Xavier Cornu
email: xavier.cornu@trialog.com

Dominique Charny
email: dominique.charny@mpsa.com

Eric Charton
email: eric.charton@mpsa.com

Ajacs

AJACS : APPLYING JAVA TO AUTOMOTIVE CONTROL SYSTEMS

niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Context

Embedded and real-time systems are getting more and more complex. For long, embedded software programming was more a concern of reaching the highest performance with the cheapest hardware. Now software architectures are redesigned to manage this complexity and produce upgradable, maintainable and reusable software, mainly through component-based paradigms.

Still the question of the actual implementation of these components is open: the use of hand-written C code everywhere is now in the balance in most application domains, when not already replaced. Other implementation techniques such as code generation or object programming (ex: Java) are challenging, as they can more easily be integrated in these component-based paradigms.

The AJACS project

The success of Java as a mainstream language for Information Technology, and the increasing interest of the realtime community to use it, led the AJACS consortium to consider an investigation on the use of Java technology in automotive control applications :

• Through its object-orientation, Java makes it easy to design software component with strictly defined interfaces, even at the source code level. • The Java language is designed to be platform independent. Thus hardware independence and portability requirements are largely fulfilled. • Learning easiness -a lot of skilled programmers are already available -and robustness contribute to high programmer productivity and low defect rates. This will help the development team focus on high-level activities like component-based design.

To this end, the AJACS European initiative completed in early 2003 had the following objectives:

• Define an open technology which relies on existing standards of the automotive industry, such as OSEK/VDX. • Retain the benefits expected from object-oriented language programming in terms of software structuring, reusability, dependability in particular retain the portability, and robustness attributes associated with Java. • Address technical issues created by drawbacks of the Java language in terms of real-time and determinism support for embedded systems with high integrity constraints. In the case of automotive control, this means supporting the same kind of real-time constraints which non-Java based ECUs currently handle and targeting the type of memory footprints that are acceptable in the automotive industry (e.g. 256 Kbytes ROM, 16 Kbytes RAM).

• In one sentence, assess whether Java could become a suitable solution for the implementation phase of future component-based developments in embedded and real-time systems.

Technical issues

The objective of this paper is to present technical issues such as development environment, system programming, multithreading and synchronization, exceptions, initialization, memory management and native interface that were addressed pragmatically in order to achieve two automotive demonstrators. These technical issues are not only related to automotive control systems but also to various domains such as vehicle telematics, avionics and industrial control, etc., currently interested in using Java for their embedded and/or real-time systems.

Technical issues

This part lists the main technical features for which the Java language shows particular drawbacks or need for further specification in order to be used in embedded and/or real-time systems. It won't detail these technical aspects, so the reader is prompted to consult articles listed in bibliography in order to find further explanations.

Development environment

Root classes and Standard libraries

The execution environment of Java applications does not only rely on the Java Virtual Machine, but also on the basic classes delivered with it, which are required to construct application classes. In a well-defined real-time, embedded development environment, these classes should be re-written by the technology provider to both enable the change of thread model and decrease the amount of mutual dependencies between these classes, to avoid unnecessary memory use on class loading.

Debugging

To enable Java programming on deeply embedded systems, the JVM should be well integrated with current debugging solutions for these systems. For example, interfacing the JVM with emulator solutions is necessary to debug real-time Java applications. This is currently lacking in most solutions : by default, an emulator will present the code of the JVM, not the Java source code of the application.

System programming

Missing features

Some useful features used everyday by embedded software programmers (in C) are not available in Java environments. For example standardised pre-processor directives that enable easy constant definitions, conditional compilation or explicit macro definitions (not relying on uncontrolled compiler optimisations). Moreover basic data types in Java are all defined as signed. The problem is that unsigned integer types are very often used in embedded systems, for example to manage classical communication protocols, and converting these data for any treatment can quickly become very inefficient. So the development environment should provide a mechanism for defining unsigned integers. The same remark is true for bit access to processor registers, which cannot be efficiently implemented without a dedicated mechanism.

Input / Output management

In embedded systems, I/O management often imply having access to micro-controller registers, which is usually the only means to use peripherals. As classical Java environments don't provide access to physical memory (e.g. registers), one would use native access functions through the Java/Native Interface to manage I/O. In case of sustained use of I/O accesses, such as with the PSA demonstrator in AJACS, the JNI overhead may lead to inefficiency, so a dedicated Java mechanism is preferable.

Multithreading and synchronisation

Real-Time systems predictability

The thread model defined in the classical JVM specification is not compatible with hard real-time programming, as clearly stated in the Java tutorial: "Do not rely on thread priority for algorithm correctness". The consequence is that a real-time Java environment shall either define its own real-time thread definition or rely on an underlying Real-Time Operating System (RTOS) like OSEK/VDX, in order to warranty the predictability of system dynamic behaviour. The AJACS project uncovered the difficulty of interfacing a Java Virtual Machine with existing RTOS, especially a very static one such as like OSEK/VDX. One reason is that Java language allows a big amount of implicit or dynamic definition where OSEK/VDX prompts the programmer to declare explicitly and statically all the entities to be used. From the developer point of view, it is noticeable that most of the problems encountered by the classical Java programmer to write real-time application are indeed comparable to those of a mainstream C programmer that begins writing real-time C applications.

Real-Time Garbage Collecting

For long the garbage collection (GC) algorithm has been a strong handicap for designing a real-time Java environment. Now real-time GC algorithms have appeared on the market but still need serious assessment before usage in real products, especially for targets with very short latency constraints: before using this kind of environment, one shall verify if the worst case latency when the GC is collecting is affordable in his system. In very constrained applications, it may be preferable not to use a Garbage Collector and pre-allocate all the objects at start-up.

Synchronisation

Synchronisation of real-time threads are performed in several manners by embedded software programmers, from explicit and time-consuming synchronisation (such as with "synchronized" keyword in Java) to implicit and very light synchronisation (ex: read/write atomic data). The problem is that the classical Java Memory Model (JMM) is so permissive for compiler optimisations that any implicit synchronisation may not work on some Java platforms. The JMM should be made less permissive to allow portable light synchronisation.

Exceptions

Software engineering

Generally speaking, exceptions mechanism is good to avoid "spaghetti-like" code structure when error management is added. But as regards embedded systems, usage of exception has also been controversial, due to the difficulty to prove the correctness of the execution path: some even argue that exceptions are worse than "goto" statements, as they imply an abrupt branching to a dynamically defined place in the code. Furthermore, programmers using exceptions have to be very careful that no exception may branch to an unwanted "default" handler that could lead to system termination, undesirable in mission-critical applications.

Real-Time behaviour and memory usage

Exceptions in Java is a fully dynamic feature so the real-time behaviour of the exception management has to be well assessed and understood by the programmer before its usage. Furthermore, usual Java habits to create an exception object each time an exception is thrown consumes too much RAM memory, and thus shall be replaced by a more static technique using predefined exception objects.

Initialisation

Java model vs embedded C

In classical embedded application, written in C, programmers usually bring the system to a well-defined "initial" state before the application is actually "started". Initialisation of Java components follow an non-classic sequence, as some classes can be already executing whereas some are not even loaded in memory. As a consequence, in order to characterise the "initial" state of an application, and thus to warranty the reproducibility of the system behaviour, the programmer will have to set up specific programming techniques that will force a predictable execution ordering.

Memory management

Memory usage in Java

Current mainstream Java programmers are used to relying mostly on the Garbage Collector to manage the usage of RAM memory by their application. Indeed, most JVMs don't provide a clear view of the usage of RAM memory. In order to apply Java to constrained embedded systems, the programmer has to both use appropriate programming techniques (such as: usage of optimized basic libraries, object reuse…) and have some tools associated with the JVM to control the RAM usage by his application, in order to minimise the cost of the execution platform.

Dynamic downloading and low-cost systems

Classical Java systems need to execute Java programs from the RAM memory, as every class of the application is loaded dynamically. In low-cost embedded systems, this approach may be unacceptable, as RAM memory is far more expensive than Flash memory for instance. The consequence is that JVMs targeting low-cost applications have to be able to execute Java code from read-only memory, which implies to change the file format for class description, and use either a more optimised one such as JEFF (ISO/IEC 20970) or compiled native code. Then programmers will limit dynamic loading only to parts of the applications that can actually change during application execution.

Native interface

Java Native Interface

Since the first versions of classic Java, the need for interaction of Java components with components written in other languages (e.g. the C language) has been identified and addressed in the JNI (Java Native Interface). But this interface is sometimes too complex as regards the needs of low-cost embedded systems. The possibility to perform any kind of action on objects from the native world ended up in a so highly dynamic interface that its performance for constrained systems is not acceptable. As a consequence, nearly every embedded Java environment provider comes up with a (proprietary) dedicated interface. Standardisation of a light Java Native Interface is suitable.

Embedded systems requirements

In embedded systems, where reusability of components is a key factor for mature development process, the possibility to reuse efficiently existing components (ex: device drivers written in C), or to optimise some critical parts of the code by writing them in C or assembly language (ex: encryption algorithm) is mandatory to accept the usage of Java. Thus an embedded system programmer should be careful on the native interface provided by its environment, so that it fulfils his needs. This figure presents the flow of application data in the programming environment, green boxes are the part provided by the AJACS environment prototype. It isn't an industry-qualified environment, as these parts should be re-written by a compiler provider, instead of an university.

AJACS car body demonstrator

Together with PSA Peugeot-Citroën, Trialog developed a car body demonstrator, see picture below: This prototype gathers several off-the-shelf body components such as Citroën XM levers, Citroën C5 lights, Peugeot 307 dashboard around a prototype ISU, Intelligent Service Unit (or BSI, "Boîtier de Servitude Intelligent" in French). This prototype allowed us to validate our design by developing true car body applications in Java and run them successfully in a representative environment of automotive systems. Lessons learned during this development were our main input for uncovering and tackling the technical issues cited in the preceding part. Typically the importance of dedicated I/O management and efficient native interface.

Further steps for Embedded and Real-Time Java

International initiatives

Since the early beginnings of the Java language, its adaptation to develop real-time and embedded systems has been discussed in the developers community. Till the end of the work performed in AJACS, two major international initiatives led the discussion concurrently: the Real-Time Java Expert Group and the J Consortium, supporting respectively the Real-Time Specification for Java (RTSJ) and the Real-Time Core specifications. Besides those attempts, main Java development environments dedicated to embedded applications are based on proprietary extensions or dedicated profiles such as MIDP (Mobile Information Device Profile) in mobile phones, which don't follow any of these real-time specifications. This division prevented the usage of Java in real-time systems from reaching its maturity, as no serious development could be made on a potential stillborn standard. Now a true effort is being made to reach an agreement on a basic standard (likely to be a RTSJ evolution) associated to well-adapted profiles for each intended applications. Current work include for example a Java Specification Request (JSR) on "Mission and Safety Critical applications" under the Open Group aegis.

Conclusion

Implementation of embedded applications evolve. For a long time focused on satisfying timing and performance constraints on homogeneous problems, the development process could keep with writing a whole piece of code, written with the ADA language for critical applications or proprietary solutions based on the C/C++ languages. Now the complexity of embedded and/or real-time systems has tremendously increased and this classical approach cannot deal with their complex, heterogeneous requirements. So the embedded world needs a way to master this complexity, and this will have a huge impact on the development process:

• First, the main goal of the development process shall be to obtain a well-organised software, of course still fulfilling the adequate time and performance constraints, but also having the capacity to evolve.

Component-based approach can be the key to reach this new goal. • Second, sometimes classical implementation languages are not suited to handle this new approach, developers may need a new reference environment, preferably common with information systems: this could be Java.

The Java language, boosted by its assets such as robustness, portability and ability to cooperate with existing components written in the C language, is leading smoothly its revolution. The work performed in AJACS was basically oriented on automotive applications which, apart from telematic applications, are still too constrained to accept Java. But already other application domains such as mobile phone, payment terminals or safety systems for buildings adopted Java for its numerous advantages. That is the reason why we can expect a breakthrough of this language in a wider range of real-time systems. As soon as its real-time management capability has reached a good level of maturity… Anyway, the current trend in complex software development shows that the implementation phase, thus the language used, is not the most crucial aspect, the key for success. One shall not forget that a component-based approach, a good mastering of complexity, is more an architecture problem: a good implementation language is the one that better serves this architecture. In some cases it will be Java.

Bibliography

(1) Java dans les systèmes embarqués et temps-réel. Xavier Cornu. Techniques de l'ingénieur, recueil "Informatique Industrielle" Ref. S8068. To be published early 2004.

(2) The Java Tutorial. Third Edition. Mary Campione, Kathy Walrath, Alison Huml. Addison-Wesley. April 2001. (3) Concurrent Programming in Java : Design principles and Patterns. Doug Lea. Addison-Wesley. 1996-99. (4) The Java Language Specification. Second Edition. James Gosling, Bill Joy, Guy Steele, Gilad Bracha. Addison-Wesley. 2000. (5) The Emperor's Old Cloths. The 1980Turing Award Lecture. C.A.R Hoare. CACM. February 1981. (6) Essential JNI : Java Native Interface. Rob Gordon. Prentice Hall. 1998. (7) The Java Virtual Machine Specification. Tim Lindholm, Frank Yellin. Addison-Wesley. 1997. (8) Rajesh Gupta. UC Irvine. Winter 2002. Internet: www1.ics.uci.edu/~rgupta/ics212/w2002/intro.pdf (9) OSEK / VDX Specifications. Internet: www.osek-vdx.org (10) JSR-000001 The Real-Time Specification for Java. The Real-Time for Java Expert Group. Addison Wesley. 2001. Available on Internet: www.rtj.org (11) Real Time Core Extensions for the Java Platform -Draft 1.0.14. J Consortium. May 30 th 2000. Internet: www.j-consortium.org (12) Fixing the Java Memory Model. Bill Pugh. 1999. Internet: www.cs.umd.edu/~pugh/jmm.pdf (13) JEFF File Format Specification v1.0. J Consortium. ISO / IEC 20970. March 2002.

S

 Se es ss si io on n 5 5B B: : O Ob bj je ec ct ts s--O Or ri ie en nt te ed d L La an ng gu ua ag ge es s a an nd d M Mo od de el ls s TO AUTOMOTIVE CONTROL SYSTEMSSession 5B: Object-Oriented Languages and Models Executive summary: This paper presents the conclusions of AJACS (Applying Java to Automotive Control Systems, http://www.ajacs.org), a 2.5 years European initiative 1 including Trialog and PSA Peugeot-Citroën, aiming to specify, develop and demonstrate an open technology allowing the use of Java in deeply embedded automotive control systems running on top of OSEK / OS.

Figure 2 :

 2 Figure 2: PSA car body demonstrator for AJACS

-22 -23 January 2004

Participants to AJACS were Trialog (leader), PSA, CRF (Fiat), University of Karlsruhe and Mecel.

DPTA

AJACS achievements

High Integrity Profile for Automotive (HIPA) Specification

Within the J Consortium, AJACS chaired the HIPA group which defined a High Integrity Profile Specification adapted to highly constrained automotive systems: both hard real-time and small footprint were addressed. The result is a specification based on a subset of the Real-Time Core Specification from the J Consortium, with the following main adaptations:

• the embedded world does not coexist with a classical Java world,

• the thread model is replaced by OSEK/VDX-compliant task management,

• applications are basically static: most entities are known at design time.

This specification cannot be considered as directly applicable to an industrial project, due to the particular context of the Real-Time Core specification which still lacks standardisation, but the work done is a good starting point for a specification that would address highly constrained embedded systems.

AJACS development environment

The