

DTEM is plotted against the impurity charge number Z. The error bars correspond to the
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FIG. 4: Impurity diffusion DTEM coefficient plotted against the impurity charge number Z

in the case of TEM turbulence. The mass number is A = 20. The coefficient is calculated

from Fig. 3, for 0.8 < t < 1.1. The higher charge impurity has larger diffusion coefficient.
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FIG. 5: Impurity diffusion DTEM coefficient plotted against the mass number A in the case

of TEM turbulence. The charge number is Z = 4. The coefficient depends more weakly on

A than on Z (about 60%, the same scale as in Fig.5 is used in ordinate in order to compare

both results).
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uncertainty in the determination of the slopes from Fig.3. We observe in that case that the

diffusion coefficient increases with the charge number. It should be noted that this trend

is always observed when TEM are the main instabilities, and even if parameters are very

different, for instance if we choose Larmor radii and banana widths such that the main

unstable modes are much smaller (about n = 10 for instance). Morever, other simulations

have been performed with εϕ greater than 0.3. In that case zonal flows are stronger. The

diffusion coefficient still increases with the charge number, but the diffusion coefficients are

smaller, as expected when zonal flows are stronger (zonal flows are structures perpendicular

to the radial direction that improve plasma confinement).

Nevertheless, we observe that impurity transport becomes roughly independent of impu-

rity charge at high impurity charges, as observed in other studies [2].

Finally, an other important result is that this transport depends weakly on the mass

number A of the species. Additional simulations have been carried out for five impurities

with Z constant and different values of A. We performed simulations with Z = 4, and

A = 10, 30, 50, 70, 90 in order to cover approximatively the same domain in
√
A/Z as

for the study of the Z-dependence (Fig.5). The variation in A of the impurity diffusion

coefficient is about 60% smaller than that of in Z, for the same
√
A/Z range, and is found

to decrease with A.

B. Trapped ion mode case

Then we consider the TIM case. The results regarding the Z-dependence are presented

in Fig.6. First a linear phase is observed, followed by the saturation phase, at about t = 0.75

ω−1
0 . The system reaches a nearly steady state from t = 1.0 ω−1

0 . Then the cumulative flux

increases linearly, meaning that impurity particle flux is almost constant. The slopes are

determined from t = 1.0 to t = 1.55 ω−1
0 , and then, as in the TEM case, we evaluate the

impurity flux ΓZ and the diffusion coefficients.

The diffusion coefficients DTIM for the TIM case are presented in Fig.7. The diffusion

coefficient DTIM is plotted against the impurity charge number Z. The error bars correspond

to the uncertainty in the determination of the slopes in Fig.6. We observe in that case that

the diffusion coefficient decreases with the charge number. It should be noted that this trend

is always observed when TIM are the main instabilities, even if plasma parameters are very

different. The different scaling of the diffusion coefficient with Z will be shown in the section
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FIG. 6: Impurity cumulative flux
∫ t
0
Γ(t∗)dt∗ plotted against time in the case of a TIM

turbulence. Different charge numbers are considered, with the same mass number A = 20.

The higher charge impurity has smaller impurity flux.

III to be related to a drift resonance.

Nevertheless, as in the TEM case we observe that impurity transport becomes roughly

independent of impurity charge at high impurity charge numbers.

As in the TEM case, an other important result is that this transport depends weakly on

the mass number A of the species. Simulations have been performed for five impurities with

Z constant and different values of A. Again, we also performed simulations with Z = 4, and

A = 10, 30, 50, 70, 90 in order to cover approximatively the same domain in
√
A/Z. (Fig.8).

The variation in A of the impurity diffusion coefficient is about 80% smaller than that of in

Z, for the same
√
A/Z range, and is found to decrease with A.

C. Conclusion of the numerical simulations

From these results we can conclude that in the case of turbulence driven by trapped

particles the impurity diffusive transport depends weakly on the mass number, but depends

mainly on the charge number. Moreover this transport depends on the nature of the insta-

bility that drives turbulence: the diffusion coefficient is found to increase with Z in the case

of TEM turbulence, while the diffusion coefficient is found to decrease with Z in the TIM
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FIG. 7: Impurity diffusion coefficient DTIM plotted against the impurity charge number Z

in the case of TIM turbulence. The mass number is A = 20. The coefficient is calculated

from Fig. 6, for 1.07 < t < 1.55. The higher charge impurity has smaller diffusion

coefficient.

dominated case.

We noticed that the change of flux regimes arises from the phase shifts between the density

and potential fluctuations. These phase-shifts increase with Z in the case of TEM turbulence

while they come down with Z in the case of TIM turbulence.

In order to explain these observations, in the next section a quasi-linear calculation of

impurity transport is derived from the TERESA model and comparisons with the numerical

simulations are presented.

III. COMPARISON BETWEEN NUMERICAL SIMULATIONS AND THEORET-

ICAL PREDICTIONS

In this section, the out of phase part of the distribution function to potential fluctuations

is derived from the eigenmodes, and the quasi-linear particle fluxes are determined, taking

the power spectrum of the plasma potential fluctuations and the gradient parameters from

TERESA simulation as input. Then the comparisons between the theoretically predicted
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FIG. 8: Impurity diffusion DTIM coefficient plotted against the mass number A in the case

of TIM turbulence. The charge number is Z = 4. The coefficient depends more weakly on

A than on Z (about 80%, the same scale as in Fig.8 is used in ordinate in order to compare

both results).

impurity flux and the nonlinear impurity transport simulations are presented.

The banana-center distribution function f of one species (here we consider an impurity

species and the subscript s is dropped) obeys the Vlasov equation:

∂f

∂t
− [J ϕ, f ] + ΩdE

Z

∂f

∂α
= 0 (14)

with

[J ϕ, f ] = ∂J ϕ
∂α

∂f

∂ψ
− ∂f

∂α

∂J ϕ
∂ψ

(15)

We assume that

f = f0(E, t) + f1 + f2 + ... (16)

with f0(E, t) the slowly evolving background distribution that is changing due to the

effects of the unstable waves, with 1
f0

∂f0
∂t

≪ γk, where γk are the linear growth rates of the

unstable waves. fn≥1 are the small magnitude high frequency perturbations, of order εn,

with ε≪ 1.

Quasilinear theory assumes that the amplitudes are still small enough that frequency and

instantaneous growth rates of the modes are all adequately described by the linear theory.
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The linear theory yields:
∂f1
∂t

− ∂J ϕ1

∂α

∂f0
∂ψ

+
ΩdE

Z

∂f1
∂α

= 0 (17)

Moreover, quantities with subscripts n ≥ 1 are waves and therefore have spatial averages

over α that vanish (< . >= 1
2π

∫
α
.dα), so that Eq. (14), combined with Eq. (17), averaged

over α and neglecting terms with an order higher than 2, writes:

∂f0
∂t

=
∂

∂ψ

〈
f1
∂J ϕ1

∂α

〉
(18)

The RHS term can be explicitly calculated by expressing the perturbations as a sum over

spatial Fourier modes (ϕ1(α, t) =
∑

n ϕne
inαe−iωnt, and the same for f1), and by using Eq.(17)

to get fn as a function of ϕn, with fn and ϕn the amplitudes of the mode n of the perturba-

tion. Assuming the developed distribution function (5) with κT = 0 (no thermodiffusion for

impurities), the relationship between fn and ϕn then writes:

fn =
κn

Ωd
Z
E − ωn

n

Feqψ=0
J ϕn (19)

and Eq. 18 yields:

∂f0
∂t

− ∂

∂ψ

(∑
n

|nJ ϕn|2κnFeqψ=0

γn

(nΩd
Z
E − ωr,n)2 + γ2n

)
= 0 (20)

where the sum is over linearly unstable modes only, and with ωn = ωr,n+ iγn, where ωr,n and

γn are respectively the real frequency and the linear growth rate of the mode n, determined

by the linear dispersion relation (Eq.7).

By integrating this last equation over energy E (the Jacobian is proportional to E1/2dE),

we obtain:
∂n0

∂t
+
∂Γψ
∂ψ

= 0 (21)

with Γψ the impurity transport in the radial direction:

Γψ = −κn
∫
E

∑
n

|nJ ϕn|2
γn

(ωr,n − nΩd
Z
E)2 + γ2n

Feqψ=0
E1/2dE (22)

Both γn and ωr,n have very weak dependency on both Z and A, since in this article

only trace impurities are considered, and therefore turbulence is governed by electrons and

main ions: The more direct impacts of impurity species in Poisson equation are negligible

for Z2
sCs ≪ 1 [33]. Therefore, from this last equation (22) we can see that the radial

impurity flux depends on the charge number Z as expected, but depends weakly on the
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mass number. Indeed the impurity mass only impacts the gyro-bounce-averaging operator,

where the Larmor radius and the banana width are proportional to
√
A/Z (Eq.3). But this

A-dependence of the gyro-bounce-averaging operator is weak and does not depend on the

sign of ωr and the nature of the instability. Regarding the A-dependence, the impurity flux

is expected to decrease as A increases, in both TEM and TIM cases. These results are in

agreement with the numerical simulations.

This expression (Eq.22) can be further evaluated and we now consider the two different

cases. The real frequencies ωr,n and the linear growth rates γn are needed and determined

by solving the linear dispersion relation (Eq.7). The saturation level of the plasma potential

is given by nonlinear simulations.

A. Trapped electron mode case

For TEM instabilities, ωr,n
n

< 0, therefore (ωr,n
n

− Ωd
Z
E) is always negative. We evaluate

the integral Γψ,TEM using Eq.(22), and we compare the results DQLTEM = −Γψ,TEM/∂ψn

with those given by the nonlinear simulations (Fig.4).

As we focus on the Z dependance, we adjust the choice of |ϕn| = 0.05 to get the best

reasonable agreement between the two curves, but it should be noted that this choice is

in qualitative agreement with the amplitude of the modes given by the nonlinear TERESA

simulations. The results are presented in Fig.9. The dotted line corresponds to the nonlinear

results already presented in Fig.4, and the solid line is DQLTEM . As expected the quasi-

linear diffusion coefficient is found to increase as a function of the impurity charge number.

Here the quasi-linear flux is evaluated by summing over the n components of the Fourier

decomposition in α. But it should be noted that the quasi-linear calculations yield almost

the same results for Γψ whatever the method we used: taking into account only the most

unstable mode, or considering the sum over all unstable modes.

We remark that in that case there is a very good agreement between the quasi-linear

theory and the results of the numerical simulations, despite the strong assumptions made in

the quasi-linear calculations.
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FIG. 9: Impurity diffusion coefficient DTEM plotted against the impurity charge number Z

in the case of TEM turbulence. The dotted line corresponds to the nonlinear results

already presented in Fig. 4, and the solid line is DQLTEM . As in the numerical simulations

the quasi-linear diffusion coefficient is also found to increase as a function of the impurity

charge number.

B. Trapped ion mode case

For TIM instabilities, ωr,n
n
> 0, therefore resonance is possible, and by assuming γn small

enough, the Lorentzian can be approximated in the resonant portion by:

γn

(ωr,n − nΩd
Z
E)2 + γ2n

∼ πδ

(
ωr,n − n

Ωd

Z
E

)
(23)

The integration over energy yields:

Γψ,TIM = −κn
n0

T
3/2
0

∑
n

|nJ ϕn|2π
(

Z

nΩd

)3/2

ω1/2
r,n e

− Zωr,n
nΩdT0 (24)

It should be noted that even though the delta-function expansion condition γn/ωr,n ≪ 1

does not apply well in this case (γn/ωr,n = 0.41 for the most unstable mode), the monotoni-

cally decreasing dependence on Z is still captured by Eq.(24).

17



2 4 6 8 10 12

Z

8

9

10

11

12

13

14

15

D
T

IM

FIG. 10: Impurity diffusion coefficient DTIM plotted against the impurity charge number Z

in the case of TIM turbulence. The dotted line corresponds to the nonlinear results already

presented in Fig. 7, and the solid line is DQLTIM . The quasi-linear diffusion coefficient is

also found to decrease as a function of the impurity charge number, the nonlinear flux and

the quasi-linear prediction are in qualitative agreement.

But in order to limit the sources of discrepancies we evaluate numerically the quasilinear

diffusion coefficients DQLTIM = −Γψ,TIM/∂ψn using Eq.(22) for Γψ,TIM and compare them

with those given by the nonlinear simulations (Fig.7). In this case, to avoid small values of

γn/ωr,n only the most unstable mode n = 60 is retained in the calculation. The results are

presented in Fig.10. The dotted line corresponds to the nonlinear results already presented

in Fig.7, and the solid line is DQLTIM . The quasi-linear diffusion coefficient is monotonically

decreasing as a function of the impurity charge number, and the nonlinear flux and the quasi-

linear prediction are in qualitative agreement. The maximum discrepancy is about equal to

15%. This result is not totally surprising considering the fact that nonlinear simulations and

quasi-linear predictions are not always similar [34] for the TERESA model.

For the study presented in this article we can therefore conclude that both trends of
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turbulent impurity transport with increasing Z (increasing in the TEM case and decreasing

in the TIM case) are consistent with quasi-linear theory.

IV. CONCLUSION

In the present article the impact of the charge and mass numbers on impurity turbulent

fluxes has been investigated via both gyro-bounce-kinetic simulations and quasi-linear theory.

All the results shown in this work are from simulations and calculations carried out with the

TERESA model. The trapped particles are treated kinetically, while the passing particles

respond adiabatically. The model is meant to investigate fundamental mechanisms and

trends, rather than provide realistic quantitative predictions for tokamaks. The simulation

parameters correspond to a radial box size of 166 Deuterium Larmor radii.

While impurity transport depends weakly on the impurity mass, it is found that it is

mainly dependent on the impurity charge number. Moreover, it is found that impurity

transport depends on the background turbulence: Impurity flux due to TEM turbulence

increases with Z while it decreases with Z in the case of TIM turbulence. In contrast, for

the A-dependence we observe that the diffusion coefficient decreases weakly with increasing

A in both TEM and TIM cases.

The methodology of quasi-linear theory has been shown to be applicable in this case as

it determines the relative strength of the impurity ion transport and qualitatively explains

the results given by the nonlinear numerical simulations.
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