
HAL Id: hal-02275449
https://hal.science/hal-02275449

Submitted on 30 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Challenges and Work Directions for Europe
Bruno Bouyssounouse, Joseph Sifakis

To cite this version:
Bruno Bouyssounouse, Joseph Sifakis. Challenges and Work Directions for Europe. 2nd Embedded
Real Time Software Congress (ERTS’04), 2004, Toulouse, France. �hal-02275449�

https://hal.science/hal-02275449
https://hal.archives-ouvertes.fr

2nd European Congress ERTS - 1 - 21 – 22 – 23 January 2004

http://www.artist-embedded.org/
ARTIST IST-2001-34820

Session 7A: Major Projects

Embedded Systems
Challenges and Work Directions for Europe

Bruno Bouyssounouse1, Joseph Sifakis2

VERIMAG Laboratory http://www-verimag.imag.fr/

The Artist FP5 Accompanying Measure in Advanced Real-Time systems workplan includes roadmapping
work for strategic directions: Hard Real-Time Development Environments, Component-based Design
and Integration Platforms, RTOS and Middleware. These roadmaps are available in draft form:

http://www.artist-embedded.org/Roadmaps/
The roadmaps will be updated and extended to include a new section on Execution Platforms.
They will be published in a single volume in mid-2004, via Springer Verlag’s LNCS series.

1 ARTIST Technical Coordinator
2 ARTIST Scientific Coordinator

http://www.artist-embedded.org/
http://www-verimag.imag.fr/

2nd European Congress ERTS - 2 - 21 – 22 – 23 January 2004

1. Introduction

1.1 Embedded Systems
Embedded Systems are components integrating software and hardware, that are jointly and specifically
designed to provide a given set of functionalities. These components may be used in a huge variety of
applications, including transport (avionics, space, automotive, trains), electrical and electronic appliances
(cameras, toys, television, washers, dryers, audio systems, and cellular phones), process control
(energy production and distribution, factory automation), telecommunications (satellites, mobile phones
and telecom networks), security (e-commerce, smart cards), etc. We expect that within a short
timeframe, embedded systems will be a part of virtually all equipment designed or manufactured in
Europe, the USA, and Asia.
Their extensive use and integration in everyday products marks a significant evolution in information
science and technology. A main trend is the proliferation of embedded systems, which should work in
seamless interaction while respecting real-world constraints.
Embedded systems have a number of specific characteristics, which play a role in structuring the
technical domain, and in determining the relevant areas for research and industrial development:

• Criticality – Embedded systems are often critical. The degree of criticality depends on the
consequences of deviation from a nominal behavior that can impact safety, security, mission
completion, business. As an example, safety criticality means that failures can damage human
lives, or cause major catastrophes. Safety critical systems include flight control systems, railway
signaling systems, and industrial process management systems. As a second example, business
criticality is where major financial stakes are associated with proper operation. Business critical
systems include services deployed on an embedded infrastructure such as cell phones, power
distribution, traffic management, distributed entertainment, etc.

• Reactivity – Embedded systems are deployed in the physical environment, and as such they
have a continuous interaction with it. This is a central characteristic of embedded systems.
Reactivity implies that embedded systems are subject to real-time constraints relating their
execution speed to that of their environment.

• Autonomy – Embedded systems need to be autonomous, that is, to fulfill their functions without
human intervention for extended periods of time. Autonomy is needed, especially where humans’
reactions may be too slow or insufficiently predictable.

1.2 Economic Stakes
Embedded systems are of strategic importance in modern economies. They are used in mass-market
products and services, where value is created by supplying either functionality or quality. Functionality is
defined as the service rendered to the user. Quality for a given functionality characterizes extra-
functional properties of the product or service, such as performance, or dependability. For instance, a
cellular phone offers functionality for mobile communication, while quality is characterized by audio
fidelity, battery life, etc.

2nd European Congress ERTS - 3 - 21 – 22 – 23 January 2004

Embedded technologies confer advantages to system and service developers, in generating added
value and enhancing competitivity. The relative weight of software in the value of embedded systems is
constantly increasing. Increased use of software allows new, complementary services, and competitive
advantages through differentiation.
Embedded systems are the fastest growing Information Technologies sector.
Europe currently has leading positions in sectors where embedded technologies are central to growth.
These sectors currently include avionics, automotive, space, consumer electronics, smart cards, telecom
devices, energy distribution, and railway transport. It is anticipated that they will also include distributed
services such as e-Health and e-Banking.
Europe has a leading position in civil avionics where fly-by-wire technology provides an overwhelming
competitive advantage in the cost of operating aircraft. Europe is also well-positioned in the space
sector, specifically for launch vehicles and satellites. In the automotive sector, European manufacturers
and their suppliers enjoy a leading technological advantage for engine control, and emerging
technologies such as brake by wire and drive by wire. Railway signaling in Europe relies on embedded
systems, and allows faster, safer, and heavier traffic. Embedded technologies will be extensively used to
make energy distribution more flexible, especially in view of the coming market liberalization. Embedded
technologies are strategic for the European telecommunication sector, which is still well-positioned - in
spite of the recent difficulties in deploying UMTS technology. Finally, Europe is also well-positioned for e-
Services (e-Banking, e-Health, e-Training), based on the leading edge in smart cards and other related
technologies.

1.3 Trends in Embedded Systems Engineering
In the last ten years, certain spectacular changes have been observed in systems engineering. The
number of embedded system applications was relatively low, mainly used for control applications in
aircraft, trains, and production plants. These applications being intensively safety-critical, development
costs and times were extremely high. The development costs were nonetheless a small portion of the
overall system cost.
Coming generations of mass-market embedded systems products will be characterized by the following
factors:

• A great variety of component types. Components will be tailored to fit specific technical and
economic requirements, with differing associated costs and levels of service. For instance,
specific components must be developed for mobile phones, for each different automobile sector,
for home appliances, etc. This is markedly different from the situation ten years, ago, where
general-purpose processors were prevalent.

• Integration of heterogeneous components in a real-world environment. A main requirement for
embedded systems is their integration within the larger embedded environment. The objective is
to obtain smooth and harmonious cooperation with other components – embedded or not - to
provide global services.

2nd European Congress ERTS - 4 - 21 – 22 – 23 January 2004

• Market Constraints. Market constraints require careful positioning between cost/quality for a
given functionality. For example, mobile communication is a functionality that can be provided at
different optima of cost and quality, depending on the market segment sought. This requires
predictable engineering techniques allowing estimating costs as a function of design choices
(e.g., processor speed, hardware versus software implementation). Market constraints will
deeply transform engineering of computerized systems.

These factors imply the need for system development technologies allowing to jointly consider
functionality, quality, physical implementation, and market constraints:

• Functionality is the capacity to deliver the given service.

• Quality covers a set of properties related to performance, and dependability. Performance
properties include dynamic aspects of the system behavior, such as: throughput, jitter, speed,
efficiency, response time, latency, etc. Dependability properties include safety, security,
availability, reparability, and all properties characterizing the system’s capability to provide a
service in the presence of faults, errors, overload, and any type of incident susceptible of
disturbing nominal behavior.
Amongst dependability properties, safety and security are the most important. Safety means
resistance to faults or errors. This is an essential property, particularly for transport and process
control applications.
Security means resistance to attacks and active hindrance. This is essential for networked
applications, such as banking and other commercial applications.

• Physical implementation constraints deal with the use of resources and the system’s deployment
context, such as weight, physical size, resistance to vibration or radiation, etc. For embedded
systems it is crucial to make the best use of resources, either to minimize costs (e.g., memory),
or to improve autonomy (e.g., minimizing power and/or energy)

• Market constraints cover aspects related to the product quality and time to market, for a given
functionality and target consumer profile.

Currently, we lack methods and tools allowing to jointly take into account these different constraints.
Achieving the capacity to build systems of guaranteed functionality and quality, at an acceptable cost, is
a major technological and scientific challenge.

1.4 Current Technological Limitations
It is important to have a fairly clear idea of what is feasible under the current state of the art. We identify
two main technological approaches and related know-how, with their associated application areas:

• Hard Real Time and Safety Critical applications are extensively used in controllers, particularly
for transport and process control. Such applications must meet deadline requirements, to
guarantee that the system will be fast enough with respect its physical environment. They are
composed of strongly coupled/coordinated components, integrated into a dependable, highly
constrained architecture.

2nd European Congress ERTS - 5 - 21 – 22 – 23 January 2004

• Distributed Soft Real-Time applications with a good level of reactivity and dependability. Such
applications are used in telecommunications, networked applications, etc. They are characterized
by their quality of service, rather than by hard real-time requirements. Quality of service
expresses dynamic properties other than strict deadlines, such as throughput, jitter, mean or
statistical values for time-related parameters.

We currently have the capability to build relatively small hard real-time applications on the one hand, or
large distributed applications on the other hand. In the coming years, it will be important to extend the
applicability of hard real-time and safety-critical technologies to other areas (e.g., automobile). This
implies certain accompanying technical adaptations, and that these technologies are made available at
compatible costs.
In the longer term, we believe that it will be necessary to achieve large-scale, dependable distributed
real-time systems, to allow applications such as automated freeways, and next-generation air traffic
control.

2. Scientific Challenges

2.1 System-centric Approach
The need to jointly consider functional and extra-functional constraints in the design of embedded
systems leads to the concept of system-centric development. Here, the main focus is the end result: a
system as the combination of hardware and software, in interaction with its physical environment.
System-centric approaches are necessary to determine trade-offs between cost and quality, taking into
account specific features of three factors: hardware, software and the environment.
In principle, hardware compared to software is faster, less flexible, slower to develop, and more costly.
Taking into account the dynamic characteristics of the physical environment – when known – can
drastically simplify the design and optimize the components chosen and the dynamic resources used.
For example, knowledge of the physical environment for embedded signal processors in cellular phones
(specified by international standards) allows optimal choice of hardware.
Current methods and tools do not allow system-centric approaches for designing embedded systems. In
fact, these approaches raise difficult, fundamental research problems, which are the basis of an
emerging theory that should bring together information and physical sciences.
Information sciences consider models of computation based on abstract notions of machines (e.g.,
automata, complexity and computability theory, algorithms, etc.), that do not take into account physical
properties of computation (e.g., execution times, delays, latency, etc.). From this point of view, software
is abstract and is essentially characterized by functional properties. There is no unified theory allowing to
predict the behavior of an application software on a given execution platform. The latter is composed of
physical elements whose characteristics determine the execution speed and other dynamic properties of
the application.

2nd European Congress ERTS - 6 - 21 – 22 – 23 January 2004

Clearly, a unifying theory is needed for encompassing concepts of computation that take into account
physical properties of the underlying platform. Its absence raises a major scientific challenge, and
seriously limits the state of the art in systems engineering. For software there exist theory and models for
the verification of functional properties, whereas these are not available for implementations. Extra-
functional properties of implementations are validated essentially via testing. This makes system
validation costly, and less amenable to analysis.

2.2 Grand Challenges
A system-centric approach raises two grand challenges common to all the activities of system
development. The first is theory and tools for rigorous component-based engineering. It has to do with
our ability to build complex systems from simpler ones by mastering their complexity. The second is
intelligence, a long term vision for systems that are able to analyze and adapt their behavior to changes
of their environment.

2.2.1 Component-based Engineering
Component-based engineering is of paramount importance for rigorous system design methodologies. It
is founded on a paradigm which is common to all engineering disciplines: complex systems can be
obtained by assembling components (building blocks). Components are usually characterized by
abstractions that ignore implementation details and describe properties that are relevant to their
composition.
Composition is used to build complex components from simpler ones. It can be formalized as an
operation that takes in components and their integration constraints. From these, it builds a new, more
complex component.
We lack a general theoretical framework for component-based engineering. This is the main obstacle to
mastering the complexity of heterogeneous systems. It seriously limits the current state of the practice,
as attested by the lack of development platforms consistently integrating design activities and the often
prohibitive cost of validation.
Theoretical frameworks for component-based engineering should include satisfactory solutions to two
problems: The first is theory for composing heterogeneous components. The second is theory for
establishing correctness by construction, to cope with complexity.

Heterogeneity of components

Heterogeneity of components is a main obstacle for systems interoperability.
There exist hardware and software components, components may differ in their interfaces,
communication mechanisms, execution speeds etc. There exist, in our opinion, two specific sources of
deep heterogeneity: interaction and execution.

• Heterogeneity of Interaction
Currently, there exists no formalism jointly supporting all these types of interaction:

2nd European Congress ERTS - 7 - 21 – 22 – 23 January 2004

o Atomic or non atomic. For atomic interactions, the behavior change induced in the
participating components cannot be altered through interference with other interactions.
Synchronous languages and hardware description languages use atomic interactions. On
the contrary, languages with buffered communication (SDL) or multi-threaded languages
(Java, UML), generally have non atomic interactions.

o Strict or non strict interaction. Strict interaction can occur only if all the participating
components are ready, for instance atomic rendezvous used in Ada. In synchronous
languages, interactions are atomic and non strict in the sense that output actions can
occur whether or not there is a matching input ready. Nevertheless, inputs are blocking
until a matching output occurs.

• Heterogeneity of Execution
Currently, there exists no formalism jointly encompassing both synchronous and asynchronous
execution:

o Synchronous execution is typically adopted in hardware, in synchronous languages and in
time triggered architectures and protocols. It considers that a system run is a sequence of
steps. It assumes synchrony, meaning that the environment does not change during a
step, or equivalently “that the system is infinitely faster than its environment”. In each
execution step, all the system components contribute by executing some “quantum”
computation. The synchronous execution paradigm has a very strong assumption of
fairness built in: in each step all components execute a quantum computation defined by
using either quantitative or logical time.

o The asynchronous execution paradigm does not adopt any notion of global computation
step in a system’s execution. It is used in languages for the description of distributed
systems such as SDL and UML and programming languages such as ADA and Java. The
lack of a built-in mechanism for sharing computation between components can be
compensated by using scheduling. This paradigm is also common to all execution
platforms supporting multiple threads, tasks, etc.

.

Correctness by Construction

It is desirable that frameworks for component-based modeling provide results for establishing
correctness by construction for at least a few common and generic properties such as deadlock-freedom
or stronger progress properties.
In practical terms, this implies the existence of inference rules for deriving system and component
properties from the properties of lower-level components, before composition. In principle, two types of
rules are needed for establishing correctness by construction.

• Composability rules allowing to infer that, under some conditions, a component will meet a
given property after composition. These rules are essential for preserving previously established
component properties. For instance, it could be used to guarantee that a component without
internal deadlocks would remain deadlock-free after composition.

2nd European Congress ERTS - 8 - 21 – 22 – 23 January 2004

Composability is essential for incremental system construction as it allows building large systems
without disturbing the behavior of their components. It is the stability of component properties
when its environment changes by adding or removing components. Property instability
phenomena are currently poorly understood e.g. feature interaction in telecommunications, or
non composability of scheduling algorithms.
A theoretical framework for composability is badly needed.

• Compositionality rules that allow inferring a system’s properties from its components’
properties. There exists a rich body of literature for establishing correctness through
compositional reasoning. Nevertheless, most of the existing results deal with preserving safety
properties.

2.2.2 Intelligence
For modern systems engineering, intelligence is advocated as the means for improving system quality
(performance and dependability). The current vision differs from the one of “Artificial Intelligence” popular
in the 80’s. The purpose is not to automatically synthesize algorithms from abstract specifications, but
rather to control an existing system‘s behavior so as to achieve a desired property. This vision of
intelligence connects systems engineering to control theory.
Intelligent behavior seems to be the last resort for ensuring quality. In fact, well-known limitations of the
current state of the art in systems engineering make various kinds of flaws in complex systems
impossible to avoid: design errors, faults, failures. Building systems enjoying properties which
characterize the behavior of living organisms such as autonomy, self-organization, self-repair, resilience,
survivability, resource awareness etc., is considered to be a means to cope with possible defects. This is
certainly a very attractive and sensible idea that will mobilize considerable R&D effort in the future.
Nonetheless, these problems should be tackled with pragmatism, without underestimating their inherent
hardness. It is important that the research community does not to give way to hype and over-ambition.
Two properties characterize system intelligence:

• Reflexivity – the capability to analyze its own state, and to act on it. It can be seen as a simple
form of self-awareness. For instance, reflexive systems should be able to perform auto-diagnosis,
to detect failures or errors.

• Adaptability – the capability to adapt its behavior according to given quality objectives
(performance, dependability). For instance, adaptable systems should be able to adjust their
behavior so as to cope with intrusion or to adjust their scheduling strategies.

Ambient Intelligence as described in the IST work programme is closely related to this concept.
Developing theory and practices for engineering intelligent systems is a long-term objective.

2nd European Congress ERTS - 9 - 21 – 22 – 23 January 2004

3. Overview of Technical Trends and Work Directions

3.1 Systems Development
Ideally, the systems development cycle is a sequence of steps moving from abstract to detailed
descriptions. It is important that the transition from one description to the next be supported by tools.
These may be either automatic translation tools (e.g., code generators, compilers, assemblers), or
verification and validation tools when automatic, guaranteed-to-be-correct translation is not possible.
The requirements describe system interaction with its environment, in principle they abstract out
implementation details. Ideally, the requirements are expressed in the form of models, which can allow
formal verification.
Apart from requirements, there are typically two other levels of description in system development: the
application software derived from the requirements, and the actual implementation on a given platform.
The transition from requirements to application software is usually not fully automated. It is the result of a
design process which integrates constraints that cannot be entirely solved through synthesis. The
transition from the application software to a specific implementation is largely done through the use of
automatic translation tools such as compilers, assemblers and linkers.
In the current state of the art, the transition between levels requires verification and validation tools to
check that the system obtained meets the initial requirements. Depending on the domain, a large part of
the development effort is dedicated to V&V activities.
We provide below an overview of technical trends and work directions for embedded systems
development.

3.1.1 Model-based Development
The objective for model-based development is to automatically generate, from some formal model of the
system requirements, the application software, and even the implementation. For instance, this approach
is applied with varying degrees of success, through the use of tools such as Matlab/Simulink, for the
development of real-time controllers. Model-based development is also the motivation for standards such
as UML and SDL.
Model-based development supposes the availability of environments for modeling and early validation of
complex heterogeneous systems. These environments should allow the automatic construction of
models for complex systems, from:

• Libraries of models of heterogeneous components – hardware components, software
components, environment models e.g., continuous dynamic systems

• Architectural descriptions e.g., interaction and execution models

2nd European Congress ERTS - 10 - 21 – 22 – 23 January 2004

3.1.2 Programming and Implementation Technologies
A current trend is to combine expressive programming languages with semantically aware programming
tools. These allow code analysis by various means (abstract interpretation, model checking, etc.) to
reduce errors before execution.
A second important emerging trend is the extension of programming languages for modeling system
features. These aspects may include models of the target platform, dealing with architecture, scheduling
(from WCET estimations and QoS), and security. The application software enriched with a target
platform model is compiled to generate the implementation glue, in addition to the application’s object
code.
For instance:

• From the architecture model, the compiler would synthesize code for messaging protocols,
application-specific handlers, and interaction between tasks.

• From the WCET and QoS models, the compiler would synthesize code implementing scheduling
policies to meet the QoS requirements. Such an approach supposes the availability of accurate
timing analysis tools to estimate WCET of code segments, for specific target architectures.

• Finally, code implementing security control mechanisms can be synthesized from security
models.

This second trend brings programming closer to modeling, and it is anticipated that at some point the
distinction between the two will disappear. Most existing modeling tools allow importing external
functions and data from programming languages. Programs are a form of executable models – they can
be enriched to describe models (e.g., via timing information).

3.1.3 Operating Systems and Middleware
The main trend for operating systems and middleware is to adapt existing technologies to the constraints
of embedded systems. Existing technologies are often more complex than necessary, undependable,
and with hidden functionalities. This leads to unmanageable complexity and difficulty of use.
For embedded OS and middleware technologies, strong requirements are:

• Modularity. To reduce resource consumption, it is necessary to use minimal OS and middleware
configurations. This can be achieved by using modular architectures.

• Adaptivity. According to the system’s dynamically changing requirements or activities, it may be
necessary to reconfigure the system and optimize the use of available resources. This implies
giving more direct control over the hardware to the applications. One direct consequence would
be to move much of the resource management functionalities out of the kernel.
Adaptivity is particularly needed for flexible scheduling. This is becoming an important topic for
the efficient use of resources, particularly for meeting QoS requirements. The idea behind flexible
scheduling is to replace traditional fixed priority scheduling by strategies. These apply policies for
adapting to dynamic changes in the execution and external environments. Adaptive scheduling
raises theoretical problems such as the composability of scheduling policies, which remain largely
unexplored and open.

2nd European Congress ERTS - 11 - 21 – 22 – 23 January 2004

Efficient implementation of scheduling strategies requires observation and control of low-level
state variables (clocks, registers, etc.) in real-time and with a low overhead.

• Dependability. Current operating systems and middleware do not provide adequate features for
dependability.

• Domain specific OS and Middleware. It is absolutely necessary, in view of the specific constraints
for embedded technologies, to have commercially available domain-specific operating systems.
This is confirmed by the emergence of domain-specific standards, such as OSEK, ARINC,
JavaCard, and TinyOS. For cost-efficiency, these should be built through composition of COTS
operating system modules.

Operating systems and middleware are strategic for embedded technologies, and we believe that
Europe should make an exceptional effort to reduce the gap in this area.

3.1.4 Control for Embedded Systems
Automated control applications are central to embedded technologies. They are used to implement
piecewise continuous control laws, using algorithms which are discrete by nature. These applications are
usually called ‘hybrid’ in the sense that they combine continuous dynamics and discrete state changes
(e.g., when switching from one control law to another). They are needed for solving typical control
problems appearing in applications such as flight control, unmanned vehicles, and process control for
manufacturing. They also appear in applications where adaptability is sought, such as network traffic
control and pricing policies, or adaptive scheduling.
The design and implementation of automated control applications raises the following hard theoretical
and practical problems stemming from their hybrid nature:

• Modeling and Verification of Hybrid Systems

• Design of Hybrid Controllers

• Specific techniques for implementation of distributed automated control applications, which take
into account the influence of delays, jitter, aperiodic sampling on performance.

A well identified problem in this area is the lack of a theory integrating multi-disciplinary aspects:
automatic control, numerical analysis, and computer science.

3.1.5 Verification and Testing
Validation technologies are essential for the development of embedded systems. Verification means
checking correctness with respect to given requirements on a system model. Testing usually means
exercising the software on a given platform, and checking correctness with respect to given test
purposes. The frontier between the two activities is fuzzy. The notable difference is that testing implies
observability and controllability restrictions, which are not present in verification which works on a model.
Existing verification and testing theory has been developed on relatively abstract and high level models,
upstream in the development cycle. In the coming years, it will be essential to move downstream,
developing theoretical and practical tools for testing and verification of implementations. This implies
taking into account all the dynamic aspects of execution on a given platform. In particular, it requires
techniques for faithfully modeling the real-time behavior in runtime environments.

2nd European Congress ERTS - 12 - 21 – 22 – 23 January 2004

The following problems deserve careful consideration:

• Execution platform modeling theory and tools,

• Verification and testing of timed systems theory and tools,

• Composable and compositional testing and verification methods

3.1.6 Dependable Embedded Systems
Embedded technologies are poorly suited to traditional methods which improve dependability through
redundancy. This is because, in principle, such techniques generally lead to costly solutions.
Dependability properties should not be an “add-on” to undependable implementations.
Dependable embedded systems should be designed with dependability in mind from the beginning.
Dependability should be achieved by application of a set of specific techniques applied throughout the
development process. This has impacts on architectural choices, programming style, documentation for
traceability, version control, etc. It also implies the use of well chosen fault-tolerant mechanisms, and
extra features for observability, controllability (e.g., for testing and masking errors).
The existence of methodologies for developing systems having guaranteed dependability levels (e.g.,
safety, security, availability) is crucial. In the various application domains, there exist standards defining
such methodologies. For instance, “DO-178B Process Control Software Safety Certification” for real-time
avionics and the “Common Criteria for Information Technology Security Evaluation”.
In the longer term, technologies for certification will be needed. Such technologies should be based on
the use of verification and testing techniques, which need to be adapted and applied to dependability
properties. These are difficult to describe, as they should formalize all situations that could potentially
endanger dependability.

4. For a European R&D Strategy

4.1 Development Factors
Policies aiming to support R&D in embedded systems should strive to improve the academic and
industrial research potential, the mechanisms for transfer to industry, education and the capacity to
produce well-trained engineers. The ultimate objective is to reinforce the following key factors for
systems engineering:

• Know-how and Human Factors. Complex systems are developed on the basis of the collective
expertise and skills in large engineering teams. As examples, the development of a new
processor mobilizes a few thousand highly qualified engineers; the development of an operating
system requires the skills and knowledge of a few hundred engineers. In the development
process, the important factor is the collective body of knowledge and the application of rigorous
methodologies. More generally, the system development requires mastering a know-how which is
usually very hard to formalize. Know-how and human factors are the critical element for building
complex systems in the current state of the art.

2nd European Congress ERTS - 13 - 21 – 22 – 23 January 2004

• Components. Proprietary or commercially available hardware and software components are
important for the productivity of the development process. Components embody design
knowledge and effort. Their well-reasoned use can bring significant gains. Currently, component-
based engineering for hardware is mature and well supported by methods and tools, while for
software this is not yet well mastered.

• Tools. Tools are integrated into system development environments to support the various
activities, so as to improve productivity and quality. Tools are used either to translate descriptions
(e.g., synthesizers, compilers, interpreters, etc.), or to analyze them (verifiers, static analyzers,
testing tools).

The balanced and harmonious development of the above three factors is essential for systems
engineering. Use of sophisticated tools by poorly qualified engineers may result in lower efficiency.
Skilled engineers can compensate for the lack of tools.
Any efficient strategy aiming to strengthen systems engineering should seek a balanced development of
all three factors.

4.2 The European Position
Europe has traditionally been strong in producing high-quality engineers with a broad scope and a
common culture that is grounded in theory. The availability of such engineers confers a significant
advantage to industry in a variety of sectors, such as automobile, space, avionics, and
telecommunications.
For hardware components, Europe enjoys a strong basis and is well positioned to become a main
player. Through continuous support at national and European levels, the microelectronics industry has
grown spectacularly and can now be considered to be a main player worldwide.
For software components, Europe has not yet been able to take up the challenge, in spite of an excellent
research potential. In fact, many basic concepts for software originated in Europe, including languages
(Pascal, Ada, Prolog), synchronous languages, formal methods, concurrency theory, etc.. This
imbalance is mainly with respect to the USA, and for embedded systems mainly concerns operating
systems and middleware.
For tools, the imbalance is similar to the one for software components. The main CAD tool providers
(Cadence, Synopsys, Mentor Graphics) are in the USA. For system development tools, Europe
previously had a significant position with tools for SDL, such as ObjectGeode, Tau – distributed by
Telelogic. This position is threatened by the widespread use of UML and related tools commercialized by
companies in the USA, such as Rational and I-Logix. For synchronous systems development, the USA
clearly has a very strong position with products such as Matlab/Simulink and Matrix_X. Lastly, the USA
also dominates the test and debugging tools market (Testware and Purify by Rational Software).

2nd European Congress ERTS - 14 - 21 – 22 – 23 January 2004

4.2.1 Recommendations

Education

Embedded Technologies require engineers with a broad spectrum of competencies – reflecting the multi-
disciplinary nature of the area. Currently, with few exceptions, this is a weakness worldwide. We lack
engineers with a solid background in electrical engineering, automation and control, hardware and
software engineering, etc. It is necessary to set up, promote, and implement curricula specifically for
embedded systems, in Europe.
Furthermore, the arrival of embedded technologies in new sectors of application has brought the need
for new competencies. This can be compensated either by hiring engineers with appropriate skills, or by
providing additional training.

Critical Mass in Research

Currently, European research is characterized by fragmentation, low reactivity, and the lack of
frameworks for transfer to industry (legal and incentives). We need to build large centers of excellence
comparable to those in the USA (e.g., Carnegie-Mellon, MIT, Stanford, and Berkeley).
In Europe, this can be achieved through the integration of competencies spread across many European
institutions. Setting up Networks of Excellence in the 6th FP can be a first step towards such integration.
For this to be meaningful, it is necessary to integrate the best teams for each of the work directions
identified in section 3. These teams will need to work together on the basis of a joint programme of
activities.

R&D Projects

It is important to tackle projects focusing on system-centric approaches, where the emphasis is on
systems as a combination of hardware and software and their effective use. These projects should be
characterized by:

• Commitment to extend the state of the art in a chosen application area by involving the main
players from industry and academia. The quality of a project depends mainly on the strength and
weight of the partners, as well as their willingness to achieve the objectives. If the aim of the IST
programme is leadership in embedded systems, then we should launch ambitious projects
involving the best European teams. Clearly, the technical quality of a project description does not
by itself imply success if the consortium is weak.

• Adequate level of funding. Sufficient resources must be mobilized in proportion with those
available in the USA for similar initiatives. Also, a structured approach to achieve critical mass
and momentum on chosen topics should be adopted, rather than striving for uniform thematic
and geographic coverage.

• Tools and components. Focus on enabling technologies, which are strategic for European
embedded system developers. Over the last fifteen years, we have seen a number of European
startups and high-tech companies in CAD, OS, testing and verification absorbed by larger US
companies. This reduces the leverage in Europe to develop solutions that are well adapted to
European industrial needs.

2nd European Congress ERTS - 15 - 21 – 22 – 23 January 2004

This requires a well-considered long-term, multi-faceted European strategy, including measures
to promote transfer of research results through the creation of startups, incentives and
appropriate legal and institutional structures. As direct users of components and tools, embedded
system developers should be strongly associated in this strategy. The application of innovative
development techniques should be encouraged through standards for quality, and R&D projects.

