Francois Bossard
email: francois.bossard@cnes.fr

Event driven architecture for hard real-time embedded systems

This paper presents a computing model and a related modeling process dedicated to hard realtime embedded systems. This model meets the understandability for the architecture, adaptability to various application contexts and compliance to stringent time constraints. The implementation relies on an open framework made of real-time tailored and generic services The overall approach aims at robustness thanks to fast iterative prototyping. The model and its framework have been validated and patent application is ongoing.

INTRODUCTION

The new modeling technologies for embedded systems aim at controlling software development costs by outstanding the re-usability. In fact, varied technologies are proposed but the challenge is to cover the overall lifecycle from high abstractions to low level implementations while solutions should be opened to new research results. Furthermore as systems are more and more complex, many risks come if you do not rely the design process on stepping it with proofs and real simulations. This paper proposes both an event driven design pattern and a re-usable middleware for monoprocessor implementation. This original solution is fully object oriented and suits to most modeling methods. Moreover, it fits in with an overall approach which highlights real-time constraints and behavior.

RATIONALE FOR NEW SOLUTION

We consider a new real-time model for three major reasons. At first, an embedded system controls external processes by means of periodic activities and it is assumed to be reactive to environment and internal events too. In any cases response times should be achieved. Off line and on line checks are recommended while system is not absolutely deterministic. Then, re-using is relevant if architecture is flexible to several kinds and fields of applications. Different quality criteria are primarily expected and constraints are moving which makes harder to find the optimized solution. For instance it could be useful to allow time segregation for reliability . In the other hand, increasing processor workload saves computing resources. In addition, requirements changes or unexpected facts during development do not comply with current design. A sure and fast method to modify the software is fully convenient. At last, as far as state of the art in research and technology is evolving , a solution is lead to upgrade sooner or later. Obsolescence is somewhere anti-economic by loss of efficiency and attraction.

SYSTEM BEHAVIOR MODELING

REQUIREMENTS CAPTURE

In a practical point of view, system is assumed to aggregate several subsystems with different requirements. So we need to pick up all the user functions and all the behaviors in response to external system events and inter-subsystems events. Better understanding is reached by synthesizing general functions then parameterizing with modes. Again problem simplification is provided by break down the overall behavior according to mission phases. Furthermore non functional properties are assigned to user functions and subsystems. At least time properties like maximal response time and periods are given. At this stage, it is relevant to add safety requirements provided by fault and criticality analysis.

Requirements are usually captured in an informal way such as to define a complete problem to solve.

ANALYSIS STAGE

The goal of this stage is to unambiguously take over the problem in order to specify a solution.

As problems are often complex and call upon varied engineering domains, description models are frequently chosen in relation to each sub-system. Another difficulty lies in the fact that sub-systems are not independent because environment is common, resources are shared and same events could concern many of them. So it is convenient to adopt some common approach and to formalize the whole system representation.

A modern response consists in using abstractions and related models as a high level design solution. Object oriented approach is largely adopted even in the embedded systems area with new standards such UML, ADL… The proposed modeling principle is to represent the internal behavior of the system by limiting action to the effect of events on sub-systems. Thus at sub-system level, the designer is free to apply the design technology he prefers. Moreover the goal targeted is the fast prototyping of the system design model regardless of how is implemented each sub-system. In addition the system is assumed to simultaneously control continuous physical processes with own time constraints. A subsequent issue is to build consistent models dealing with events and continuous processes without taking into account any implementation feature.

MODELING TECHNIQUES • FEATURES

The selected basic technique is the state and transition diagram by which the behavior of the system is entirely defined. "Entirely defined" means that at any moment the current state of the system is known and the effect from any system event is defined (see figure 1).

A system event is an internal sub-system event or an event from another system with effects on several sub-systems.

2 nd European Congress ERTS -3 -21 -22 -23 January 2004

The system event is the major item of the implementation and design models described later on. Notice that the system event notion could apply recursively to sub-systems and lower components.

Another concept suitable to model real-time system operating is the cooperative activity.

Actually the system counts on related parallel activities to formalize continuous physical processes. Of course the operating modes can evolve depending on specific conditions.

The modeling language selection is out of concern in this paper.

• STATES

The states are mainly characterized by the activities taking place inside and the values of physical parameters they outcome.

The main difficulty in this type of modeling is due to the fact that both continuous and momentary activities are mixed. Furthermore all sub-systems are not concerned by a status change and an activity may be carried out continuously on several states independently from other activities.

The system state diagram gives a macroscopic view of sub-system activities coordination and expected time properties.

• EVENTS

A system event is a logic expression combining signals generated by the sub-systems without any hypothesis at this level on their format or the mechanisms generating them. The declared events cause transitions with or without a state change. The transition without a state change makes it possible to limit the number of system states represented, but indicates an activity change in one or more sub-systems. Notice events also cover any detection of abnormal behavior.

• ACTIONS A transition entails one or more actions to be carried out in parallel or serially. Furthermore, it is possible to phase shift actions by indicating a delay. An action is connected to the sub-system which is in charge of it. Otherwise an action could be sent to another system. An action transiently exists and its duration is as short as an event is.

• ACTIVITIES An activity is either continuous with periodic recurrence or aperiodic. In any case, an activity is long relating to action and needs a transition to be started , stopped or modified. A state diagram action defines what and how to control. Maximum response time is assigned to all activity occurrences as deadline.

Notice action is reserved to control activity so that event is used to refer to a signal generated by an activity. At this abstraction level, no assumption is made whether an activity consists of several operations or an operation exchanges data with environment or another sub-system. System behavior modeling provides a solution specification for the whole system to build.

Then the process consists in iteratively and confidently implementing the right solution (see figure 2).

On purpose the approach relies on both analytic proof and fast prototyping. The former entrusts the design and the latter enhances the confidence in an physical implementation. Process starts with a rough architectural design and goes on with refining sub-systems in a consistent manner so that rolling back is easy.

Hardware architecture could concurrently be defined in a similar way but should influence process as late as possible. For instance first prototypes run on some simulator or evaluation board. It is enough to start in sizing computing resources even if later a single processor is replaced by a distributed architecture.

The inherent flexibility is achieved with a three layered architecture (see figure 3) where middleware isolates application software from real-time kernel and hardware drivers.

GENERAL APPLICATION DIAGRAM

A high level object breakdown model constitutes the logical architecture of the system. The key element of the structure is the Supervisor as it alone must guarantee compliance of the behavior modeled in the System state diagram in chapter 3. Sub-systems include active objects of which the activities are entirely controlled by the Supervisor . The generic diagram of the application consists in defining the interfaces between the Supervisor and the sub-system activities.

The exchanges between the Supervisor and the sub-systems are of three types:

actions which are asynchronous signals sent by the Supervisor events which are asynchronous signals sent by the sub-systems to the Supervisor functions which are sub-system methods statically invoked by the Supervisor. They are useful to acquire internal status of sub-systems. Updating of the system architecture model primarily consists in an adaptation of the object breakdown model. However analysis changes could require an intervention in System state diagram and therefore in Supervisor.

SUPERVISOR

The Supervisor manages and co-ordinates all on board system activities. To this end a generic engine executes a provided automaton compliant to the System state diagram. The automaton logic is described by a data structure encapsulating the behavioral attributes proper to the application.

EVENT PROTOCOL

Most events are specific to application contexts and only sub-systems are aware of how their occurrence conditions are practically detected. So each activity is asked to use middleware facility when conditions are met to generate an event. Some pre-defined events concern deadlines misses and are automatically generated by the middleware. Another event class is called generic and designates events where actions are dynamically fixed at transition time. These events are useful for embedded systems which face to nonpredetermined situations.

The events are queued in the Supervisor immediately or at a specified date according to their order of arrival. The events indicate their original activity but are not dated because they are expected to quickly operate. Only one event is delivered at a time so that it belongs to Supervisor to detect a complete events combination.

ACTION PROTOCOL

Supervisor deals with actions generation according to its given automaton. As actions effects are immediate or delayed, simple triggering sequence allows to schedule parallel sub-system activities. Supervisor uses middleware facility to dynamically order any kind of control with time parameters. Thus action is capable of starting, interrupting a periodic activity . Again it is possible to synchronize or definitively stop executions.

The action is queued in the proper receiver file at the required moment with its execution mode as its sole attribute. Each activity is in charge of collecting its related actions by invoking middleware as soon as possible.

Notice dynamic change to the execution mode is secured because it only operates at the only synchronization point, even though the action has been sent asynchronously.

SUB-SYSTEMS ACTIVITIES

Subsystems are designed with any method provided final items are threads, tasks or processes.

Normally each above activity is mapped to a main task but more complicated structures are possible for it. For instance an activity may consist in several children tasks running in parallel under the main task control. Again an activity may sequence several operations which server tasks deal with. Server tasks work on behalf of the client task and nothing is initially assumed about their local or remote placement. The only design constraint is any main task is organized according to a loop flow starting from the unique synchronization point reserved for activation and deactivation. When an action is received, its attribute must be recognized to eventually change functional mode or leave the loop to terminate. A typical activity for continuous control consists in programming, in the loop, a sensor acquisition followed by computation on these inputs, then delivery of the result in the form of a command sent to the actuator. The periodic occurrences of this processing operation start and finish as Supervisor decides . At this stage a key point is that a final or intermediate application is above all a set of tasks. At present it should be relevant to select both an hardware architecture model and a suitable set of real-time middleware algorithms. Then it becomes valuable to check the solution correctness according to required system properties. Proofs are given by analytic formula compliant to chosen pair of topology and algorithmic. In the second assumption, no placement rules are imposed for sub-system tasks. Also it is possible to break down the Supervisor in distributed objects where each one manages local activities. Remote communications to convey events and actions are hidden in the middleware and the lower layer. This paper focuses on what is needed to run a prototype on a single processor.

The minimum infrastructure required for execution comprises:

in the top layer: the application program including activities tasks and the Supervisor task with tables describing the System state diagram in the middleware layer: the time management service (TMS) managing the actions and events is the basic component and its companion is the clock service delivering the on board time -In the bottom layer: the hardware time counters and their drivers, the processor and the real time kernel. Notice the middleware complies with any real-time operating system whatever its scheduling policy is.

TIME MANAGEMENT SERVICE

• OVERALL FEATURES This service goals are : manage events from tasks to Supervisor manage actions from Supervisor to tasks control tasks execution flows with time synchronization watch deadlines and operations durations finely observe the real-time behavior Main programming features are: offer a friendly interface adapt to various contexts free user from low mechanisms handling

• BASIC FUNCTIONS

The main methods made available by the time management service to implement the generic design model are:

-Send an immediate or differed event to Supervisor. Event is recorded to a specific queue till it is read. -Read an event by Supervisor. Next event in the above queue is delivered.

-Signal an immediate or differed action to a named task. Action is recorded to a specific queue till it is requested.

2 nd European Congress ERTS -7 -21 -22 -23 January 2004

-Request the next triggering signal for a task. Trigger can be either an Supervisor action or an internal periodic signal. When a triggering signal is received, the task state moves from inactive to active.

Other functions exist and manage the time and the events during execution of tasks:

generate an event to warn that a task has carried out all actions in its queue suspend execution of a task to a future date or for a duration invoke a software subroutine at a date or at the end of a time out monitor the duration of part of the task erase a deferred event while it is not put in the Supervisor queue dynamically designate a task as Supervisor set an absolute reference time test the presence of an event for the Supervisor monitor the execution of the time management service by an integrated watchdog and invoke the emergency procedure in case of an anomaly. Optional function makes an observation of real-time scheduling events (see figure 3).

PROTOTYPES EXECUTION

The iterative development process of the software is completed by its installation on the execution and validation platform. Running a real prototype enforces analytic proofs performed in the design stage which are rather pessimistic.

To check the actual dynamic behavior versus to the expected one it is easy to set up a time chart from observation results (see figure 3). Moreover, determinism and performance analysis of the current solution are assessed by processing the timed events. At a high abstraction level the non-ambiguous description of the internal behavior of a hard real time system is a guarantee to start a correct development.

It includes enough information to devise a good solution but not too much in order to be easily revised.

Then an architectural design model is straight forwarded which can be analytically proved and then hardened by early assessment on real hardware. Proposed approach does not imply some product or standard to be used but aims at mixing favorite models.

However a new framework has appeared essential while making some compromise between time properties, flexibility and scalability.

An interesting perspective would be to adapt the computing model to a distributed architecture.

 The design model in chapter 4 may be implemented on a single or multi-processor architecture.