
HAL Id: hal-02275417
https://hal.science/hal-02275417

Submitted on 30 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault diagnosis based on identified discrete-event models
Marcos V Moreira, Jean-Jacques Lesage

To cite this version:
Marcos V Moreira, Jean-Jacques Lesage. Fault diagnosis based on identified discrete-event models.
Control Engineering Practice, In press, 91, Paper N° 104101. �hal-02275417�

https://hal.science/hal-02275417
https://hal.archives-ouvertes.fr

Fault diagnosis based on identified discrete-event models

Marcos V. Moreiraa, Jean-Jacques Lesageb

aUniversidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Elétrica, 21949-900, Rio de Janeiro, R.J., Brazil (e-mail:
moreira.mv@poli.ufrj.br)

bLURPA, ENS Paris-Saclay, Univ. Paris-Sud, Université Paris-Saclay, 94235 Cachan, France (e-mail:
jean-jacques.lesage@ens-paris-saclay.fr)

Abstract

Fault diagnosis of Discrete-Event Systems consists of detecting and isolating the occurrence of faults within a bounded
number of event occurrences. Recently, a new model for discrete-event system identification with the aim of fault
detection, called Deterministic Automaton with Outputs and Conditional Transitions (DAOCT), has been proposed in
the literature. The model is computed from observed fault-free paths, and represents the fault-free system behavior. In
order to obtain compact models, loops are introduced in the model, which implies that sequences that are not observed
can be generated leading to an exceeding language. This exceeding language is associated with possible non-detectable
faults, and must be reduced in order to use the model for fault detection. After detecting the fault occurrence, its
isolation is carried out by analyzing residuals. In this paper, we present a fault diagnosis scheme based on the DAOCT
model. We show that the proposed fault diagnosis scheme is more efficient than other approaches proposed in the
literature, in the sense that the exceeding language can be drastically reduced, reducing the number of non-detectable
fault occurrences, and, in some cases, reducing also the delay for fault diagnosis. A practical example, consisting of a
plant simulated by using a 3D simulation software controlled by a Programmable Logic Controller, is used to illustrate
the results of the paper.

Keywords: Fault diagnosis, System identification, Discrete-event systems, Finite automata, Black-box identification.

1. Introduction

The problem of fault diagnosis, i.e., the detection and
isolation of faults, has received considerable attention from
the scientific community over the last years. In [27], a
discrete-event approach for fault diagnosis is introduced,
and since then, several works have been proposed for fault
detection and isolation, and also for the verification of di-
agnosability of the system, i.e., the capability of identi-
fying the occurrence of a fault event within a bounded
number of event occurrences [11, 22, 20, 8, 9, 7, 6, 5, 28].
In all these works, it is assumed that the complete system
behavior is known, i.e., the system behavior before and
after the occurrence of fault events.

Although methods for fault diagnosis based on the com-
plete system behavior can be successfully applied to small
systems, they are difficult to be implemented on large and
complex systems for the following reasons: (i) in general,
large automated systems are composed of several compo-
nents, whose models and interactions between these mod-
els, are difficult or even impossible to be obtained; (ii) the
modeling process requires engineers that know the com-
plete plant behavior, and are also familiar with discrete-
event modeling techniques; (iii) the post-fault behavior of
the system is difficult to be predicted due its size and com-
plexity; and (iv) only predefined faults can be detected by
the diagnoser computed considering the complete behavior

of the system.
Since expert building of behavioral models is error-

prone and highly time consuming, an alternative way is to
obtain a model by identification. Analogously to continu-
ous systems identification techniques [1, 17], identification
methods for DES aims at yielding a mathematical model
which closely approximates the actual system behavior,
from data observing during the system functioning. In the
case of DES, the data observed during the system function-
ing are sequences of binary events, and identified models
are abstract machines, like Petri nets or finite automata.
Several works in the literature propose identification meth-
ods based on automata or Petri nets for different purposes
[18, 4, 13, 12, 14, 2, 15]. The majority of these works ad-
dress the problem of identifying Petri net models that are
not suitable for fault diagnosis. A method for the identi-
fication of a Petri net model suitable for fault diagnosis is
proposed in [3]. In [3], the faulty behavior of the system
is identified based on the observation of the events gener-
ated by the system, and it is assumed that the fault-free
model is known. Thus, the method proposed in [3] does
not address the problem of obtaining large and complex
fault-free models of DES.

Fault diagnosis techniques based on an identified fault-
free model of the system have been proposed in [16], [25],
[24], and [26]. In these works, the two main ideas are: (i)

Preprint submitted to Elsevier August 29, 2019

Controller

Plant

SensorsActuators

Observed
signals

commands to actuators
(controller outputs)

signals from sensors
(controller inputs)

Figure 1: Closed-loop discrete-event system

to automate the process of obtaining the fault-free model
of the system by using identification; and (ii) when a fault
has been detected through a discrepancy between the sys-
tem behavior and the model, to use a technique based on
residuals for fault isolation.

In [16], a monolithic model for fault detection, that is
capable of representing the behavior of a closed-loop sys-
tem, is proposed. This model is non-deterministic with
state outputs, and has been called Non-Deterministic Au-
tonomous Automaton with Output (NDAAO). The
NDAAO is obtained from observed sequences of binary
signals exchanged between the plant and the controller
(sensor signals emitted by the plant and actuator com-
mands generated by the controller), as shown in Figure
1. In [16], it is shown that the identified NDAAO gen-
erates all observed sequences of signals used in the iden-
tification process. Furthermore, a trade-off between size
and accuracy of the identified model can be found thanks
to an adequate adjustment of the parametric algorithm
used for identification. Indeed, for reducing the size of
the model, equivalent states are merged, what introduces
loops in the NDAAO, generating sequences that have not
been observed. This exceeding language can increase the
number of non-detectable faults of the system, and may
prevent the fault detection scheme to be implemented. In
order to deal with this trade-off, in [16], a free parameter
k is used to compute the NDAAO, and it is shown that
the NDAAO is k + 1-complete in the sense of [19], i.e.,
a sequence of signals of length smaller than or equal to
k + 1 belongs to the identified NDAAO if, and only if, it
is observed in the system.

In [25] and [26] the fault detection strategy proposed in
[16] is extended to systems with a high degree of concur-
rency. As in [16], the NDAAO is used, and the same trade-
off between model size and accuracy is observed in these
works. Moreover, a fault isolation strategy is proposed
based on the computation of residuals that are associated
with the observed changes of signals that are not expected
by the model, and the changes that are expected but are
not observed in the system. From the residuals, possible
justifications for the fault occurrence are obtained, reduc-
ing the effort of maintenance of the faulty equipments.

Recently, in [21], a new model for discrete-event sys-
tem identification, that is more efficient for fault detection
than the model presented in [16, 25, 26], called Determinis-

tic Automaton with Outputs and Conditional Transitions
(DAOCT), has been proposed. The exceeding language
generated by the DAOCT is reduced in comparison with
the exceeding language generated by the NDAAO, due to
a path estimation function that is added to the model. In
particular, if the identified DAOCT does not have cyclic
paths, then there is no exceeding language. As in [16], in
[21] it is assumed that the binary input and output signals
of the controller are measured, generating the observed
fault-free paths of the system. Using this information,
the DAOCT is computed. The DAOCT also satisfies the
property of k + 1-completeness, if sequences of observed
signals are considered, or, equivalently, k-completeness if
sequences of events are considered.

In this paper, we propose a fault diagnosis scheme
based on the DAOCT model presented in [21]. We show
that the proposed scheme is more efficient than the meth-
ods presented in [16] and [24], for the monolithic case,
in the sense that the exceeding language of the DAOCT
model obtained by using our fault detection strategy can
be greatly reduced in comparison with the exceeding lan-
guage obtained by using the NDAAO model. This leads
to a reduction in the number of non-detectable fault oc-
currences, improving the efficiency of the fault detection
method. Since the fault detection strategy proposed in this
work uses more information about the fault-free behavior
of the system than the method proposed in [16] and [24],
then the delay for fault detection can also be reduced. In
addition, due to the use of some specific information about
the observed paths in the fault detection scheme, the resid-
uals can be refined, indicating more precisely the possible
justifications to isolate the fault. A practical example,
consisting of a plant simulated using a 3D simulation soft-
ware and controlled by a Programmable Logic Controller,
is used to illustrate the results of the paper.

This paper is organized as follows. In Section 1.1, we
present the contributions of the paper with respect to pre-
liminary results obtained in other works. In Section 2, we
present some preliminary concepts and the basic ideas of
fault diagnosis based on the fault-free behavior of the sys-
tem. In Section 3, we formulate the problem of system
identification with the aim of fault detection, and in Sec-
tion 4, we introduce the DAOCT model for system identifi-
cation. In Section 5 we present the fault detection scheme,
and in Section 6, we present the fault isolation method. In
Section 7, we present a practical example to illustrate the
results of the paper. Finally, in Section 8, the conclusions
are drawn.

1.1. Preliminary results

In [21], the DAOCT model is introduced for fault de-
tection, and the language generated by the DAOCT is
defined based on the feasible events of the states of the
model and on a path estimation function that estimates
the observed paths that may have been executed after the
transposition of each transition of the model. Then, in
[21], it is shown that the exceeding language generated by

2

the DAOCT model can be drastically reduced in compar-
ison with the exceeding language of the NDAAO model,
which shows that the DAOCT model is more suitable for
fault detection than the NDAAO model. However, since
the DAOCT model performs a path estimation after the
observation of each event executed by the system, it must
be reinitialized all time when it reaches its initial state.
The reinitializability of the model is essential for the use
of the DAOCT model for fault detection, and this problem
has not been addressed in [21]. In this paper, we define
the reinitializability property of the model, and we present
conditions to verify if the identified model is reinitializable.

A fault detection algorithm using the DAOCT model
is also not presented in [21]. In this paper, we present
the fault detection algorithm, and it is shown that two
new conditions for fault detection can be introduced, re-
ducing even more the exceeding language of the DAOCT
model presented in [21]. This fact shows that the use of
the DAOCT model with the fault detection algorithm pro-
posed in this paper can be more efficient for fault detection
than it was supposed in [21].

The new fault detection scheme proposed in this paper
can also lead to a more accurate fault isolation. In order
to show this fact, we use the fault isolation scheme pro-
posed in [24] with our method for fault detection, and we
show that the fault isolation has been improved using the
DAOCT model with the new fault detection algorithm. It
is important to remark that fault isolation is not addressed
in [21].

Finally, differently from [21], we present a practical
example simulated in a virtual plant simulation software
to illustrate the fault diagnosis method proposed in the
paper.

2. Preliminaries

2.1. Notation and Definitions

Let G = (X,Σ, f, x0, Xm) denote a deterministic au-
tomaton [10], where X is the set of states, Σ is the finite
set of events, f : X × Σ? → X is the transition function,
where Σ? is the Kleene-closure of Σ, x0 is the initial state
of the system, and Xm is the set of marked states.

The language generated by G is defined as L(G) =
{s ∈ Σ? : f(x0, s)!}, where ! denotes is defined. The prefix-
closure of a language L is defined as L = {s ∈ Σ? : (∃t ∈
Σ?)[st ∈ L]}. Note that the language generated by G is
prefix-closed by definition.

The function of feasible events Γ : X → 2Σ, is defined
as Γ(x) = {σ ∈ Σ : f(x, σ)!}.

The set of all subsequences of a sequence s ∈ Σ? is
defined as Sub(s) = {w ∈ Σ? : (∃t, w, v ∈ Σ?)(s = twv)}.

A path p of an automaton G is a sequence of states
and events that can be executed by the system, i.e., a path
p = (x1, σ1, x2, σ2, . . . , σl−1, xl) is feasible in G if, and only
if, xi ∈ X, for i = 1, 2, . . . , l, σi ∈ Σ, for i = 1, 2, . . . , l− 1,
and f(xi, σi) = xi+1, i = 1, . . . , l − 1. The length of a

Figure 2: Model-based diagnosis based on a fault-free model.

path is defined as the number of vertices in the path, and
is denoted here as ‖p‖. Thus, ‖p‖ = l. A path is said to
be cyclic if xl = x1.

Let P be a set of paths, and define function ψ : P →
Σ?, that extracts from a path p ∈ P , the sequence of events
associated with p. Thus, if p = (x1, σ1, x2, σ2, . . . , σl−1, xl),
then ψ(p) = σ1σ2 . . . σl−1.

The length of a sequence of events s ∈ Σ? is denoted
as |s|.

The set of non-negative integers is denoted by N, and
the set formed only with 0 and 1 is denoted by N1 = {0, 1}.

The difference between two sets A and B is denoted by
A \B.

2.2. Fault diagnosis based on the fault-free behavior of the
system

In order to deal with the problem of fault diagnosis of
large automated systems, whose complete behavior can be
very difficult or even impossible to be obtained, mainly
the post-fault behavior, some works in the literature pro-
pose the identification of the fault-free behavior of the sys-
tem. The fault diagnosis system compares the sequences of
events or input/output (I/O) vectors formed of the signals
of sensors and actuators, and declares the occurrence of
a fault when there is a discrepancy between the observed
behavior and the predicted behavior described by the iden-
tified model, as shown in Figure 2. After the fault has been
detected, a comparison between the observed signals and
the expected signals according to the model is carried out,
generating residuals, that are used to isolate the fault.

In this paper, we propose a fault diagnosis scheme
based on the identified fault-free behavior of the system. In
addition, differently from the traditional approaches that
provide necessary and sufficient conditions for the diagnos-
ability of fault events, in this paper we address the problem
of diagnosing fault occurrences, since the occurrence of a
fault in a given system state can be detectable, while the

3

occurrence of the same fault event in a different state can
be non-detectable. Indeed, we cannot address the diag-
nosability verification problem since we do not identify or
model the post-fault behavior of the system, and we also
do not specify which fault must be detected. The main ad-
vantage of this approach is that not only predefined faults
can be detected, but any fault that leads the system to
execute a sequence of events that has not been observed
in the fault-free behavior.

In the fault diagnosis strategy proposed in this paper,
fault isolation is performed after the fault has been de-
tected, by analyzing the history of sequences of events ex-
ecuted by the system and the I/O vector of sensors and
actuators.

3. Discrete-event system identification with the aim
of fault detection

Let us consider the closed-loop system depicted in Fig-
ure 1, and assume that the controller has mi binary input
signals, ih, for h = 1, . . . ,mi, and mo binary output sig-
nals, oh, for h = 1, . . . ,mo. Let vector

u(t1) =
[
i1(t1) . . . imi

(t1) o1(t1) . . . omo
(t1)

]T
,

denote the observation of the controller signals at time
instant t1. Thus, vector u(t1) represents the I/O vector
of the system at a given time instant t1. As the sys-
tem evolves, the I/O vector of the system may change
due to changes in sensor readings or actuator commands.
Let us consider that there is a change in at least one of
the variables of u. Then, at the time instant immedi-
ately after this change, t2, a new vector u(t2) is observed.
Since, in this paper, we consider only untimed system
models, we may define the instantaneous changes in the
values of the controller signals as the system events, σ,
and represent the I/O vector of the system u(tj), by uj .
Thus, the transition from one vector of controller signals
u1 to another vector u2, is represented by the transition
(u1, σ, u2). If a sequence of l vectors of controller sig-
nals, and the corresponding changes in these signals, is
observed, we have an observed path of the system p =
(u1, σ1, u2, σ2, . . . , σl−1, ul).

The goal of system identification is to find a model that
is capable of describing the observed behavior of the sys-
tem. Let us consider that the observed paths of the system
are denoted as pi = (ui,1, σi,1, ui,2, σi,2, . . . , σi,li−1, ui,li),
for i = 1, . . . , r, where r is the number of observed paths,
and li is the number of vertices of each path pi. Let
us also assume that all paths start at the same vertex,
i.e., all I/O vectors ui,1, for i = 1, . . . , r, are equal, and
that some paths can be cyclic, i.e., ui,li = ui,1 for i ∈
{1, . . . , r}, representing that the system is cyclic. Thus,
associated with each path pi there is a sequence of events
si = ψ(pi) = σi,1σi,2 . . . σi,li−1, where ψ : P → Σ? with
P = {p1, . . . , pr}, and a sequence of output vectors ωi =

LOrig LIden

LObs
LOrigNI LExc

Figure 3: Relation between the languages LOrig , LIden, LExc, and
LOrigNI .

ui,1ui,2 . . . ui,li . The following assumption is considered in
the paper.

A1. None of the paths pi has an associated sequence
of events si = ψ(pi) that is a prefix of the sequence of
events of another path pj , sj = ψ(pj), where i 6= j, and
that all cyclic paths can occur repeatedly in the system,
and in any order.

The following definition of the language observed by
the system can be stated:

LObs :=

r⋃
i=1

{si}. (1)

Since the objective of system identification is to find a
model that simulates the observed behavior described by
LObs, then the language generated by the identified model,
LIden, must satisfy LObs ⊆ LIden. This relation between
LObs and LIden is depicted in the diagram of Figure 3.

In a finite time, only part of the sequences of events
that the system can generate can be observed, which means
that LObs ⊂ LOrig, where LOrig denotes the never known
language generated by the system. The relation between
the observed language and the original language generated
by the system is also described in the diagram of Figure 3.

As it can be seen in Figure 3, two other languages can
be defined: (i) LExc = LIden \ LOrig; and (ii) LOrigNI =
LOrig\LIden. LExc represents the sequences of events that
can be generated by the identified automaton but do not
belong to the original system behavior. Since the fault de-
tection strategy is based on the observation of events and
comparison with the sequences generated by the model, if
a sequence of events that is not in the original fault-free
system is observed and is in the language of the identified
model, then the fault occurrence is not detected. Thus,
LExc are formed of faulty sequences that cannot be de-
tected by the fault detection system. On the other hand,
LOrigNI is associated with the sequences that are in the
original fault-free system, but are not identified because
the paths associated with these sequences have not been
observed. The sequences of events of LOrigNI are asso-
ciated with false alarms generated by the fault detection
system. Clearly, both languages must be reduced in order
to obtain an efficient fault detection scheme.

4

In [16], it is shown that if a sufficiently large number of
controller vectors are observed, then there exists a num-
ber n0 ∈ N such that the difference L≤n0

Orig \ L≤n0

Obs ≈ ∅,
where L≤n0

Orig and L≤n0

Obs denote the sets formed of all se-
quences of events of length smaller than or equal to n0 of
LOrig and LObs, respectively. Thus, since LObs ⊆ LIden,
the subset of LOrigNI formed of all sequences of events of

length smaller than or equal to n0, L≤n0

OrigNI , is also approx-

imately the empty set. Let us assume that L≤n0

OrigNI = ∅,
which happens if all paths of length smaller than or equal
to n0 + 1, or equivalently all sequences of length smaller
than or equal to n0, have been observed (see Figure 3).
Then, all sequences of events of length smaller than or
equal to n0 that does not belong to the identified model
are faulty sequences, and the fault detection system will
not raise false alarms. This assumption is formalized as
follows.

A2. All paths of length n0 + 1 of the original system
are observed, and, consequently, L≤n0

OrigNI = ∅.
The goal of Assumption A2 is to reduce the number

of false alarms raised by the fault detection system. It is
important to remark that this assumption is not restrictive
for the fault detection method proposed in the paper, i.e.,
even if A2 is not true, the fault detection algorithm can
still be used.

In [21], the definition of k-completeness based on se-
quences of events is presented. In order to present this
definition, let us first define the set of all observed paths
P := {pi : i ∈ R}, where R = {1, 2, . . . , r}, and the lan-
guage formed of all observed subsequences of events of
length n, as follows:

Ln
S,Obs := {s ∈ Σ? : (|s| = n)[∃i ∈ R, s ∈ Sub(ψ(pi))]},

where ψ : P → Σ?.

Definition 1. A model is said to be k-complete if for all
n ≤ k, Ln

S,Obs = Ln
S,Iden, where Ln

S,Iden is the set formed of
all subsequences of events of the identified model of length
n. �

In the next section, the model proposed in [21] for the
identification of DES with the aim of fault diagnosis is
presented.

4. Deterministic Automaton with Outputs and Con-
ditional Transitions

In [21], a modified automaton model that is suitable
for fault diagnosis is proposed. The modified automaton is
deterministic, with a state output function, and the tran-
sitions must satisfy a condition to be transposed associ-
ated with the observed paths used to construct the model.
This automaton is called Deterministic Automaton with
Outputs and Conditional Transitions (DAOCT), and is
formally defined as follows.

Definition 2. A Deterministic Automaton with Outputs
and Conditional Transitions (DAOCT) is the eight-tuple:

DAOCT = (X,Σ,Ω, f, λ,R, θ, x0),

where X is the set of states, Σ is the set of events, Ω ⊂
Nmi+mo

1 is the set of I/O vectors, f : X × Σ? → X is
the deterministic transition function, λ : X → Ω, is the
state output function, R = {1, 2, . . . , r} is the set of path
indices, θ : X × Σ → 2R is the path estimation function,
and x0 is the initial state. �

The sets of events and I/O vectors associated with each
observed path pi, i = 1, . . . , r, are denoted in this paper,
respectively, as Σi and Ωi. Thus, the set of events and the
set of I/O vectors of the identified model are, respectively,
Σ = ∪ri=1Σi and Ω = ∪ri=1Ωi.

The DAOCT is obtained from the observed paths pi,
i = 1, . . . , r, and, as in [16], a free parameter k is used
to construct the identified model. In order to do so, it is
first computed modified paths pki from paths pi such that
the vertices of pki are sequences of I/O vectors of length at
most equal to k as follows:

pki = (yi,1, σi,1, yi,2, σi,2, . . . , σi,li−1
, yi,li), (2)

where

yi,j =

{
(ui,j−k+1, . . . , ui,j), if k ≤ j ≤ li
(ui,1, . . . , ui,j), if j < k

. (3)

Note that the sequence of events of pki is equal to the se-
quence of events of path pi. Thus, the unique difference
between pi and pki is that each vertex of pki is now asso-
ciated with a sequence of vectors instead of a single I/O
vector. According to the algorithm for the construction of
the identified model presented in [21], each state x ∈ X
of the DAOCT is associated with a different vertex of the
paths pki , such that |X| =

∑r
i=1 li. The labeling function

λ̃ : X → Ωk, where Ωk is formed of all sequences of sym-
bols of Ω of length smaller than or equal to k, is used in
[21] to associate to each state x ∈ X, a vertex of one of
the paths pki . Then, the output λ(x) is defined for each
state x ∈ X as the last I/O vector of λ̃(x).

Each transition x′ = f(x, σ) of automaton DAOCT
has a corresponding set θ(x, σ) of indices that is associ-
ated with the paths pi that contain transition (x, σ, x′).
Function θ is used in the DAOCT evolution rule to pro-
vide a path estimator, such that if the paths associated
with a transition are not coherent with the paths of the
observed sequence of events, then the transition is not en-
abled. This fact is clearly presented in the definition of the
language generated by the DAOCT. In order to present
the language generated by the DAOCT, it is first neces-
sary to extend the domain of function θ to consider the
execution of sequences of events, obtaining the extended
path estimation function θs : X × Σ? → 2R. θs can be

5

defined recursively as:

θs(x, ε) = R,

θs(x, sσ) =

 θs(x, s) ∩ θ(x′, σ), where x′ = f(x, s),
if f(x, sσ)!

undefined, otherwise.
(4)

The language generated by the DAOCT is given by

L(DAOCT) := {s ∈ Σ? : f(x0, s)! ∧ θs(x0, s) 6= ∅}. (5)

Note that a sequence of events s ∈ Σ? is only feasible in
the DAOCT, if f(x0, s) is defined, and there is at least
one path in the path estimate after the occurrence of s,
represented by condition θs(x0, s) 6= ∅.

Example 1. Let us consider a system with three binary
controller signals, and let us consider the observation of
three paths pi, i = 1, . . . , 3, given as:

p1 =

 1
0
0

, a,
 1

1
0

, b,
 0

1
1

, c,
 0

0
0

, d,
 0

0
1

, e,
 1

0
0

 ,

p2=

 1
0
0

, g,
 0
0
0

, h,
 1
1
0

, b,
 0
1
1

, c,
 0
0
0

, i,
 1
0
0

, j,
 0
1
1

, l,
 1
0
0

,
p3=

 1
0
0

,g,
 0
0
0

,h,
 1
1
0

,b,
 0
1
1

,i,
 1
1
1

,m,

 0
0
0

, d,
 0
0
1

, n,
 1
1
0

,
where each event is associated with the rising or the falling
edge of the controller signals. For instance, a, denotes the
rising edge of the second controller signal, and b, denotes
the simultaneous falling edge of the first controller signal
and the rising edge of the third controller signal.

Let us now compute identified models obtained accord-
ing to the method presented in [21]. In Figures 4 and 5,
we present the identified models, DAOCT1 and DAOCT2,
obtained by choosing k = 1 and k = 2, respectively. Note
that each transition is labeled with an event from Σ, and
a set associated with the paths pi where each transition is
defined, i.e., each transition (x, σ, x′), where x′ = f(x, σ),
of the identified model is labeled with σ and θ(x, σ). In
addition, notice that DAOCT2 is acyclic.

In order to illustrate the reduction in the exceeding
language by using the path estimation function θs, let us
consider that sequence s = abi has been observed. Note
that s 6∈ LObs. Let us also consider that Assumption
A2 is valid for n0 = 3, i.e., L≤3

Orig = L≤3
Obs. Then, if

s ∈ L(DAOCT), s belongs to the exceeding language LExc.
Note that transition function f(x0, s) is defined in both
models DAOCT1 and DAOCT2 of Figures 4 and 5, re-
spectively, which implies that it belongs to both identified
models without considering the path estimation function.
However, since θs(x0, s) = ∅ for both models DAOCT1 and
DAOCT2, then s 6∈ L(DAOCT1) and s 6∈ L(DAOCT2). �

x0 x1 x2 x3 x4

x5

e,{1} n,{3} h, {2, 3}

l,{2}
j,{2}
g,{2, 3}
i,{2}

i,{3}

m,{3}

a,{1} b,{1, 2, 3} c,{1, 2} d,{1, 3}

Figure 4: DAOCT1 computed in Example 1 considering k = 1.

x0 x1 x2 x3 x4 x5

a,{1} b,{1} c,{1, 2} d,{1} e, {1}

x6 x7 x11 x12 x13

x10x9x8

g,{2, 3}

h,{2, 3}

b,{2, 3} i,{3}

m,{3}

d,{3} n,{3}

i,{2}
j,{2} l,{2}

Figure 5: DAOCT2 computed in Example 1 considering k = 2.

In [21] it is shown that the DAOCT model simulates
the observed language of the system LObs, as stated in the
following theorem.

Theorem 1. LObs ⊆ L(DAOCT).

Proof. See [21]. �
In order to show that the identified DAOCT model

is k-complete, let us first define the language formed of
all subsequences of events of length n generated by the
DAOCT as follows:

Ln
S(DAOCT) := {s ∈ Σ? : (|s| = n)[∃xi ∈ X, f(xi, s)! ∧

θs(xi, s) 6= ∅]}.

Then, the following result can be stated [21].

Theorem 2. For a given value of k, the identified DAOCT
is k-complete, i.e., Ln

S(DAOCT) = Ln
S,Obs, for all n ≤ k.

Proof. See [21]. �
Theorems 1 and 2 show that the DAOCT model is

suitable for fault detection, since it simulates the observed
language, and any subsequence of length k belongs to the
DAOCT model if, and only if, it has been observed, i.e.,
the approximation of the observed language given by the
identified model can be made more accurate increasing the
value of k. However, the increase in the value of k, leads
to models with a higher number of states. Since a path
estimation function is used in the DAOCT model, in [21] it
is shown that it is possible to obtain more compact systems
using the DAOCT model than using the NDAAO model
proposed in [16], with less exceeding language. Thus, the
enhanced model proposed in [21] reduces the number of

6

non-detectable faults in comparison with the NDAAO. In
the next theorem we show that if the DAOCT does not
have cyclic paths, then LExc = ∅.
Theorem 3. If the identified DAOCT does not have cyclic
paths for a given value of k, then LExc = ∅.
Proof. See [21]. �

Let us introduce the language generated by the DAOCT
formed of all traces of length smaller than or equal to a
given value n as follows:

L≤n(DAOCT) :=

(
n⋃

i=0

Li
S(DAOCT)

)
∩ L(DAOCT).

According to Theorem 3, if k is chosen such that the
DAOCT does not have cyclic paths, then, LExc =
L(DAOCT) \ LOrig = ∅, and there is no non-detectable
faults. In addition, if Assumption A1 also holds, the ob-
served language L≤n0

Obs is equal to the original system lan-

guage L≤n0

Orig, and there is no false alarms for all observed
traces of length smaller than or equal to n0. Thus, under
both assumptions, L≤n0(DAOCT) = L≤n0

Orig.
In the next section we introduce the fault detection

method based on the DAOCT model, and we show that the
exceeding language associated with the identified model
can be reduced by considering two other conditions asso-
ciated with the counting of event observations.

5. Fault detection scheme

In this section, we show how to use the identified
DAOCT model for fault detection. As shown in Theo-
rem 1, the DAOCT simulates language LObs formed of all
sequences of events observed in the identification proce-
dure. Thus, as long as the events of a sequence s = ψ(pi),
where pi is an observed path of the system, are executed
by the system, the fault detector observes the events, and
plays the model following the behavior of s. After sequence
s = ψ(pi) has been observed, the model is reinitialized and
a new sequence can be played by the fault detector. Let
us call the sequence of events that is played by the fault
detector without reinitializing the model as a model run.
Thus, the fault detector must evaluate if the current model
run corresponds to one of the sequences in LObs. If the sys-
tem generates an event that is not expected in the model,
the fault is detected.

We show in the sequel that it is possible to reduce the
exceeding language associated with the identified model
by using additional information provided by the fault-free
paths used in the identification process.

Example 2. Let us consider the identified model
DAOCT 1, depicted in Figure 4, computed from the fault-
free paths p1, p2 and p3, presented in Example 1, consid-
ering k = 1. We show in the sequel two cases in which it
is possible to identify sequences in language L(DAOCT1)
that do belong to the observed language LObs:

1) Note that each path p1, p2, and p3 of Example 1
can be distinguished from the other paths after a bounded
number of event observations. Let ni denote the minimum
number of event observations such that path pi can be dis-
tinguished from all other paths pj, i 6= j, and j = 1, 2, 3. In
this example, we have that n1 = 1, n2 = 4, and n3 = 4. Let
us consider now that sequence s = gi has been observed.
Note that f(x0, s) is defined and that θs(x0, s) = {2}.
Thus, according to Equation (5), s ∈ L(DAOCT1). How-
ever, since the minimum number of event observations to
uniquely identify path p2 is equal to n2 = 4, and only two
events have been observed, then we are certain that path
p2 is not being executed by the closed-loop system. Thus,
we are certain that s 6∈ LObs, and a fault occurrence can
be detected by using this information.

2) Note that each path pi must reach its last vertex
ui,li after the observation of li − 1 events. Let us consider
path p2. In this case, we have that u2,l2 = λ(x0), and
l2 = 8, which means that state x0 must be reached after 7
event observations if path p2 is observed. Suppose now that
sequence s = ghbchbc has been observed. Note that f(x0, s)
is defined and θs(x0, s) = {2}. Thus, s ∈ L(DAOCT1).
However, from the transition diagram of Figure 4, it can
be seen that state x3 is reached after the occurrence of s,
and not state x0 as expected. Thus, we are certain that
path p2 has not been executed by the system, and a fault
occurrence can be detected by using this information. �

Example 2 shows that it is possible to derive two con-
ditions associated with the observed fault-free paths used
in the identification process, that can be easily checked by
counting the number of event occurrences. In the first case,
the minimum number ni of event observations to distin-
guish the observed path pi from the other paths pj , j ∈ R
and i 6= j, is used. It is important to remark that, since it
is assumed that each trace si = ψ(pi) cannot be a prefix
of another trace sj = ψ(pj), where i 6= j and i, j ∈ R,
then there always exists a number 0 < ni < li associated
with each path pi. Thus, if path pi is wrongly estimated
as the unique possible path before ni event occurrences,
then the fault is detected. In the second case, if the final
vertex yi,li of the estimated path pi is not reached after
li − 1 event occurrences, then the path estimate is wrong
and the fault has occurred. Based on these observations,
we may state the following definition.

Definition 3. Let s ∈ Σ? be a model run such that x =
f(x0, s). Then, an event σ ∈ Σ is said to be viable in state
x ∈ X of the DAOCT model, if it satisfies the following
four conditions:

C1. σ ∈ Γ(x);

C2. θs(x0, sσ) 6= ∅;

C3. If |θs(x0, s)| > 1 and θs(x0, sσ) = {i}, then |sσ| ≥
ni;

7

C4. If |sσ| = li − 1, for i ∈ θs(x0, sσ), then λ̃(x′) = yi,li ,
where x′ = f(x, σ), or there exists j ∈ θs(x0, sσ)
such that |sσ| < lj − 1. �

Conditions C1 and C2 guarantee that sσ∈L(DAOCT).
If Condition C3 is not true, then path pi is identified before
the minimum number ni of events that must be observed
in order to estimate it. Thus, a fault has occurred. Fi-
nally, if Condition C4 is not true, then the length of the
observed trace sσ is equal to the maximum length among
all sequences of the estimated paths in θs(x0, sσ), with-
out reaching the final vertex of any of these paths, which
implies that a fault has occurred.

The basic idea of the fault detection scheme is to com-
pare the viable events of the identified fault-free model
with the observed events. If the observed event does not
satisfy conditions C1-C4 to be viable, then the fault is
detected. In the sequel, we present the fault detection al-
gorithm. In order to do so, it is necessary to define sets
V = {(i, yi,li) : i ∈ R}, and N = {(i, ni) : i ∈ R}.

Algorithm 1. Fault detection algorithm

Input: Identified DAOCT model, λ̃, V , N .
Output: Fault detection.

1: Define the current state of the DAOCT model xc =
x0

2: Define the current path estimate θs,c = {1, 2, . . . , r}

3: Define the counter of event observations c = 0

4: Wait for the next event observation σ ∈ Σ

5: c← c+ 1.

6: if σ 6∈ Γ(xc) then

7: Fault detected

8: Stop the algorithm

9: end if

10: Define θs,n = θs,c ∩ θ(xc, σ)

11: if θs,n = ∅ then

12: Fault detected

13: Stop the algorithm

14: end if

15: if |θs,n| = 1 and |θs,c| > 1 then

16: Find the pair (i, ni) ∈ N such that θs,n = {i}

17: if ni > c then

18: Fault detected

19: Stop the algorithm

20: end if

21: end if

22: Define state xn = f(xc, σ)

23: Define set Λ = {li : i ∈ θs,n}

24: if there exists li ∈ Λ such that c = li − 1, λ̃(xn) =
yi,li , and ui,li = ui,1 then

25: θs,c ← {1, 2, . . . , r}

26: xc ← x0

27: Go to line 3

28: end if

29: if there exists li ∈ Λ such that c = li − 1, λ̃(xn) =
yi,li , and ui,li 6= ui,1 then

30: xc ← xn

31: θs,c ← ∅

32: Go to line 4

33: end if

34: if maxlj∈Λ lj = c+ 1 then

35: Fault detected

36: Stop the algorithm

37: end if

38: Define θ′s,n = {i ∈ θs,n : li = c+ 1}

39: θs,n ← θs,n \ θ′s,n
40: xc ← xn

41: θs,c ← θs,n

42: Go to line 4

The fault detection procedure works as follows. Lines
1 to 3 initializes the current state xc of the DAOCT model
to x0, the current path estimate θs,c to R, and an integer
variable c, that counts the number of event observations,
to 0. In line 4 we wait for the next event observation
σ ∈ Σ, and when it occurs, in line 5 we update the value
of counter c. In lines 6 to 9, Condition C1 of Definition
3 is verified, and if σ is not in the feasible event set Γ(xc)
of the DAOCT, the fault is detected and the procedure
stopped. In lines 10 to 14, Condition C2 is verified, and
the fault is detected if the observed sequence of events
does not belong to any path pi used in the construction
of the DAOCT model, i.e., θs,n = ∅. In lines 15 to 21,

8

Condition C3 of Definition 3 is checked. Since each path
pi, for i = 1, . . . , r, can be distinguished after the occur-
rence of ni events from all other paths pj , j 6= i, then
if pi is the unique path in the path estimation function
θs before ni event observations, then it corresponds to an
non-viable sequence of observed events, and the fault is
detected. In lines 22 to 28, the model is reinitialized if one
of the estimated paths pki , associated with a cyclic path
pi, where i ∈ θs(xc, σ), has reached its final vertex yi,li ,
after the observation of li − 1 events. In order to do so,
it is verified if for counter c = li − 1, the sequence of out-
put vectors associated to xn, λ̃(xn), is equal to yi,li , and
if ui,li = ui,1. The information of the sequences yi,li , for
i = 1, . . . , r, is obtained from set V . In lines 29 to 33, it
is verified if a path pki associated with a non-cyclic path
pi has reached its final state, i.e., the system has reached
a predicted deadlock. If it is true, then the current state
xc is updated to xn, and the path estimate θs,c is defined
as the empty set. If any event is observed after that, then
the fault occurrence is detected by Condition C1 of lines
6 to 9, or by Condition C2 of lines 10 to 14. In lines 34 to
37, the test of Condition C4 is carried out, and the fault
is detected if the number of event observations is equal to
the number of observations of the estimated path with the
longest associated trace. Since, in lines 24 to 28, the reini-
tialization of the DAOCT model is performed returning to
line 3, and in lines 29 to 33, the model reaches the final
state of a non-cyclic path returning to line 4, if line 34 is
reached this means that the model has not been reinitial-
ized or reached a deadlock, which implies that the final
state associated with the longest length path has not been
reached. Finally, in lines 38 to 42, θs,c and xc are updated
and the procedure returns to line 4, waiting for the next
event observation.

It is important to remark that it is assumed here that if
s = ψ(pki) is observed, then path pki must be uniquely de-
termined by following the method proposed in Algorithm
1. This assumption is necessary for the correct reinitializa-
tion of the model in lines 22 to 28, and is formally defined
as follows.

Definition 4. Let s = ψ(pki), for i ∈ {1, 2,r}. Then,
the DAOCT model is said to be reinitializable if there does
not exist s′ ∈ {s} of length |s′| = lj−1, where j ∈ θs(x0, s

′)

and lj < li, such that x′ = f(x0, s
′), and λ̃(x′) = yj,lj . �

Let us consider that path pi is executed by the system,
and let s = ψ(pi). In this case, if the condition of Defini-
tion 4 is not satisfied, then there exists a trace s′ ∈ {s},
such that a state x′ = f(x0, s

′) of the DAOCT, whose asso-
ciated sequence of I/O vectors is λ̃(x′) = yj,lj , is reached.
Since |s′| = lj −1, then according to lines 24 and 29 of Al-
gorithm 1, the model is reinitialized or stopped after the
observation of s′, and path pi is not necessarily played in
the model.

In the sequel, we present sufficient conditions that guar-
antee the reinitializability of the identified DAOCT model.

Theorem 4. If the DAOCT is acyclic, then it is reinitial-
izable.

Proof. If the DAOCT is acyclic, then, according to the
algorithm for its construction presented in [21], the in-
tersection between the path estimates of two transitions
leaving the same state of the DAOCT is empty. Thus, two
paths i, j ∈ θs(x0, s) if, and only if, s is a prefix of both
traces si = ψ(pki) and sj = ψ(pkj). Since, by assumption,
sj cannot be a prefix of si, for any i, j ∈ {1, . . . , r}, then if
the last vector of I/O signals yj,lj of path pkj is equal to ver-

tex yi,lj of path pki , the path estimate after executing the

prefix of si, s
′
i, that reaches state x such that λ̃(x) = yi,lj

does not contain j, i.e., j 6∈ θs(x0, s
′
i). Thus, according to

Definition 4, the DAOCT is reinitializable. �

Theorem 5. If the final vertex of path pki , yi,li , is not
equal to any vertex yj,li , for all i, j ∈ {1, . . . , r}, i 6= j,
then the DAOCT is reinitializable.

Proof. The proof is straightforward from Definition 4. �
It is important to remark that even if Theorems 4 and

5 are not satisfied, then the DAOCT model can be reini-
tializable, as it is shown in the following example.

Example 3. Let us consider the same paths pi, i = 1, 2, 3,
presented in Example 1. If we consider k = 1, then the
identified DAOCT is cyclic, and therefore does not satisfy
the condition of Theorem 4. In addition, the last vector
y1,6 of path p1

1 is equal to vector y2,6 of path p1
2. Thus,

the condition of Theorem 5 is also not satisfied. However,
since the path estimate after the observation of the first
event cannot contain both paths 1 and 2, then the DAOCT
is reinitializable. �

If the conditions of Theorems 4 and 5 are not true,
then the reinitializability of the identified DAOCT model
can be easily checked by playing in the model the paths
pi, for i = 1, . . . , r, following the steps of Algorithm 1, and
verifying if it is capable of reinitializing correctly. If the
DAOCT model is reinitializable, then it can be used for
fault detection.

It is important to remark that since, by assumption,
the trace associated with an observed path cannot be a pre-
fix of the trace associated with another observed path, then
there always exists a value of k such that the condition of
Theorem 5 is satisfied. Consequently, if the DAOCT is not
reinitializable, then one can always choose a greater value
of k and obtain a reinitializable DAOCT model.

According to Algorithm 1, the fault detection scheme is
based on the playing of the DAOCT model, following the
observation of the events generated by the system. Thus,
we can define a fault detection function FD : Σ? → N1 as
follows:

FD(s) =

 1, if a fault is detected using Algorithm 1
after the observation of s,

0, otherwise.
(6)

9

When a state associated with the end of a cyclic path
pki is reached after the observation of a trace s ∈ Σ?, and
FD(s) = 0, then the model is reinitialized, i.e., the current
state is set to x0 and the current path estimator is set to
R, and a new run of the DAOCT model is carried out
according to the observed events. Thus, a fault cannot
be detected only if the event observations after the fault
occurrence are viable in the model, and the system can
be reinitialized or reaches a deadlock before the fault is
detected. Consequently, only observed output vectors of
the fault-free behavior can be reached according to the
fault detector scheme without detecting the fault. Thus,
I/O vectors associated with dangerous configurations for
the system and its operators can be detected as soon as
they are observed, and actions can be executed to avoid
damages to the system.

In the following example, we show the reduction in
the exceeding language considering the viable sequences
of events of the DAOCT model in comparison with the
exceeding language generated by the NDAAO model pro-
posed in [16]. In order to do so, let us first define the
language formed of all viable sequences of length smaller
than or equal to n generated by the DAOCT:

L≤nND,DAOCT = {s ∈ Σ? : (|s| ≤ n)[FD(s) = 0]}. (7)

Thus, we can define the exceeding language generated by
the model with respect to Algorithm 1 as L≤nExc,DAOCT =

L≤nND,DAOCT \L≤nOrig. Let also L≤nExc,NDAAO denote the set
formed of all sequences of length smaller than or equal to n
in the exceeding language generated by using the method
proposed in [16]. It is important to remark that we assume
here that n ≤ n0. Then, according to Assumption A1,
L≤nObs = L≤nOrig, for n ≤ n0.

Example 4. Let us consider the DAOCT model depicted
in Figure 4, obtained for k = 1 from the paths presented
in Example 1. In Figure 6, we compare the cardinality of
the exceeding language L≤nExc,DAOCT , for n = 1, . . . , 7, of
the DAOCT model considering conditions C1-C4 for the
viability of the observed traces (�), with the cardinality of

the exceeding language L≤nExc,NDAAO, obtained by using the
method proposed in [16] (∗). As it can be seen from Fig-
ure 6, there is a huge reduction in the exceeding language
by using the four conditions C1-C4, with only 18 traces
in L≤nExc,DAOCT for n = 7. This leads to a reduction of
the non-detectable fault occurrences by using the method
proposed in Algorithm 1 in comparison with the method
proposed in [16]. �

It is important to remark that, since in the fault de-
tection strategy proposed in this paper we use more infor-
mation than the method proposed in [16], then the delay
for fault detection, defined as the number of event obser-
vations between the occurrence of the fault event and its
detection, can also be reduced. This improves the quality
of the fault detection scheme in the sense that a fast de-
tection can avoid damages caused by the fault due to an
incorrect system behavior.

n
1 2 3 4 5 6 7

|L
E

xc
,N

D
A

A
O

≤
 n

|,
|L

E
xc

,D
A

O
C

T
≤

 n
|

0

100

200

300

400

500

600

700

800

Figure 6: Comparison between the cardinality of the exceeding lan-

guage L≤n
Exc,NDAAO, generated by the NDAAO model (*), and the

cardinality of the exceeding language L≤n
Exc,DAOCT , generated by

the DAOCT model using the fault detection scheme presented in
Algorithm 1 (�), for different values of n.

Remark 1. Since the fault detection is based on playing
the DAOCT model after the observation of events executed
by the system, then the computational complexity of Algo-
rithm 1 is linear in the size of the DAOCT for each model
run. �

6. Fault isolation scheme

In [26], a method for fault isolation based on residuals
is proposed. The main idea is to identify which signal
changes have occurred after the fault detection, and to
compare these changes with the possible signal changes
predicted by the model. Thus, the residuals are used to
capture fault symptoms that help in determining which
sensor, or actuator, or part of the plant is possibly affected.
In this paper, the same reasoning is deployed to isolate the
faults. The difference between the residuals proposed in
this paper and the one presented in [26], is that, since
we use more conditions to detect a fault occurrence than
the method proposed in [16], then the residuals proposed
here will always lead to a smaller set of possible faults in
the system. Thus, we can isolate more precisely the fault
using the DAOCT model than using the NDAAO model
proposed in [16].

In order to introduce the four residuals proposed in
this work, let us first denote by uk(i) the i-th signal of
the vector of I/O signals uk. Then the rising edge (resp.
falling edge) of the i-th signal is detected when uk(i) = 0
(resp. uk(i) = 1), and uj(i) = 1 (resp. uj(i) = 0), for
the sequence of observed vectors ukuj . Let uf (i), ur(i),
and un(i) denote, respectively, the falling edge, the rising
edge, and the no change in value of the i-th signal of the

10

sequence of I/O vectors ukuj . Then, we can define the
edge function as follows [26]:

Edge(uk(i)uj(i)) =

 uf (i), if uk(i) = 1 ∧ uj(i) = 0,
ur(i), if uk(i) = 0 ∧ uj(i) = 1,
un(i), if uk(i) = uj(i).

(8)
We can also define the set formed of all signal changes
observed in the sequence of I/O vectors ukuj as follows
[26]:

Definition 5. (Evolution set)

ES(ukuj)=

m⋃
i=1

{Edge(uk(i)uj(i)) :Edge(uk(i)uj(i)) 6=un(i)}

where m is the number of I/O signals of vectors uk and
uj.

Note that after the occurrence of a trace s ∈ Σ? in
the DAOCT model such that FD(s) = 0, a unique state
x̃ ∈ X is reached. From state x̃, we can analyze the next
states of the model in order to find those that satisfy the
four conditions C1-C4 of Definition 3, i.e., we can search
for a viable event σ ∈ Σ. This procedure leads to a set of
states that can be reached from x̃ that do not lead to the
fault detection. In the sequel, we present the reachable
states function RS : Σ? → 2X that provides all states of
the DAOCT model that can be reached from a state x̃ that
is reached after the observation of a trace s ∈ Σ?.

Definition 6. (Reachable states)

RS(s) = {x ∈ X : (∃σ ∈ Σ)[FD(sσ) = 0, x = f(x0, sσ)]}.

Using Definitions 5 and 6, we can now define the four
residuals for fault isolation. In all residuals, x̃ = f(x0, s)
denotes the last state of the model such that the fault has
not been detected, i.e., FD(s) = 0, and u denotes the I/O
observed vector that led to the fault detection.

Definition 7. (Residuals for fault isolation)

Res1(x̃, u, s) = ES(λ(x̃)u) \
⋃

∀x′∈RS(s)

ES(λ(x̃)λ(x′)),

Res2(x̃, u, s) = ES(λ(x̃)u) \
⋂

∀x′∈RS(s)

ES(λ(x̃)λ(x′)),

Res3(x̃, u, s) =
⋂

∀x′∈RS(s)

ES(λ(x̃)λ(x′)) \ ES(λ(x̃)u),

Res4(x̃, u, s) =
⋃

∀x′∈RS(s)

ES(λ(x̃)λ(x′)) \ ES(λ(x̃)u).

The interpretation of the residuals is equal to the one
presented in [26]. The unique difference is that, in this
work, we are searching for the states reachable from x̃ in
the DAOCT model, taking into account Conditions C1-
C4 for fault detection, implemented in Algorithm 1. This
naturally leads to a more precise fault isolation.

In the first residual, Res1, the observed signal changes
that are not predicted by any of the possible next states of
the model are computed. In Res2, the signal changes that
are observed, and are not one of the unavoidable signal
changes that should be observed according to the model
are computed. Note that, by definition, Res1(x̃, u, s) ⊆
Res2(x̃, u, s), for any x̃ ∈ X,u ∈ Nm

1 , s ∈ Σ?. Residual
Res3 computes all signal changes that should be observed
according to the model, and have not been observed. And
finally, Res4 computes all signal changes that are possi-
ble in any of the predicted next states of the model, and
have not been observed. By definition, Res3(x̃, u, s) ⊆
Res4(x̃, u, s), for any x̃ ∈ X,u ∈ Nm

1 , s ∈ Σ?.
The residuals are used in the next section to isolate the

faults simulated in a sorting unit system. In order to do
so, we use the same strategy presented in [26], i.e., we first
analyze the changes in vector u associated with residuals
Res1 and Res3, and if the fault cannot be isolated, we
analyze the other signal changes presented in Res2 and
Res4. It is important to remark that, in some cases, the
fault symptom can be an unexpected change in a sensor
signal, but the fault occurred in an actuator that is directly
related to that sensor. Thus, in order to correctly isolate
faults, it is necessary to group actuators with the sensors
that are directly influenced by them. This case is analyzed
in the following section.

7. Practical Example

A sorting unit system is depicted in Figure 7. The
objective of this system is to sort parcels, that are ran-
domly delivered to the feeder conveyor (FC), according to
their size. Two sensors, located at the end of the feeder
conveyor, k1 and k2, inform the presence of a parcel and
its corresponding size. If the parcel is a small one then
the falling edge of sensor k1 is observed without observing
k2 = 1, and if the parcel is a big one, we observe k1 = 1
and k2 = 1. The first pusher in the distribution conveyor
(DC), Pusher 1 (P1), send small parcels to the first slide,
and big parcels are sent to the second slide by Pusher 2
(P2). When the distribution conveyor has a parcel, and
another parcel arrives at the end of the feeder conveyor
(k1 = 1), the feeder conveyor is stopped and is turned on
again only when the parcel of the distribution conveyor
is sorted. When a small (resp. big) parcel is in front of
Pusher 1 (resp. Pusher 2), detected by the falling edge
of the signal of the sensor located at the side of Pusher
1 (resp. Pusher 2), sensor k3 (resp. k4), the distribution
conveyor is turned off, and is turned on again only after
the end of the movement of Pusher 1 (resp. Pusher 2).
Each pusher has two sensors to indicate if it is completely

11

Figure 7: Sorting unit system simulated using software FACTORY
I/O

retracted or extended, sensors k5 and k6 for Pusher 1, and
sensors k7 and k8 for Pusher 2. Thus, the controller of this
system has 8 inputs (corresponding to the 8 sensors) and 4
outputs (corresponding to the 4 actuators), which implies
that each I/O vector uj has 12 binary entries, defined as
follows:

uj = [k7 k8 k5 k6 k2 k1 k4 k3 P2 P1 FC DC]T .

In order to obtain the fault-free behavior of the sys-
tem depicted in Figure 7, simulations have been carried
out using the software FACTORY I/O [23], guaranteeing
that the system is completely free of faults. Based on the
simulation of the fault-free behavior of the plant, thirteen
cyclic fault-free paths pi, i = 1, . . . , 13, have been identi-
fied, and we have computed the DAOCT and the NDAAO
models for k = 1 and k = 2.

The number of states of the DAOCT is 34 and 51 for
k = 1 and k = 2, respectively, while the number of states
of the NDAAO is 34 and 40 for k = 1 and k = 2, re-
spectively. Although the NDAAO leads to more compact
models than the DAOCT for the same value of k, the ex-
ceeding language is larger using the NDAAO model, which
implies that the DAOCT model is more suitable for fault
detection than the NDAAO model.

In order to analyze the efficiency of Algorithm 1 for
fault detection, 42 permanent and intermittent fault oc-
currences in sensors and actuators have been simulated.
In all 42 scenarios, we simulated the fault of only one sen-
sor or actuator at the same time, and, in some cases, the
same fault had been simulated more than once, generat-
ing a different scenario to evaluate if it can be detected
depending on when the fault occurs. In Table 1, we show
the number of detected and undetected fault occurrences
by using the NDAAO model for k = 1, and the DAOCT
model for k = 1 and k = 2. Note that the DAOCT model
can detect 35 fault occurrences, against 29 faults detected
using the NDAAO model. Among the six fault occurrences
detected by the method presented in Algorithm 1, and not
detected by using the method of [16], two have been de-
tected by the condition associated with the non-viability of

the estimated paths (Condition C2, lines 10 to 14 of Algo-
rithm 1), three by the condition associated with the iden-
tification of the path before the correct number of event
observations (Condition C3, lines 15 to 21 of Algorithm
1), and one associated with a non-expected state reached
after the observation of the maximum number of event ob-
servations among all estimated paths (Condition C4, lines
34 to 37 of Algorithm 1). The other 29 fault occurrences
have been identified by the occurrence of an unfeasible
event of the DAOCT model (Condition C1, lines 6 to 9
of Algorithm 1). It is also important to remark that two
fault occurrences have been detected by using the method
proposed in this paper with a smaller delay than by using
the method presented in [16]. This shows that the fault
detection strategy proposed in this paper can detect the
fault occurrence faster than the method proposed in [16].

From Table 1, it can be seen that the efficiency of the
method proposed in this paper is 83.3%, against 69% of
the method proposed in [16]. In addition, from Table 1, it
can be seen that the detection method using the DAOCT
model with k = 2 has the same efficiency than the model
obtained using k = 1, i.e., the same seven fault occur-
rences remains non-detectable increasing the value of k.
Since the DAOCT model is acyclic for k = 2, its exceeding
language, L≤nExc,DAOCT , is empty for all values of n. Thus,
we can conclude that the behavior of the system after the
occurrence of the undetected faults has observation equal
to the observation of fault-free paths or leads the model
to a deadlock, and, consequently, are non-detectable for
any value of k. Thus, although the exceeding language of
the DAOCT model obtained for k = 1 is not empty, it
has been capable of detecting the fault occurrences for all
simulated cases with the same efficiency than the DAOCT
model obtained for k = 2.

In order to isolate the faults, the four residuals have
been computed for all 35 faults detected by the DAOCT
model considering k = 1. We have also grouped the actu-
ators with the sensors that are directly affected by these
actuators as follows: (i) Feeder Conveyor with sensors k1

and k2; (ii) Distribution Conveyor with sensors k3 and k4;
(iii) Pusher 1 with sensors k5 and k6; and (iv) Pusher 2
with sensors k7 and k8.

As an example of the use of the residuals for fault iso-
lation, let us consider the simulation of a fault in Pusher 1.
We have considered that, for some reason, after the third
event observation, Pusher 1 is stuck always extended. The
observed sequence of I/O vectors, starting at the initial

12

state of the system, is given by:

0
1
0
1
0
1
0
0
0
0
1
1

ur(5)
→

0
1
0
1
1
1
0
0
0
0
1
1

uf (6)
→

0
1
0
1
1
0
0
0
0
0
1
1

uf (5)
→

0
1
0
1
0
0
0
0
0
0
1
1

uf (4)
→

0
1
0
0
0
0
0
0
0
0
1
1

where the first four I/O vectors correspond to the output
λ of states 1, 2, 3 and 4, respectively, of the DAOCT
model depicted in Figure 8. The last I/O vector does
not correspond to any possible next state of the model
and violates Condition C1, leading to the fault detection
according to Algorithm 1. In Figure 8 we have omitted the
events, and we have presented only the paths associated
with each transition. Symbol i : j, where i, j ∈ R, in the
path estimate set of each transition denotes the set formed
of all paths from i to j. Note that the last state x̃ = 4 of
the DAOCT model that does not lead to fault detection
has output vector equal to:

λ(x̃) = [0 1 0 1 0 0 0 0 0 0 1 1]T ,

and the observed vector u, that is not predicted by the
model, is given by:

u = [0 1 0 0 0 0 0 0 0 0 1 1]T .

The predicted outputs of the states that follow state x̃ in
the DAOCT model are:

λ(5) = [0 1 0 1 0 0 0 1 0 0 1 1]T ,

λ(21) = [0 1 0 1 0 0 1 0 0 0 1 1]T ,

λ(22) = [0 1 0 1 0 0 0 0 1 0 1 0]T ,

λ(28) = [0 1 0 1 0 1 1 0 0 0 1 1]T .

In this case, the residuals are given by:

Res1(x̃, u, s) = Res2(x̃, u, s) = {uf (4)}, Res3(x̃, u, s) = ∅,

Res4(x̃, u, s) = {ur(7), ur(8), ur(9), uf (12)}.
From Res1(x̃, u, s), we obtain the observed signal changes
that were not expected in any of the next states of the
DAOCT model. Since uf (4) is associated with the falling
edge of sensor k6, then we must check if sensor k6 has a
malfunctioning, or Pusher 1, associated with k6, is faulty.
Since, in this case, Pusher 1 is stuck extended, we were
able to correctly isolate the fault.

The fault has been isolated by considering the actua-
tors and their associated sensors in 31 of the 35 cases for

{1, 4 : 12} {1, 4 : 12} {1, 4 : 12}
{1, 3 : 13}1 2 3 4 5

14

21

22

28

{3,13}

{4,6:12}

{4,6:9,11,12}
{5}{3,13}

{1,2,13}
{1,3:13}

...
{4,6:9,11,12}

...

...

...
......

Figure 8: Part of the DAOCT model obtained for k = 1 of the sorting
unit system.

Table 1: Efficiency of the fault detection scheme

NDAAO DAOCT DAOCT
(k = 1) (k = 1) (k = 2)

Detected faults 29 35 35
Non-detected faults 13 7 7
Efficiency (%) 69% 83.3% 83.3%

which the fault could be detected using Algorithm 1. In
the four cases where the residuals were not sufficient to
isolate the fault, several transitions had occurred after the
fault occurrence, which makes fault isolation more diffi-
cult. In these cases, more information from the system is
needed to correctly isolate the fault. Thus, by using the
method proposed in this paper, we were able to detect 35
fault occurrences, and make the correct diagnosis of 31 of
the 42 fault occurrences simulated in the system.

8. Conclusions

We present in this paper a fault diagnosis method based
on an identified DAOCT model. Since the exceeding lan-
guage of the DAOCT is reduced using the fault detec-
tion scheme, then it is more suitable for fault detection
than other methods proposed in the literature. A fault
isolation method, based on residuals computed using the
fault detection scheme is also presented, and a practical
example is used to illustrate the efficiency of the proposed
method. We are currently investigating the use of the
DAOCT model for distributed identification of DES.

Acknowledgments

The work of M. V. Moreira was partially supported
by the Brazilian Research Council (CNPq) under grants
305267/2018-3 and 431307/2018-0, and the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) Finance Code 001.

13

References

[1] Astrom, K. J., Eykhoff, P., 1971. System identification: a sur-
vey. Automatica 7, 123–162.

[2] Cabasino, M. P., Darondeau, P., Fanti, M. P., Seatzu, C., 2013.
Model identification and synthesis of discrete-event systems, in
Contemporary Issues in System Science and Engineering. Wiley.

[3] Cabasino, M. P., Giua, A., Hadjicostis, C. N., Seatzu, C., 2014.
Fault model identification and synthesis in petri nets. Discrete
Event Dynamic Syst. 24 (3), 275–307.

[4] Cabasino, M. P., Giua, A., Seatzu, C., 2007. Identification of
petri nets from knowledge of their language. Discrete Event Dy-
namic Syst. 17 (4), 447–474.

[5] Cabral, F. G., Moreira, M. V., 2017. Synchronous codiagnos-
ability of modular discrete-event systems. In: IFAC World
Congress. IFAC, Toulouse, France, pp. 7025–7030.

[6] Cabral, F. G., Moreira, M. V., Diene, O., 2015. Online fault
diagnosis of modular discrete-event systems. In: Decision and
Control (CDC), 2015 IEEE 54th Annual Conference on. IEEE,
pp. 4450–4455.

[7] Cabral, F. G., Moreira, M. V., Diene, O., Basilio, J. C., 2015. A
Petri net diagnoser for discrete event systems modeled by finite
state automata. IEEE Transactions on Automatic Control, 59–
71.

[8] Carvalho, L. K., Basilio, J. C., Moreira, M. V., 2012. Robust
diagnosis of discrete-event systems against intermittent loss of
observations. Automatica 48 (9), 2068–2078.

[9] Carvalho, L. K., Moreira, M. V., Basilio, J. C., Lafortune, S.,
2013. Robust diagnosis of discrete-event systems against per-
manent loss of observations. Automatica 49 (1), 223–231.

[10] Cassandras, C., Lafortune, S., 2008. Introduction to Discrete
Event System. Springer-Verlag New York, Inc., Secaucus, NJ.

[11] Debouk, R., Lafortune, S., Teneketzis, D., 2000. Coordinated
decentralized protocols for failure diagnosis of discrete event
systems. Discrete Event Dynamic Systems: Theory and Appli-
cations 10 (1), 33–86.

[12] Estrada-Vargas, A. P., Lesage, J.-J., López-Mellado, E., 2014.
A stepwise method for identification of controlled discrete man-
ufacturing systems. Int. J. Comput. Integr. Manuf. 28 (2), 187–
199.

[13] Estrada-Vargas, A. P., López-Mellado, E., Lesage, J.-J., 2010.
A comparative analysis of recent identification approaches for
discrete-event systems. Math. Probl. Eng. 2010, 1–21.

[14] Estrada-Vargas, A. P., López-Mellado, E., Lesage, J.-J., 2014.
Input-output identification of controlled discrete manufacturing
systems. Int. J. Syst. Sci. 45 (3), 456–471.

[15] Estrada-Vargas, A. P., López-Mellado, E., Lesage, J.-J., 2015.
A black-box identification method for automated discrete event
systems. IEEE Transactions on Automation Science and Engi-
neering 14 (3), 1321–1336.

[16] Klein, S., Litz, L., Lesage, J.-J., 2005. Fault detection of discrete
event systems using an identification approach. In: 16th IFAC
World Congress. Prague, Czech Republic, pp. 92–97.

[17] Ljung, L., 1999. System Identification: Theory for the User, 2nd
Edition. Prentice Hall.

[18] Medhi, S. O. E., Leclercq, E., Lefebvre, D., 2006. Petri nets
design and identification for the diagnosis of discrete event sys-
tems. In: IAR Annu. Meeting. IEEE.

[19] Moor, T., Raisch, J., Young, S., 1998. Supervisory control of hy-
brid systems via l-complete approximations. In: Proceedings of
the IEEE Workshop on Discrete-Event Systems. Cagliari, Italy,
pp. 426–431.

[20] Moreira, M. V., Jesus, T. C., Basilio, J. C., 2011. Polynomial
time verification of decentralized diagnosability of discrete event
systems. IEEE Transactions on Automatic Control, 1679–1684.

[21] Moreira, M. V., Lesage, J.-J., 2018. Enhanced discrete event
model for system identification with the aim of fault detection.
In: 14th Workshop on Discrete Event Systems. IFAC, Sorrento
Coast, Italy, pp. 172–178.

[22] Qiu, W., Kumar, R., 2006. Decentralized failure diagnosis of
discrete event systems. IEEE Transactions on Systems, Man,
and Cybernetics Part A:Systems and Humans 36 (2), 384–395.

[23] Real Games, 2018. FACTORY I/O.
URL http://factoryio.com

[24] Roth, M., 2010. Identification and fault diagnosis of industrial
closed-loop discrete event systems. PhD dissertation, Ecole Nor-
male Superieure de Cachan and Technische Universitat Kaiser-
lautern.

[25] Roth, M., Lesage, J.-J., Litz, L., 2009. An FDI method for man-
ufacturing systems based on an identified model. In: 13th IFAC
Symposium on Information Control Problems in Manufacturing
(INCOM2009). Moscow, Russia, pp. 1406–1411.

[26] Roth, M., Lesage, J.-J., Litz, L., 2011. The concept of residuals
for fault localization in discrete event systems. Control Engi-
neering Practice 19 (9), 978–988.

[27] Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K.,
Teneketzis, D., 1995. Diagnosability of discrete-event systems.
IEEE Trans. on Automatic Control 40 (9), 1555–1575.

[28] Santoro, L. P. M., Moreira, M. V., Basilio, J. C., 2017. Com-
putation of minimal diagnosis bases of discrete-event systems
using verifiers. Automatica 77, 93–102.

14

