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C. Langrenne1, É. Bavu1 and A. Garcia1

1 Conservatoire National des Arts et Métiers (CNAM)
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ABSTRACT

Higher order ambisonics involve excessive bass boosts, es-

pecially for high orders and at low frequencies. In order

to avoid unnecessary and excessive amplification for com-

ponents that do not contribute significantly to the sound-

field, a filterbank can be used in order to cut-off noise

amplification. In the present paper, we propose a linear

phase IIR filterbank implementation that allows to avoid

the used of fast block convolutions or nonlinear IIR filters.

Our approach is based on local overlap-add time reversed

block convolutions, which allow the filterbank to exhibit

a linear delay, which only depends on the sectioned block

size. When combined with radial filters of a rigid spherical

recording array, this approach allows to change the cutoff

frequencies of the filterbank with more flexibility than pre-

computed FIR filterbanks.

1. INTRODUCTION

Higher order Ambisonics decomposition of natural sound-

fields is often performed using rigid spherical microphone

arrays, mainly because of its simple implementation [1,2].

All the electronic equipment can be conveniently placed

inside the spherical measurement array, without affecting

the scattered acoustic field. However, restitution systems

for HOA sound field synthesis generally exhibit a much

larger radius than measurement arrays. The well-known

bass-boost effect is directly linked to the relatively small

size of the measurement array: low frequencies have to be

amplified, especially for higher order components of the

Ambisonics decomposition. The dynamic range for fil-

tering purposes is limited, mainly by the signal-to-noise

ratio of the microphone array. In order to overcome this

problem, we developed a microphone array prototypes us-

ing analog MEMS microphones, which have become a vi-

able solution in a small packaging, with a reasonable price,

thanks to the growing use of these sensors in domotics and

in the mobile phone industry. MEMS microphone from the

same production batch exhibit very similar characteristics
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and can be used for array signal processing without any

level or phase calibration. The proposed prototype is made

of groups of 4 MEMS microphones for the same sensor

position, in order to improve the signal to noise ratio by 6

dB. This microphone array is a 5th order Ambisonics sys-

tem (50 sensors 200 MEMS on a Lebedev grid).

Nevertheless, this approach does not dispense from the

need to filter higher order coefficients. A simple high-pass

filtering on each order component is not sufficient, since

this would not only cause losses in terms of amplitude and

power but would also affect the loudness of the restitu-

tion. A filterbank is therefore needed in order to cut-off

noise amplification at low frequencies, and to apply appro-

priate gains for loudness equalization. For this purpose,

Baumgartner et al. [4] proposed a non-linear phase filter-

bank based on Linkwitz-Riley IIR filters. In order to avoid

group delay distortions, Zotter proposed a linear phase fil-

terbank based on FIR filters and the use of fast block con-

volutions [5]. This solution is although not very flexible,

since the FIR strongly depend on the radius of the mea-

surement array, and on the filterbank’s cut-off frequencies.

Any change in the measurement system require a new com-

putation of each corresponding FIR filters.

In the present paper, a linear phase IIR filterbank is im-

plemented. Thanks to the use of local overlap-add time re-

versal blocks [6], the filterbank exhibits a linear phase de-

lay which only depends on the the time reversal blocksize.

The proposed filterbank implementation allows to change

in real-time the frequency bands and the loudness equal-

ization (diffuse or free field equalization) using the Faust

programming language [7].

2. AMBISONICS

In this paper, we use the following convention for spherical

coordinates: ⎧⎨
⎩

x = r cos(θ) cos(δ)
y = r sin(θ) cos(δ)
z = r sin(δ)

(1)

with r, θ and δ denoting the radius, the azimuth and the

elevation angle (see Fig. 1).
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Figure 1. Spherical coordinate system. A point P (x, y, z)

is described by the radius r, azimuth θ and elevation δ.

For any incident sound field, the pressure p(kr, θ, δ) can

be approximated as a truncated Fourier-Bessel series of or-

der M :

p(kr, θ, δ) =

M∑
m=0

imjm(kr)

m∑
n=−m

BmnYmn(θ, δ) (2)

with i =
√−1, k the wave number, jm(kr) the spherical

Bessel function, Ymn(θ, δ) the real spherical harmonic of

order m and degree n and Bmn the wave spectrum.

In (2), the spherical harmonics are defined by:

Ymn(θ, δ) =

√
(2m+ 1)εn

(m− |n|)
(m+ |n|)P

|n|
m (sin(δ))×{

cos(|n|θ) if n ≥ 0

sin(|n|θ) if n < 0
(3)

with εn = 1 for n = 0 and εn = 2 for |n| > 0, P
|n|
m are the

associated Legendre polynomials of order m and degree

|n|.

2.1 Encoding and decoding

In this section, we consider both spherical microphone and

loudspeaker arrays, whose transducers are sampled on a

spatial grid with L nodes calculated from a quadrature rule

which is exact up to the order M. The recording, encoding

and decoding operations are summarized as follows, in the

frequency domain [9]:

sspk = WY F−1
spk︸ ︷︷ ︸

decoding

EmicY
TWsmic︸ ︷︷ ︸

encoding

(4)

where sL×1
spk = [s1, s2, · · · , sl, · · · sL]T is the vector of in-

put signals for the loudspeakers, WL×L is the diagonal

matrix of quadrature weights, Y L×(M+1)2 is the matrix

of spherical harmonics evaluated at the different nodes.

F−1(M+1)2×(M+1)2

spk is the diagonal matrix of near field com-

pensation filters with diagonal term:

Fspk(krspk) = i−(m+1)kh(2)
m (krspk) (5)

where rspk is the distance of the loudspeakers and

h
(2)
m the spherical Hankel function of second order.

E
(M+1)2×(M+1)2

mic is the diagonal matrix of equalization

filters for the rigid spherical microphone array with diago-

nal term given by:

Emic(krmic) = i−(m−1)(krmic)
2h

′(2)
m (krmic) (6)

where rmic is the radius of the rigid sphere supporting the

microphones and h
′(2)
m (kr) the derivative of the spherical

Hankel function of second order with respect to the vari-

able kr.

Finally sL×1
mic are the signals captured by the micro-

phones. Transposition is denoted by the superscript T.

2.2 Radial Filters

The present paper specifically focuses on the radial filters,

which correspond to the correction of the rigid spherical

measurement array scattering and to the compensation of

the restitution loudspeakers, which is obtained usingEqs.

(5) and (6):

Gm(krmic, krspk) = −kr2mic

h
′(2)
m (krmic)

h
(2)
m (krspk)

(7)

For a digital implementation of these filters, one can use

the following expressions [10]:

h(2)
m (kr) = im+1 e

−ikr

kr

m∑
k=0

am,k(ikr)
(−k) (8)

with

am,k =
(m+ k)!

(m− k)!k!2k
(9)

and

h
′(2)
m (kr) =

m

kr
h(2)
m (kr)− h

(2)
m+1(kr) (10)

Using eqs. (7), (8) and (10), the radial filters can be

expressed as:

Gm(krmic, krspk) = ikrmicrspke
−ik(rmic−rspk)∑m+1

k=0 am,k(ikrmic)
(−k) −m

∑m
k=0 am,k(ikrmic)

(−k−1)∑m
k=0 am,k(ikrspk)(−k)

(11)

In this equation, the term e−ik(rmic−rspk) is a delay cor-

responding to the propagation time between the radius of

the loudspeakers and the radius of the rigid sphere and can

be omitted. The term ik can be interpreted as a differentia-

tor filter. The last term can be efficiently implemented as a

discrete-time IIR filter, as proposed by Daniel for nearfield

compensation [11]. In our practical implementation, we

use the formation proposed by Adriaensen in [12].

Langrenne, Bavu, GarciaEAA Spatial Audio Sig. Proc. Symp., Paris, Sept. 6-7, 2019

doi:10.25836/sasp.2019.03128



3. LINEAR PHASE IIR FILTERBANK DESIGN

At low frequencies and for high order components, the

compensation gains exhibit very high values. As a con-

sequence, there is a need to stabilize the filters for dif-

ferent Ambisonic orders m, using high-pass filters, whose

slopes exceed 6m dB/oct. However, the use of this proce-

dure induces a noticeable loudness loss below each cut-off

frequency, due to the filtering of signals of higher orders

than m. One way of circumventing this problem consists

in designing a filterbank with cross-overs with compen-

sated amplitudes as proposed by Baumgartner in [4], who

proposed the use of a Butterworth filterbank with all-pass

based phase compensation in order to have the same non-

linear phase for each of the decomposition orders.

In order to avoid group delay distortions at low frequen-

cies, we propose a realtime implementation of a linear

phase IIR filterbank, whose implementation is based on the

Powell and Chau technique [6]. This procedure is based

on a conventional two-pass IIR filter. The time reversed

section implementation of the noncausal function H(z−1)
is cascaded with the original causal IIR filter H(z). The

equivalent transfert function therefore becomes:

Heq(z) = H(z−1)H(z)e−jωd(L) (12)

whose phase is linear and magnitude is equal to the square

of the magnitude of the original IIR filter H(z). The term

e−jωd(L) corresponds to the overall delay induced by the

time reversal sectioning procedure, which is (4L−1) sam-

ples in our implementation.

Using a Butterworth filter H(z), one obtains a linear

Linkwitz-Riley filter, with crossover frequencies located

at -6 dB attenuation. Using the well-known overlap-add

method for sectioned convolution, the output can be ob-

tained in realtime from a superposition of finite length re-

sponses from adjacent input sections of length L. The finite

length of these input section correspond to a truncature of

the IIR filter, which can cause a ripple in the pass-band

section of the filter. Taking a sufficiently long value of L

allows to ensure that the response magnitude is undistin-

guishable from the ideal magnitude response, with a nearly

constant group delay.

4. REAL-TIME IMPLEMENTION WITH FAUST

Faust (Functional Audio Stream) is a functional program-

ming language for sound synthesis and audio process-

ing with a strong focus on the design of synthesizers,

musical instruments, audio effects, etc. Faust targets

high-performance signal processing applications and au-

dio plug-ins for a variety of platforms and standards. It is

used on stage for concerts and artistic productions, in ed-

ucation and research, in open source projects as well as in

commercial applications.

4.1 Linear phase filter

Table (1) recalls the conventional overlap-add method for

sectioned convolution. It is worth noticing that the original

signal is split in two branchs in order to separate successive

sections of L samples. Each branch is filtered using an IIR

filter which is reset at the end of 2L samples, because it is

a truncated sectioned convolution.

This overlap-add scheme can also be used to implement

noncausal time reversed convolutions. The process pro-

posed by Powell and Chau [6] consists in the following

(see Table (2)):

1. Time reverse each input section using a LIFO (Last

Input First Output)

2. Split the reversed sectioned signal and use the re-

seted IIR filter on each branch

3. Create output sections consisting of the trailing re-

sponse from the current input section plus the lead-

ing response from the previous input section. To

be implemented in real-time, this supposes to split

again the branch to separate leading and trailing sec-

tions, and to delay the leading section of each branch

by 2L samples

4. Time reverse the output sections using a LIFO.

4.2 Faust implementation

We use the following Faust implementation of a LIFO:

LIFO(L) = @(phase(L)*2) with {
phase(n) = (1) : (+ : %(n)) ˜ _ ;
};

Each LIFO therefore induces a delay of (L − 1) samples

before performing the time reversed sections. As a con-

sequence, the clocks used to obtain the different branches

begin with a first section of (L − 1) samples, and the fol-

lowing clock sections are of length L.

The overall FAUST implementation of a linear phase

filter is shown on Fig. 2. A one-sample delay before the

second LIFO is used in order to compensate the miss-

ing sample of the first LIFO. This therefore allows to use

the same clocks, both for forward and backward filterings.

Since each LIFO induces a delay of (L − 1) samples and

the reversed time section induces a delay of 2L samples,

this linear phase IIR filtering process exhibits an overall

delay of (4L− 1) samples.

5. LINEAR PHASE FILTERBANK

The proposed filterbank implementation only makes use of

passband filters. We made this choice in order to avoid so-

liciting the loudspeakers at very low frequencies. At high

frequencies, a low-pass filter is added in order to combine

it with the differentiator filter given in (11). The zero and

the pole of these two filters compensate in order to avoid

problems at high frequencies, when only the differentiator

filter is used. This filter is not present in the first subsec-

tion, but only implemented in the second subsection.
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section k (L) section k+1 (L) section k+2 (L)

x(n) xk(1),· · · , xk(L) xk+1(1),· · · , xk+1(L) xk+2(1), · · · , xk+2(L)
clk1 1 · · · 1 0 · · · 0 1 · · · 1

clk2 0 · · · 0 1 · · · 1 0 · · · 0

x(n) ×clk1 xk(1) · · · , xk(L) 0 · · · 0 xk+2(1), · · · , xk+2(L)
x(n) ×clk2 0 · · · 0 xk+1(1) · · · , xk+1(L) 0 · · · 0

IIR(x(n) ×clk1) Leading k Trailing k Leading k + 2
IIR(x(n) ×clk2) Trailing k − 1 Leading k + 1 Trailing k + 1

Sum=y(n) yk(n) = Lk + Tk−1 yk+1(n) = Lk+1 + Tk yk+2(n) = Lk+2 + Tk+1

Table 1. Overlap-add method for sectioned convolution

section k (L) section k+1 (L) section k+2 (L)

x(n) xk(1),· · · , xk(L) xk+1(1),· · · , xk+1(L) xk+2(1), · · · , xk+2(L)
clk1 1 · · · 1 0 · · · 0 1 · · · 1

clk2 0 · · · 0 1 · · · 1 0 · · · 0

LIFO(L)=x(-n) xk(L),· · · , xk(1) xk+1(L),· · · , xk+1(1) xk+2(L), · · · , xk+2(1)

x(-n) ×clk1 xk(L) · · · , xk(1) 0 · · · 0 xk+2(L), · · · , xk+2(1)
x(-n) ×clk2 0 · · · 0 xk+1(L) · · · , xk+1(1) 0 · · · 0

IIR(x(-n) ×clk1) Leading k Trailing k Leading k+2

IIR(x(-n) ×clk2) Trailing k-1 Leading k+1 Trailing k+1

(IIR(x(-n) ×clk1) ×clk1)@(2L) Leading k-2 0 · · · 0 Leading k

IIR(x(-n) ×clk1) ×clk2 0 · · · 0 Trailing k 0 · · · 0

(IIR(x(-n) ×clk2) ×clk2)@(2L) 0 · · · 0 Leading k-1 0 · · · 0

IIR(x(-n) ×clk2) ×clk1 Trailing k-1 0 · · · 0 Trailing k+1

Sum=y(-n) yk−2(−n) = Lk−2 + Tk−1 yk−1(−n) = Lk−1 + Tk yk(−n) = Lk + Tk+1

LIFO(L)=y(n) yk−2(n) yk−1(n) yk(n)

Table 2. Overlap-add method for time reversed convolution. @(2L) means to apply a delay of 2L samples.

Figure 2. Block diagram of the Faust implemention.

5.1 Without radial filters of ambisonic recording

Fig. 3 shows the filterbank response for a sectioned con-

volution of length L = 100 samples. This figure shows

that the choice of L = 100 is not sufficient for the lower

passband filter, which has a lower bound of 20 Hz. At low

frequencies, the impulse response is long and the truncated

IIR length must be larger. On the other hand, one can no-

tice that for high passband filters, the dynamic range are

> 100 dB with only 100 sample sections.

Fig. 4 shows that the use of larger L values allow to get

closer to the ideal filter response and very low frequencies.

With L = 900 samples, the filterbank response is shown

on Fig. 5. Its total response is flat by design, since it cor-

responds to a Linkwitz-Riley filterbank with crossover fre-

quencies located at -6 dB attenuation.
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Figure 3. Filterbank response with L = 100
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Figure 4. Low passband filter with different lengths of

sectioned convolutions.
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Figure 5. Filterbank response with L = 900.

As shown on Fig. 7, the group delay is almost constant

around the ideal value of (4L− 1)/Fs, with Fs = 48 kHz.

Fig. 7 allows to show that the group delay only deviates

from this ideal value by less that 0.5 msec from 20 Hz to

20 000 Hz.
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Figure 6. Group delays for different lengths of sectioned

convolutions.

5.2 With radial filters of ambisonic recording

Our 5th order ambisonic recording prototype is a rigid

sphere of radius 0.07 m. The 50 MEMS microphones are

spatially sampled on the sphere using a Lebedev rule (see

Fig. 8). Because of the large radius, this is not necessary to

filter the first ambisonic order. In return, the aliasing fre-

quency is 6500 Hz. Our spherical restitution prototype is

composed of 50 loudspeakers, on the same Lebedev grid,

at a radius of 1.07 m. For the low frequencies, six larger
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Figure 7. Deviations from the ideal group delays, for dif-

ferent lengths of sectioned convolutions.

loudspeakers are added and driven with ambisonic signals

up to order 1 ((see Fig. 9).

Figure 8. Cnam prototype of 5th order ambisonic record-

ing sphere.

Figure 9. Cnam prototype of 5th order ambisonic restitu-

tion sphere.

Fig. 10 and Fig. 11 show the magnitude and the phase

responses of the radial filter obtained after the proposed

filterbank. The delay term of (11) is not included, and the

ideal delay of (4L-1) samples induced by the proposed fil-

terbank implementation is also compensated. When com-

pared with the theoretical filters of (11), small differences
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can be noticed above 10 kHz, due to the differentiator fil-

ter, which is above the aliasing frequency. The filterbank

cutoff frequencies have been chosen in order to prevent any

gain values exceeding 40 dB. These values can be changed

in real time with a slider in the Faust panel. An amplitude

compensation gain has also been added in the final version,

as suggested by Baumgartner in [4].
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Figure 10. Magnitude response of Gm. Solid line : mea-

sured after the filterbank , Dashed line: ideal eq.(11).
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Figure 11. Phase response of Gm. Solid line : measured

after the filterbank , Dashed line: ideal eq.(11).

6. CONCLUSIONS

A linear phase IIR filterbank is presented in this paper.

When combined with the radial filters of an ambisonic

recording rigid sphere, it allows to change the cutoff fre-

quencies in real-time in order to adjust them more pre-

cisely, while achieving a linear phase filterbank. In order to

meet the requirements for the lower passband filter, a trun-

cated sectioned IIR filter with 900 samples is needed for

Fs = 48 kHz, , which induces an overall delay of 75 msec.

The final code can be compiled up to the 5th ambisonic

order. However, some buffer overflows appear from time to

time at the 5th order. The code runs on only one CPU core,

and the solution could come from the use of multiple cores,

which is a challenge for audio stream synchronization.
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