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Feasibility Analysis For Constrained Model Predictive Control Based Motion Cueing Algorithm

This paper deals with motion control for an 8degree-of-freedom (DOF) high performance driving simulator. We formulate a constrained optimal control that defines the dynamical behavior of the system. Furthermore, the paper brings together various methodologies for addressing feasibility issues arising in implicit model predictive control-based motion cueing algorithms.

The implementation of different techniques is described and discussed subsequently. Several simulations are carried out in the simulator platform. It is observed that the only technique that can provide ensured closed-loop stability by assuring feasibility over all prediction horizons is a braking law that basically saturates the control inputs in the constrained form.

I. INTRODUCTION

The actuator capabilities and the workspace limits of driving simulators do not allow motion signals to be sent directly from the driver to the simulator platform. Therefore, the socalled Motion Cueing Algorithms (MCA) were created. Their aim is to transform all trajectories generated by a dynamic virtual model into the desired motion cues within the physical limits by providing the most realistic motion cues.

Model Predictive Control (MPC) is one of few suitable methods to handle this issue. The main advantage of the MPC compared to previously used algorithms (classical, adaptive and optimal) is its ability to handle input and state constraints. Unlike optimal control techniques such as LQR (Linear Quadratic Regulator), an MPC controller does not guarantee closed-loop stability. The optimization problem must guarantee a solution along the prediction horizon, otherwise the applied control law could make the system states become unstable, causing damage to the simulator's structure or even worse, to the driver. When there are only restrictions in the input, a simple saturation can reassure the solution, but when there are state constraints, the task becomes more difficult since there is an inconsistency between the index performance and the constraints.

One of the first techniques that guarantees closed-loop stability if feasibility is also guaranteed is to complement the cost function with a terminal state constraint equal to zero [START_REF] Kwon | A modified quadratic cost problem and feedback stabilization of a linear system[END_REF]. Another approach is to introduce a terminal penalty equal to the infinite horizon cost [START_REF] Kwon | Stabilizing State-Feedback Desing Via The Moving Horizon Method[END_REF]. This condition can refer to 1 Renault, Virtual Reality and Immersive Simulation Center, 78288 Guyancourt, France {carolina.c.rengifo, hakim.mohellebi, andras.kemeny}@renault.com the solution of the Riccati difference equation as the terminal penalty matrix in the cost function.

Regarding MCA, the MPC was first applied in [START_REF] Dagdelen | MPC Based motion cueing algorithm: developpement and application to the ULTIMATE driving simulator[END_REF], in which the explicit offline procedure proposed in [START_REF] Gutman | An algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states[END_REF] is used to find the invariant set of initial states from which the system reaches an equilibrium point within a finite time. This problem creates a subset of points defined for a bangbang control condition where the closed-loop system can achieve states stability within their boundaries. In [START_REF] Fang | Explicit MPC motion cueing algorithm for real-time driving simulator[END_REF] an explicit strategy for a 1 DOF optimization is implemented, extended in [START_REF] Fang | An efficient Model Predictive Control-based motion cueing algorithm for the driving simulator[END_REF] to a 2 DOF optimization problem using an implicit strategy, in which a new stability condition is created based on a braking law. In [START_REF] Maran | Study of a real-time, MPC based motion cueing procedure with time-varying prediction for different classes of drivers[END_REF] a motion blocking strategy is implemented by using different sampling frequencies in the prediction. Other authors who use implicit MPC do not make evident the conditions for which the problem is feasible [START_REF] Augusto | Motion cueing in the Chalmers driving simulator: An optimization-based control approach[END_REF], [START_REF] Beghi | A real time implementation of MPC based Motion Cueing strategy for driving simulators[END_REF] or simply consider states weighting as an alternative to the existence of a control law [START_REF] Baseggio | An MPC approach to the design of motion cueing algorithms for driving simulators[END_REF].

It was shown that for processes with fast dynamics it is preferable to implement explicit control strategies in which the control law is found offline and applied online according to the system initial states at each time-step [START_REF] Beghi | A real time implementation of MPC based Motion Cueing strategy for driving simulators[END_REF]. But this technique with LQ invariant sets is undesirable for the trajectory tracking problem using a 2 DOF optimization, as the computation of the admissible set may not converge [START_REF] Fang | Explicit MPC motion cueing algorithm for real-time driving simulator[END_REF]. Therefore, in this paper, we will focus on different conditions applied to create a standard implicit MPC-based MCA that can handle constraints, maximize the platform's working space and stabilize the closed-loop system by finding a feasible solution for the quadratic optimization problem (QP). As far as we know, this is the first work that shows a comparison between the available strategies.

This article is organized as follows: in section II we present the mathematical model based on the platform and the human perception motion. Section III offers a design to the MPCbased MCA problem. Section IV provides some appreciations of different strategies implemented in the MCA that are dealing with feasibility issues and in Section V we present all simulations results. The final section concludes the paper.

II. MATHEMATICAL MODEL

In this study, Renault's ULTIMATE 8-DOF motion simulator is considered, allowing three translations and rotations along the x, y, and z axes from a hexapod platform and two supplementary X and Y rails. The simulator is divided into four subsystems, two independent DOFs corresponding to the vertical axis and yaw and two coupled subsystems, longitudinal/pitch and lateral/roll.

A. Platform dynamics

The driving simulator in this study is considered as an ideal one, i.e., the dynamics of the platform is made by the manufacturer and is perfect, therefore, the system could be represented by a unit gain. However, in order to introduce directly the platform position, velocity and acceleration, the model for each linear x, y, z and rotational accelerations is a double integrator with direct feed-through.

x sim (k + 1) = Asim     1 t s 0 0 0 1 0 0 0 0 1 t s 0 0 0 1     xsim     p(k) v(k) θ(k) ω(k)     + Bsim      t 2 s 2 0 t s 0 0 t 2 s 2 0 t s      u u lin u rot y sim = 1 0 0 1 u lin u rot (1) 
We opted for this representation rather than a simple unit gain in order to integrate the platform constraints into the optimization problem. The states are the position p, speed v, angle θ and angular speed ω. The outputs are the linear u lin and rotational u rot accelerations. Table I exposes the performance of the dynamic platform along all degrees of freedom. 

B. Human perception motion

In this part we use human perception to drive the motion simulation, i.e., instead of taking the accelerations directly from the virtual dynamic model, we will track the path of the motion accelerations perceived in the simulator using a human perception model.

The main motion sensors in humans are found in the vestibular system which comprises two components. The first is the semi-circular canals used to indicate rotational accelerations and the second is the otoliths organs which sense linear accelerations. The total perceived acceleration (the rotational acceleration and the linear acceleration) leads to a force, called the specific force.

For the semicircular canals a transfer function that links the angular velocity perceived by the driver ω and the real angular velocity ω is used as follows:

ω ω = G csc τ L τ a s 2 (1 + τ l s) (1 + τ a s)(1 + τ L s)(1 + τ s s) (2) 
This model contains different time constants that are mostly based on subjective responses: the long time constant τ L , the short time constant τ s , an adaptation operator τ a and the lead term τ l to avoid vibration effects. We use the values and model described in more detail in [START_REF] Telban | Motion cueing algorithm development: Human-centered linear and nonlinear approaches[END_REF]. This transfer function is implemented as a filter for the three rotations angles along the x, y, z axes; roll, pitch and yaw respectively. The result is added to the tilt angles from the specific forces and then saturated to avoid exceeding the limits in Table I.

For the otoliths model, the input is the specific force f (head linear acceleration) and the output is the sensed specific force f . The transfer function that best represents the relationship between these two stimuli is:

f f = G oto (τ aoto s + 1) (τ Loto s + 1)(τ soto s + 1) (3) 
The parameters in (3) are taken from the same reference as the one used for the semicircular canals [START_REF] Telban | Motion cueing algorithm development: Human-centered linear and nonlinear approaches[END_REF].

The otoliths perceive both linear acceleration and head inclination, as a linear acceleration. This discrepancy allows us to restore an illusory sensation of linear accelerations by tilting the platform as shown in Fig. 1. A threshold for motion perception must be integrated so that the driver does not perceive the vestibular cues. In that sense, the linear specific force along the three axes is perceived by the otoliths as

f x = a x + gsin(θ) (4) f y = a y -gsin(φ)cos(θ) (5) f z = a z -gcos(θ)cos(φ) (6) 
where a x , a y , a z , represents the translation acceleration vector components along the x, y and z axes, φ and θ are respectively, the rotation angle around the y and x axes and g represents the gravity. Now, we will only take the x axis as an example since the others are done in the same way. Assuming small angles, the Laplace form for the specific force is

f x (s) = u lin (s) + g s 2 u rot (s) (7) 
Replacing ( 7) into (3) we obtain

fx = G oto (τ aoto s + 1) (τ Loto s + 1)(τ soto s + 1) u lin (s) + g s 2 u rot (s) (8)
and the system space states form

ẋoto = Aoto     -T 3oto 1 0 0 -T 4oto 0 1 0 0 0 0 1 0 0 0 0     x oto + Boto     T 1oto 0 T 2oto 0 0 gT 1oto 0 gT 2oto     u lin u rot y oto = Coto 1 0 0 0 x oto (9) 
where

T 1oto = G oto τ aoto τ Loto τ soto , T 2oto = G oto τ Loto τ soto , T 3oto = τ Loto + τ soto τ Loto τ soto , T 4oto = 1 τ Loto τ soto
The system ( 9) is augmented with the platform dynamics (1) in order to include each simulator state and thus add the physical constraints in each period of time. With this modification, we get a unique system for the longitudinal/pitch and the lateral/roll DOFs in which the output f is obtained from the inputs, u lin and u rot .

Ẋforce = A f orce A oto 0 0 A sim X f orce x oto x sim + B f orce B oto B sim u u lin u rot Y f orce = C f orce C oto 0 x oto x sim + D f orce 0 0 u lin u rot (10) 

III. CONTROL DESIGN

The system (10) is represented as a linear time-invariant (LTI) discrete-time system and is augmented with an embedded integrator to give offset free tracking (see Appendix).

x k+1 = Ax k + B∆u k y k = Cx k + D∆u k (11) 
with state vector

x k ∈ R s , control ∆u k ∈ R l , output y k ∈ R t and matrices (A, B) of compatible dimensions.
The vectors of the predicted output Y , the states X and the future control ∆U are defined as follows:

X = x(k + 1) x(k + 2) • • • x (k + N p ) T Y = y(k + 1) y(k + 2) • • • y (k + N p ) T ∆U = ∆u(k) ∆u(k + 1) • • • ∆u (k + N u -1) T (12)
where N p denotes the prediction horizon (1 ≤ N p ), N u denotes the control horizon (0 < N u ≤ N p ).

In terms of current states and future control increments, the predictions take the form:

Y = F x k + G∆U X = F x x k + G x ∆U (13) 
The matrices F, F x , G, G x are found recursively and depend on the state space matrices. Then, the tracking objective function implemented as a 2 DOF optimization to improve motion fidelity is defined in the vector notation as

J = (Y -R s ) T Q δ (Y -R s ) + ∆U T Q λ ∆U + X T Q q X
(14) subject to: [START_REF] Chen | An optimal washout filter design for a motion platform with senseless and angular scaling maneuvers[END_REF] where Q δ > 0, Q λ > 0 and Q q > 0 are symmetric weighting matrices of compatible dimensions for the tracking error (the specific force deviation perceived during the simulation), the control rate and the states respectively. With a given set-point signal r(k) at sample time k, we get the reference trajectory R s . Since in most cases it is difficult to have the future reference available as it depends on the driver's behavior, R s remains constant over the prediction horizon N p .

x min ≤ X ≤ x max y min ≤ Y ≤ y max ∆u min ≤ ∆U ≤ ∆u max
R T s = r(k) × [1, • • • , 1] 1×Np (16) 
Replacing from ( 14) the predicted output Y , the predicted states X and removing all the terms that do not depend on the decision variables vector ∆U [START_REF] Rengifo | Solving the Constrained Problem in Model Predictive Control based Motion Cueing Algorithm with a Neural Network Approach[END_REF], the cost function obtained has the form

J = ∆U T G T Q δ G + Q λ + G x T Q q G x ∆U +2 (F x (k) -R s ) T Q δ G + (F x x (k)) T Q q G x ∆U
The QP problem with constraints remains:

minimize J = 1 2 ∆U T H∆U + f T ∆U subject to A c ∆U ≤ b (17) 
where,

∆U ∈ R n , f ∈ R n , b ∈ R m , A c ∈ R m×n
The H matrix is symmetric positive definite n × n. The matrix equation A c ∆U ≤ b contains all the linear inequality constraints [START_REF] Chen | An optimal washout filter design for a motion platform with senseless and angular scaling maneuvers[END_REF], therefore the feasible set is polyhedral. We consider two different constraints types: hard and soft constraints. The first one cannot under any condition be violated and they include all platform physical constraints [START_REF] Chen | An optimal washout filter design for a motion platform with senseless and angular scaling maneuvers[END_REF]. The second one should be satisfied if possible and are relaxed when the hard constraints are conflicting; the weighting matrices are part of this group and these are presented in the cost function to penalize their violation. In our problem the states and input constraints are referred as both hard and soft constraints.

In the MPC, an open-loop control action sequence ∆U is obtained by solving, at each sampling time, a cost function [START_REF] Rossiter | Model-based predictive control: a practical approach[END_REF] over a finite horizon N p . Only the first optimal control in the sequence is applied to the plant to ensure a feedback loop while the remaining optimal inputs are discarded. The next time step, a new optimal control sequence is solved with a different initial state, leading to a receding horizon control [START_REF] Bordons | Model predictive control[END_REF]. An active set method implemented in the qpOASES tool [START_REF] Ferreau | qpOASES: A parametric active-set algorithm for quadratic programming[END_REF] has been chosen to deal with the optimization.

A. Nonuniform prediction window

When the reference signal is a positive acceleration and the platform is close to its limits, the platform must slow down with an acceleration below the human motion threshold to prevent the driver from perceiving false cues. This technique is called washout. Based on the literature we use -0.2m/s 2 as the acceleration limit in the washout phase [START_REF] Chen | An optimal washout filter design for a motion platform with senseless and angular scaling maneuvers[END_REF].

According to previous MPC-based MCAs [START_REF] Fang | Motion cueing algorithm for high performance driving simulator using yaw table[END_REF] and taking into account the limits of the platform shown in Table I, an N p between 7-14 seconds can be enough for the platform with our technical conditions to stop moving before reaching its limits in position. Considering this interval and a control frequency of 100 Hz (required for a real-time implementation), we get an optimization problem that cannot been solved in real time due to high computational cost.

For this purpose, we use a nonuniform sampling frequency along the prediction window. The method consists in applying two different frequencies when dicretizing the system and the constraints [START_REF] Telban | Motion cueing algorithm development: Human-centered linear and nonlinear approaches[END_REF]. The first sampling period t s1 is the same as the optimization step (0.01s) and will be fixed in the first 10 steps. For the second t s2 a simulation is performed: we fix the prediction time to 7.1s, and vary the prediction horizon N p and t s2 in order to achieve the required prediction time. Table II summarizes the simulation conditions. Figure 2 shows the closed-loop responses using different frequencies in the nonuniform prediction horizon. The input corresponds to scenario 3 defined in section V. We see that the smaller t s2 , the greater the reference tracking, however it generates a higher computational cost since the size of N p is bigger. We choose then 0.1 for t s2 , as it is small enough to capture adequately the dynamics of the process without any oscillations, allowing real-time implementation and good trajectory tracking. We also note from Fig. 2 that the reference is not fully followed, as there are strong restrictions in the states.

B. Algorithm tuning

The states and human motion thresholds are too restrictive and have influence on the region for which the problem can find a valid solution ∆U . Therefore we use tuning parameters that will define the control law and therefore the behavior of the closed-loop system.

Tuning consists in choosing the weighting matrices Q δ , Q λ , Q q and the horizons N p , N u from the target function [START_REF] Ferreau | qpOASES: A parametric active-set algorithm for quadratic programming[END_REF]. Unfortunately, decision making is intuitive and based on trial-error experiences. In this study, all parameters will remain the same for Section IV. 

A. Terminal zero state constraints

This is the first method to guarantee stability to nonlinear MPC problems. The idea is to force all platform physical limits to return to the origin (zero in this case). The condition is applied directly in the optimization problem [START_REF] Rossiter | Model-based predictive control: a practical approach[END_REF] in the form of hard constraints:

x(t + N p ) = 0 (18) 

B. Invariant set

The equality zero terminal constraint can be relaxed by using a potential constraint set for the constrained LQ optimal control problem. There is a possible set of initial states in which the constraints are respected along the system trajectory. It is set around the origin and constrains the terminal state to stay in the set. The set is polyhedral, i.e., defined by linear inequalities, thus it can easily be put into the QP problem.

This region X F aims at changing the states constraints at every sample time by following a washout technique condition [START_REF] Dagdelen | MPC Based motion cueing algorithm: developpement and application to the ULTIMATE driving simulator[END_REF]:

X f = p k ≤ p max - v 2 k 2as , v k ≥ 0 p k ≤ v 2 k 2as -p max , v k < 0 (19)
where p k and v k represent the position and velocity at sample time k and a s is the acceleration threshold. The same analogy is implemented for the angle constraints.

C. Braking law

Fang et al. proposed a different stability condition [START_REF] Fang | Motion cueing algorithm for high performance driving simulator using yaw table[END_REF]. Their approach can verify a solution along the prediction horizon using a braking law once the platform approaches its limits. This law can be compared to an adaptive filter that modifies the acceleration limits at each sample time depending on the current position p k /θ k , the current velocity v k / θk and their respective limits. This law allows the platform to return to its neutral position with a certain threshold while respecting the limits in position, velocity and acceleration. This condition is summarized as:

p min ≤ p k + c v T v k + c a T 2 ulin k 2 ≤ p max (20) 
θ min ≤ θ k + c v T ω k + c a T 2 urot k 2 ≤ θ max (21) 
where c v , c a and T are tuning parameters that prevent the platform from exceeding its limits. We chose the parameters, so that there would always be a valid solution along the prediction horizon, these are:

c v = 4, c a = 2 and T = 1.2.
The difference between this technique and the invariant set one is that here the constraints are applied more strictly to the control inputs.

D. Terminal weighting matrix based on the LQR theory

Consider the following infinite unconstrained optimal control problem for the system (A, B) to be stabilizable

J k = 1 2 Np-1 j=1 x T k Qx k + ∆u k R∆u k + 1 2 x T N p P x N p ( 22 
)
where P is the solution for an infinite horizon and the unique positive solution of the discrete algebraic Riccati equation

P = A T P -K T (R + B T P B)K + Q (23)
and K = (R + B T P B) -1 B T P A is the corresponding gain. Using P as the terminal state weighting matrix for the finite time predicted horizon implies that the cost functions is Lyapunov and then guarantees nominal stability in closed loop. Here, the receding horizon controller with a large enough control and prediction horizon behaves like an LQ optimal control [START_REF] Bordons | Model predictive control[END_REF].

In the presence of constraints, the controller ∆U = Kx does not necessarily satisfy the limits of the platform. In that case, it is necessary to change the choice of Q and R weighting matrices as these are the ones that will determine the performance of the system in closed loop.

V. SIMULATION RESULTS

The SCANeR studio driving simulation software is applied to generate different test scenarios and reference signals like longitudinal and rotational accelerations. These signals are sent from a virtual vehicle model to be processed by the MCA and then sent to the simulation platform.

Three different scenarios that last 50 seconds each are compared to evaluate the feasibility of the optimal solution for the different techniques of Section IV. All scenarios require both longitudinal motion with braking/acceleration and lateral motion with steering vehicle control.

The first scenario Sce 1 is a urban simulation consisting in one intersection in which the vehicle must stop and then turn left. The second scenario Sce 2 is a highway simulation: the vehicle goes at a constant speed following a car, passing it and cutting into the right lane. The last scenario Sce 3 is a slalom type scenario with a constant acceleration of 2m/s 2 during 10 seconds then a stop until null acceleration.

Table III shows the number of infeasibilities for all strategies of Section IV and for each scenario described above. Restricting the states to be zero at the end of the horizon (S 1 ) results in very bad tracking as we can see in Figs. 3a, 3b and 3c since the limits on human perception prohibit high variations in acceleration. With this condition, the feasibility of the algorithm is not guaranteed as the region set for the admissible states is very restrictive in the last step.

Invariant conditions generate more possible solutions but by itself does not generate safe strategies. The "normal constraints" strategy refers to keeping a constant value for the constraints; it is the most undesirable strategy as it leaves a large number of unfeasible solutions. Adding the terminal P matrix for invariant conditions (S 2 ) and normal constraints (S 4 ) greatly improves the number of solutions but does not ensure a solution over the entire prediction horizon.

The strategy with the braking law (S 3 ) always finds a solution and consequently it is assumed that the cost function is a Lyapunov function ensuring closed loop stability. This is a consequence of a constant change in the restrictions directly to the control action, i.e., each sample is saturating the control.

In the simulations (Fig. 3) we can observe the specific force perceived in each scenario. Comparing this figure with Table III we can observe the trade off between performance and the number of feasible solutions.

Taking as an example only the second scenario, and evaluating the capabilities and limitations along x with respect to the working space, we can see in Fig. 4 that the braking law strategy does not completely maximize the workspace and also does not provide the most optimal response for the control and trajectory tracking. However, it is the only strategy that ensures closed-loop stability through feasibility. It should be noted that this depends greatly on the choice of the parameters in the control law, consequently the performance can be increased with the appropriate tuning. Simulation results demonstrated that it is necessary to Only an adequate constraint law applied directly in the control input provides conditions to guarantee feasibility and closed loop stability. Future work will consist in performing experimental tests to validate the level of acceptability of the optimization method and the perception model used as the basis for prediction. Also we aim at modifying the braking law parameters in order to get optimal performance and ensure stability of the system even in the most critical driving situations. Then, the system is augmented to include an integral action in the plant model ensuring offset free tracking in the steady state [START_REF] Rossiter | Model-based predictive control: a practical approach[END_REF]. Now, the model input ∆u k is the control increment instead of the control signal u(k). In the next system, I m represents the unit matrix. 
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 1 Fig. 1: Tilt platform along the longitudinal acceleration
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 2 Fig. 2: Closed-loop responses using different frequencies in the nonuniform prediction horizon
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 3 Fig. 3: Comparison of the simulator outputs for all different strategies in scenarios 1 (a), 2 (b) and 3 (c)
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 4 Fig. 4: Longitudinal motion comparison: position,velocity and acceleration in scenario 2

APPENDIX

  Consider the LTI systemx m (k + 1) = A m x m (k) + B m u(k) y(k) = C m x m (k) + D m u(k)

C

  m D m x m (k) u(k -1)+ D∆u k

TABLE I :

 I Performance of Renault's ULTIMATE simulator

	Actuator/Rail limits Displacement Velocity Acceleration
	Longitudinal/x	0.28m	0.7m/s	7.5m/s 2
	Lateral/y	0.26m	0.7m/s	7.5m/s 2
	Vertical/z	0.20m	0.4m/s	5.0m/s 2
	Roll	15 •	40 • /s	300 • /s 2
	Pitch	15 •	40 • /s	300 • /s 2
	Yaw	15 •	60 • /s 2	600 • /s 2
	X rail	2.6m	2m/s	5m/s 2
	Y rail	2.6m	3m/s	5m/s 2

TABLE II :

 II Different sampling frequencies for a same prediction time

	t s1 *(size) t s2 *(size)	Np size Prediction time (s)
	0.01*(10)	0.5*(140)	150	7.1
	0.01*(10)	0.1*(70)	80	7.1
	0.01*(10)	0.15*(47)	57	7.1
	0.01*(10)	0.2*(35)	45	7.1

TABLE III :

 III Number of infeasibilities per strategy in different scenarios

	Strategies	Infeasibilities number Sce1 Sce2 Sce3
	Zero terminal (S 1 )	0	8	1
	Invariant condition	0	112	4
	Invariant with P matrix (S 2 )	0	17	3
	Braking law (S 3 )	0	0	0
	Normal constraints	12	1212	345
	Normal with P matrix (S 4 )	0	18	2
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