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Abstract 

The prognosis of patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) 

remains unsatisfactory and, despite major advances in genomic studies, the biological mechanisms 

underlying chemoresistance are still poorly understood. We conducted for the first time a large-scale 

differential multi-omics investigation on DLBCL patient’s samples in order to identify new biomarkers 

that could early identify patients at risk of R/R disease and to identify new targets that could determine 

chemorefractoriness. We compared a well-characterized cohort of R/R versus chemosensitive DLBCL 

patients by combining label-free quantitative proteomics and targeted RNA sequencing performed on 

the same tissues samples. The cross-section of both data levels allowed extracting a sub-list of 22 

transcripts/proteins couples whose expression levels significantly differed between the two groups of 

patients. In particular, we identified significant targets related to tumor metabolism (Hexokinase 3), 

microenvironment (IDO1, CXCL13), cancer cells proliferation, migration and invasion (S100 proteins) 

or BCR signaling pathway (CD79B). Overall, this study revealed several extremely promising biomarker 

candidates related to DLBCL chemorefractoriness and highlighted some new potential therapeutic 

drug targets. The complete datasets have been made publically available and should constitute a 

valuable resource for the future research. 
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Introduction 

Diffuse large B-cell lymphoma (DLBCL) is the most frequent subtype of non-Hodgkin lymphoma (NHL) 

and is a clinically and biologically heterogeneous disease. The anthracycline-based regimen R-CHOP 

(rituximab, cyclophosphamide, doxorubicine, vincristine and prednisone) is still considered as the 

standard of care for first-line treatment with approximately 60% of the patients achieving a complete 

response. The prognosis of patients with primary refractory or early-relapsed (R/R) disease is 

particularly poor with a median overall survival below one year. Because of the acquisition of 

chemoresistance, only a fraction of R/R patients can be cured with salvage therapies.1 

Recent advances in molecular biology, genetics and high throughput –omics technologies have led to 

a better understanding of the biology of this disease and the distinction of several subtypes of DLBCL.2 

Based on the cell-of-origin classification, the two major molecular subgroups are germinal center B-

cell-like (GCB) and activated B-cell-like (ABC) DLBCL that notably differ in their clinical outcomes.3 

Cytogenetic studies have highlighted the major importance of MYC, BCL2 and BCL6 rearrangements.4 

In parallel, the mutational landscape of DLBCL has been extensively studied, demonstrating the 

intratumoral heterogeneity and allowing the identification of recurrent somatic mutations, some of 

which provide promising opportunities for new drug developments.5 However, the mechanisms 

underlying the resistance to treatment still remain poorly understood and robust biomarkers for the 

early identification of patients at risk of R/R disease are still lacking.  

Mass spectrometry-based proteomics has benefited from an instrumental and methodological 

revolution over the last two decades. Today, global label-free quantitative proteomic studies enable 

the identification and quantification of thousands of proteins and provide new opportunities for an in-

depth characterization of complex proteomes.6 As a complement to the static picture revealed by 

genome sequencing, the comprehensive analysis of the proteome that is dynamic provides crucial 

information on protein expression to decipher complex biological processes. To date, no data are 

available in the literature focusing on the proteomic characterization of R/R DLBCL. 
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In this context, we conducted a large-scale differential proteomic investigation of R/R versus 

chemosensitive DLBCL patients in order to identify new potential biomarkers related to resistance to 

treatment and to better understand the biological mechanisms underlying chemoresistance. This 

proteomic investigation was combined with a quantitative transcriptomics experiment performed on 

the same samples to correlate genes expression and their impact at the proteomic level. 

 

Results and discussion 

We performed for the first time a large-scale differential multi-omics study on DLBCL patient’s samples 

in order to search for new biomarkers that could help to early identify patients at risk of R/R disease 

and to better understand the biological mechanisms underlying chemorefractoriness. In the context 

of our current knowledge from the literature, a detailed study of some promising new biomarkers is 

provided below, demonstrating the high value of the present proteogenomic dataset. 

Fresh-frozen tumour tissues were collected at the time of diagnosis, before any treatment, for 8 

chemorefractory and 12 chemosensitive DLBCL patients who were uniformly treated in first-line with 

rituximab and an anthracycline-based chemotherapy regimen in a single institution. Patients were 

considered as chemorefractory if they had a stable or progressive disease after first-line (n=6), or if 

they relapsed less than one year after having achieved a complete response (n=2). Patients who 

achieved a complete response and did not relapse thereafter, with a minimal follow-up of at least 24 

months after the end of treatment, were considered as chemosensitive. Chemorefractory patients 

were most likely to have an aggressive disease according to the age-adjusted International Prognostic 

Index (aaIPI) with 87% aaIPI 2-3 in the chemorefractory group and 42% in the chemosensitive group 

(p=0.04). There was a trend for a higher proportion of patients presenting with a disseminated disease 

(Ann Arbor stage 3-4) in the chemorefractory group compared to the chemosensitive group (87% vs 

50% respectively, p=0.08). RNA could be extracted from the same tissue samples that were used for 
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proteomics analysis for 17 patients (7 chemorefractory and 10 chemosensitive). In both groups, the 

majority of patients were classified into Germinal Center B-Cell-like (GCB) molecular subtype (72% of 

the chemorefractory patients and 70% of the chemosensitive patients) as determined by rapid reverse 

transcriptase multiplex ligation-dependent probe amplification assay (RT-MLPA).7 The mean 

percentage of tumor-cells, determined by morphological examination and immunohistochemistry, 

was 75%, and was ≥ 70% in 16/20 samples. Only one case had a low percentage of tumor cells (20%) 

but this sample corresponded to a particular subtype of DLBCL (T-cell/histiocyte-rich large B-cell 

lymphoma). Patient’s characteristics are summarized in table 1 and a detailed description of the 20 

patients is provided in Supplementary Table 1. 

 

Overall, the combined proteomics analysis of the 20 samples resulted in the identification of 4774 

unique protein groups (proteins which cannot be unambiguously identified by unique peptides are 

grouped in one protein group and quantified together). Pairwise comparisons of all samples against 

each other resulted in a high Pearson coefficient correlation (average r = 0.89) demonstrating a high 

quantitative accuracy and a high similarity in the global proteomes. The statistical analysis with the 

peptide-level Robust Ridge Regression model (MSqRob) allowed the relative quantification of 3101 

proteins between the two groups of patients, with 586/3101 (18.9%) being significantly differentially 

abundant with a false discovery rate < 5%. Among these differentially abundant proteins, 246 were 

overexpressed in chemorefractory patients and 340 overexpressed in chemosensitive patients 

(Supplementary Table 2). 

Transcriptomic analysis was performed on 17 samples (these 17 samples are indicated in 

supplementary table 1). It allowed the quantification of 17695 transcripts across the 17 samples. For 

the 4774 previously identified proteins, the transcript counterpart was also identified by RNAseq in 

4338/4774 (90.8%). With an adjusted p-value < 0.1, 244 transcripts were differentially abundant 

between the two groups of patients (Supplementary Table 3). 
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Among the 3101 quantified proteins with MSqRob, 2965/3101 (95.6%) were also quantified at the 

transcriptomic level. The combination of transcriptomics and proteomics data thus resulted in 2965 

transcripts/proteins commonly quantified at both levels. When focusing on the 246 proteins 

overexpressed in chemorefractory patients, only 24 had a high fold-change at the proteomic level 

(log2FC (R vs S) > 1) and low at the transcriptomic level (log2FC (R vs S) < 1). Conversely, 16 proteins 

had a low fold-change at the proteomic level (log2FC (R vs S) < 1) and high at the transcriptomic level 

(log2FC (R vs S) > 1) When focusing on the 340 proteins overexpressed in the chemosensitive patients, 

23 had a high fold-change at the proteomic level (log2FC (R vs S) < -1) and low at the transcriptomic 

level (log2FC (R vs S) > -1). Conversely, only 5 proteins had a low fold-change at the proteomic level 

(log2FC (R vs S) > -1) and high at the transcriptomic level (log2FC (R vs S) < -1). 

 

 By considering only the significantly differentially expressed proteins between the two groups of 

patients, only 22/586 (3.8%) were found to be also differentially expressed at the transcriptomic level. 

In all but one case, the variation direction was similar between the two methods with 16/22 trancripts 

and proteins overexpressed in chemorefractory patients (log2FC (R vs S) > 0), and 5/22 trancripts and 

proteins overexpressed in chemosensitive patients (log2FC (R vs S) < 0) (Table 2). Only one discordant 

case was observed with Complement C3 that was overexpressed in chemorefractory patient at the 

proteomics level but overexpressed in chemosensitive patients at the transcriptomics level. The cross-

section of both data levels allowed the extraction of a sub-list of 22 differentially abundant 

transcripts/proteins couples (Table 2).  

 

Indoleamine 2,3-dioxygenase 1 (IDO1) was overexpressed in chemorefractory patients (Figure 1A). 

This enzyme is involved in the degradation of the amino acid tryptophan. L-kynurenine, one of the 

metabolites resulting from tryptophan degradation, has the ability to inhibit T-cell proliferation and to 

induce T-cell death, contributing to an immunosuppressive microenvironment.8 Expression of IDO1 
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evaluated by immunohistochemistry was already found to be positive in one third of DLBCL cases and 

was associated with a worse response rate and a worse 3-year overall survival after first-line therapy 

with R-CHOP.9 From a therapeutic point of view, IDO1 represents a novel immune checkpoint target. 

Several IDO1 inhibitors (epacadostat (INCB024360), indoximod, navoximod (GDC-0919) or BMS-

986205) are now available but failed to demonstrate a therapeutic efficacy as a monotherapy. 

However, several ongoing trials in various solid tumors (ovarian cancer, pancreatic cancer, squamous 

cell carcinoma of the head and neck, non-small cell lung cancer, metastatic renal-cell carcinoma for 

example) are currently evaluating IDO1 inhibitors in combination with other agents such as PD1 or PD-

L1 inhibitors.10,11 Although results from phase 2 studies were encouraging, such as with the 

combination of epacadostat and anti-PD1 in melanoma patients (Daud A. et al, ASCO 2018, #9511), 

recent results from phase 3 studies failed to confirmed these results12, suggesting that further analysis 

are warranted to better defined the subset of patients who are most likely to benefit from IDO1 

inhibitors. No clinical trial are currently ongoing in order to evaluate the potential of IDO1 inhibitors in 

the context of R/R DLBCL. 

We also demonstrated an overexpression of the chemokine C-X-C motif ligand 13 (CXCL13) in 

chemorefractory patients (Figure 1B). CXCL13, the unique ligand of CXCR5, is an inflammatory 

chemokine that contributes to generate a pro-inflammatory microenvironment in angioimmunoblastic 

T-cell lymphoma.13 Moreover, it has been shown to be an adverse prognosis factor in advanced colon 

cancer.14 In colon cancer cells, the CXCL13-CXCR5 axis participates in tumour growth and invasiveness 

by activation of the PI3K/AKT signalling pathway.15 Our results indicate that CXCL13 could also play a 

key role in the microenvironment of DLBCL. 

Hexokinase 3 (HK3) is one of the four isoforms of hexokinase involved in the first step of the glycolysis 

pathway, converting glucose into glucose-6-phosphate. Glucose metabolism of cancer cells highly 

differs from that of normal cells. In cancer cells, pyruvate generated by glycolysis is converted into 

lactate via a phenomenon called “aerobic glycolysis” (Warburg effect).16 Overexpression of hexokinase 
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is crucial for cancer cells to produce enough ATP by aerobic glycolysis. Recently, hexokinase 2 was 

shown to be overexpressed in rituximab-resistant cell lines and to be associated with inhibition of 

mitochondrial-mediated apoptosis.17 In our study, hexokinase 2 was identified with a high degree of 

confidence (by 49 unique peptides covering almost 50% of its sequence) while its expression was not 

affected between the two groups of patients both at proteomic (log2FC=0.4, q-value=0.115) and 

transcriptomic (log2FC=0.7, adjusted p-value=0.58) levels. Interestingly, hexokinase 3 was also 

identified with a high degree of confidence (by 29 unique peptides covering 57% of its sequence), and 

its expression was significantly higher in chemorefractory patients at both proteomics (log2FC=01.7, q-

value < 0.001) and transcriptomics levels (log2FC=1.9, adjusted p-value=0.028) (Figure 1C). These 

results suggest that hexokinase 3 could play a key role in DLBCL chemorefractoriness.  

Proteins S100 are involved in the regulation of proliferation, migration and invasion of cancer cells, 

and their dysregulation has been demonstrated in the majority of human cancers.18 Fifteen S100 family 

members were identified in our study by proteomic analysis (S100A2, S100A4, S100A6, S100A7, 

S100A7A, S100A8, S100A9, S100A10, S100A11, S100A12, S100A13, S100A14, S100A16, S100B and 

S100P) and 4 were found to be significantly overexpressed in chemorefractory patients: S100A4 

(log2FC=0.9, q-value=0.003), S100A8 (log2FC=1.7, q-value<0.001), S100A9 (log2FC=1.9, q-value<0.001) 

and S100A11 (log2FC=0.5, q-value=0.007). Only S100A4 and S100A8 were significantly overexpressed 

at both transcriptomics and proteomics levels (Figure 1D and 1E). S100A4 and S100A8 were already 

extensively studied in solid tumours and were found to be associated with tumour growth and 

metastasis.19,20 However, few data are available in lymphoma with only S100A9 being described as 

associated with tumour growth and immune evasion.21 Our data thus suggest that these proteins could 

be associated in DLBCL with a more aggressive disease and could participate in the development of 

resistance to treatment. Based on our results, targeting S100 proteins may represent a therapeutic 

potential for the treatment of R/R DLBCL. 
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Finally, the B-cell antigen receptor complex-associated protein beta chain (CD79B) was significantly 

under-expressed in chemorefractory patients both at proteomic (log2FC=-1.7, q-value=0.013) and 

transcriptomic (log2FC=-1.3, adjusted p-value=0.023) levels (Figure 1F). CD79B is necessary for the 

function of the B-cell receptor and somatic genetic alterations in the CD79B gene participate in the 

constitutive activation of the NF-kB pathway, in particular for the ABC DLBCL subtypes. CD79B 

mutations have been reported in 23% of R/R ABC DLBCL.22 However, few data are available which 

investigate the level of CD79B expression. This protein expression level could eventually affect the 

efficacy of the anti-CD79B antibody-drug conjugate (polatuzumab vedotin) that has recently emerged 

as a potential active drug in R/R DLBCL.23 

 

We used the gene ontology (GO) (http://www.geneontology.org/) and PANTHER database24 to 

perform enrichment analysis based on the Gene Ontology – Biological Process (GO-BP) annotations in 

our proteomics dataset. This enrichment analysis indicated that proteins significantly overexpressed 

in chemorefractory patients were particularly enriched in GO-BP associated with inflammation and 

immune response, as well as the coagulation cascade. At the opposite, proteins significantly 

overexpressed in chemosensitive patients were enriched in GO-BP associated with ribosome 

biogenesis and ribosomal RNA (rRNA) processing (Table 3). 

These results suggest that cancer-related inflammation and disturbed immune response may play an 

important role and contribute to chemorefractoriness in DLBCL. The role of cancer-related 

inflammation in the development and progression of tumors, as well as in patient outcomes, has been 

recognized since many years.25 In addition to CXCL13 and S100A8 proteins, that were previously 

discussed, the other proteins from our dataset that were found to be significantly overexpressed at 

proteomics and transcriptomics level in chemorefractory patients and involved in inflammation or 

immune response are Granzyme H, Granzyme K, Complement C3 and Alpha-1-antitrypsin. Our results 

also suggest that a local activation of coagulation may contribute to treatment-resistance and tumor 
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progression, and are consistent with previously published works having already highlighted the role of 

blood coagulation in cancer progression. In particular, it has been shown that blood coagulation 

enzymes in the tumor microenvironment played a role in solid-tumor progression and metastasis.26,27 

These results highlight the potential major role played by the microenvironment in tumor progression 

and drug-resistance in DLBCL. The strong interactions between cancer-cells and their surrounding 

microenvironment have been already largely studied, and targeting the microenvironment offers now 

novel therapeutic perspectives in cancer.28,29 In this study, proteomic and transcriptomic analysis were 

performed on whole tissue sections, thus allowing the analysis of DLBCL-cells and their 

microenvironment. One major drawback of this approach is that these two compartments cannot be 

analysed separately, but this type of approach could be considered as an opportunity, in the context 

of a biomarker discovery study, to provide the most exhaustive list of potential new biomarkers. 

However, in this context, validation studies are a crucial need in order to determine more precisely the 

relative contribution of both compartments that are tumor-cells and microenvironment. To achieve 

such an objective, immunohistochemistry could be considered as a method of choice.  

 

In this study, we present the first high-throughput multi-omics study in DLBCL. Over the past two 

decades, genomics and transcriptomics have largely dominated in cancer research, in particular with 

the recent advent of next-generation sequencing (NGS) technologies. In 2000, gene-expression 

profiling allowed the clear distinction of two molecular DLBCL subtypes, namely Activated B-Cell (ABC) 

and Germinal Center B cell-Like (GCB) subtypes.3 The development of NGS technologies resulted in the 

recent publication of exome sequencing in 1001 DLBCL patients allowing to depict the nearly complete 

mutational landscape in DLBCL and the identification of 150 driver genes.30 This in-depth and extensive 

molecular characterization of DLBCL at genomic and transcriptomic levels also recently led to the 

proposal of novel molecular classifications in DLBCL identifying subgroups of patients with distinct 

clinical behaviour and prognosis.31,32 More recently, MS-based proteomics has emerged as an 
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important tool for the characterization of DLBCL. Various methodological approaches have been used 

with an aim to exploring various aspects of the disease, such as pathogenesis, subtypes classification 

or therapeutic issues. Super-SILAC-based approaches have demonstrated the ability to distinguish 

DLBCL subtypes according to their cell of origin in patient-derived DLBCL cell lines as well as on tumor 

samples from patients.33-35 So far, few proteomics studies have addressed the drug-resistance 

challenge in DLBCL. This issue has been first addressed by a proteomic study (two-dimensional gel 

electrophoresis with MALDI-TOF/TOF-MS analysis) aiming to identify differentially expressed proteins 

expressed by DLBCL cells with high or low sensitivity to chemotherapy after in vitro exposure to the 

CHOP regimen compounds. Nineteen differentially expressed proteins were identified between the 

two groups. Among these differentially expressed proteins, immunohistochemical analysis performed 

in DLBCL tissue samples from 98 patients confirmed a higher expression of Glutathione S-transferase 

(GSTP1) and Heat shock protein beta-1 (HSPB1), and a lower expression of Ezrin (EZR) and Pleckstrin 

(PLEK) in patients with relapse or progressive disease after CHOP chemotherapy.36 In another study, 

by using a SILAC-based quantitative proteomic approach on 10 DLBCL patients selected by their 

response to treatment (5 patients with primary refractory disease or early relapse, and 5 patients 

considered cured), 87 proteins, among a total of 3027 successfully quantified proteins, were 

differentially expressed between the two groups of patients with 21 overexpressed in refractory 

patients. The authors could demonstrate an up-regulation of proteins involved in the regulation of the 

actin cytoskeleton in chemosensitive patients.37 This work was pursued by using a tandem mass tag 

(TMT)-based quantitative proteomic approach performed on microdissected samples obtained from 

formalin-fixed paraffin-embedded tissues. This study allowed identifying 102 DA proteins and the 

authors could confirm the up-regulation of proteins involved in actin regulation in chemosensitive 

patients. Interestingly, they managed to highlight a potential role for ribosomal proteins in treatment-

resistance as these proteins were largely represented in those found to be overexpressed in 

chemorefractory patients.38 In comparison with these previously published works, our study points out 

the potential role of the microenvironment in drug-resistance in DLBCL. However, we observed one 
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discrepancy between our study and the study published by Bram Ednersson et al regarding the 

potential role of ribosomal proteins. In our study, ribosomal proteins and ribosome biogenesis 

appeared over-represented in chemosensitive patients, while it was the opposite in the work of Bram 

Ednersson et al. There is no obvious explanation, but it remains hazardous to make a direct comparison 

between two exploratory studies that differ in several technical and methodological aspects such as 

the tissue used for protein extraction (fresh-frozen vs formalin-fixed paraffin-embedded, whole-tissue 

vs microdissection), proteomic workflow and quantification (label-free vs super-SILAC) and statistical 

analysis. Nevertheless, these two studies point out a potential role for ribosome proteins in drug-

resistance and, therefore, warrant continued research to clarify the role of these proteins in treatment-

resistance of DLBCL. 

 

In conclusion, this study revealed several extremely promising biomarker candidates associated with 

chemorefractoriness, related to tumour metabolism, microenvironment, BCR signalling pathway, 

hence highlighting new potential therapeutic drug targets. The combination of multilevel –omics 

datasets is very useful to reduce lists of thousands of candidates to a robust subset of significant 

targets, as well as to cross-validate candidates by different techniques. Further studies will be 

necessary to validate these findings in a larger and independent cohort of patients. However, the 

present work already provides greater insights in the underlying mechanisms of chemoresistance in 

DLBCL, supported by a publically available dataset. 

 

Materials and Methods 

Patients selection 

Patients were selected among the fresh-frozen tissue-sample collection available from the “Centre de 

ressources Biologiques des Hôpitaux Universitaires de Strasbourg”. We retrospectively analyzed the 
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treatment and outcome of each patient. Only patients for whom a tissue-sample collected at the time 

of diagnosis and treated in first-line with the combination of anti-CD20 monoclonal antibody and an 

anthracycline-based regimen were selected. Patients were considered as chemorefractory if they had 

a stable or progressive disease after first-line, or if they relapsed less than one year after having 

achieved a complete response. Patients who achieved a complete response after first-line and did not 

relapse thereafter, with a minimal follow-up of at least 24 months after the end of treatment, were 

considered as chemosensitive. 

 

Samples handling 

All samples were obtained by a surgical resection or radiological-guided biopsy from a tumor mass. 

Proteomic and transcriptomic analysis were performed on the same specimens that were used for the 

diagnosis of the disease. After collection, all samples were stored at -80°C, without conservative 

medium, until protein or RNA extraction. The neoplastic content in each sample was determined by a 

pathological review of all cases, based on morphology and immunohistochemistry for distinguishing 

B-cells and T-Cells. 

 

Proteomics analysis 

Sample preparation 

Proteins were extracted from ~10mg of fresh frozen tumor tissues in a lysis buffer containing 62.5 mM 

Tris HCl pH 6.8, 2% SDS and 10% glycerol. Protein concentration was determined with DCTM method 

(Bio-Rad) according to manufacturer’s instructions. For each sample, 20 µg of proteins were used for 

tube-gel preparation, as previously described.39 Briefly, 7.5% acrylamide/Bis-acrylamide, and 0.25 µL 

TEMED were added for a final volume of 100 μL. Ammonium persulfate (2.50 µL) was added to initiate 

polymerization. After fixation with 50% ethanol/3% phosphoric acid, tube-gels were cut in 2 mm 

sections and each section in ~2 mm2 pieces. The gel pieces were washed and the cysteine residues 

were reduced by adding 10 mM DTT for 30 min at 60 °C and 30 min at room temperature, and alkylated 
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by adding 55 mM IAA for 20 min in the dark. The gel pieces were then washed three times by adding 

50/50 (v/v) 25 mM NH4HCO3/acetonitrile (ACN). After two dehydrations with ACN, the proteins were 

cleaved in an adequate volume to cover all gel pieces with a modified porcine trypsin (Promega) 

solution at a 1:80 (w/w) enzyme:protein ratio. Digestion was performed overnight at 37 °C. Tryptic 

peptides were extracted twice under agitation, first with 60% ACN in 0.1% FA for 1 h and then with 

100% ACN for 1 h. The excess of ACN was vacuum dried, and the samples were resolubilized with 

H2O/ACN/FA (98/2/0.1 v/v/v). 

 

NanoLC-MS/MS analysis 

The nanoLC-MS/MS analysis was performed on a nanoAcquity UPLC device (Waters Corporation, 

Milford, USA) coupled to a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). Peptide separation was performed on an ACQUITY UPLC BEH130 C18 column 

(250 mm × 75 μm with 1.7 μm diameter particles) and a Symmetry C18 precolumn (20 mm × 180 μm 

with 5 μm diameter particles, Waters). The solvent system consisted of 0.1% FA in water (solvent A) 

and 0.1% FA in ACN (solvent B). Samples (equivalent to 800 ng of proteins) were loaded into the 

enrichment column over 3 min at 5 μL/min with 99% of solvent A and 1% of solvent B. The peptides 

were eluted at 450 μL/min with the following gradient of solvent B: from 1 to 35% over 120 min and 

35 to 80% over 1 min. The 20 samples were injected in randomized order. The MS capillary voltage 

was set to 1.8 kV at 250 °C. The system was operated in Data Dependent Acquisition mode with 

automatic switching between MS (mass range 300–1800 m/z with R = 140,000, Automatic gain control 

(AGC) fixed at 3 x 106 ions and a maximum injection time set at 50 ms) and MS/MS (mass range 200–

2000 m/z with R = 17,500, AGC fixed at 1 x 105 and the maximal injection time set to 100 ms) modes. 

The ten most abundant peptides were selected on each MS spectrum for further isolation and higher 

energy collision dissociation fragmentation, excluding unassigned and monocharged ions. The dynamic 

exclusion time was set to 60 s. 
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Data analysis 

Raw data obtained for each sample were processed using MaxQuant (version 1.5.5.1). Peaks were 

assigned with the Andromeda search engine with full trypsin specificity. The isoform-containing human 

database used for the search was extracted from the UniProtKB-SwissProt database (26 sept 2016, 

42,144 entries). The minimum peptide length required was seven amino acids and a maximum of one 

missed cleavage was allowed. Methionine oxidation was set as a variable modification and peptides 

with modified methionines, as well as their unmodified counterparts, were excluded from protein 

quantification. Cysteine carbamidomethylation was set as a variable modification to account for the 

potential propionamide modifications of cysteine residues. Cysteine propionamidation was thus also 

set as a variable modification. For protein quantification, the “match between runs” option was 

enabled. The maximum false discovery rate was 1% at peptide and protein levels with the use of a 

decoy strategy. We used the “peptides.txt” files exported from MaxQuant for further statistical 

analysis with the peptide-level Robust Ridge Regression model (MSqRob) R-package.40 

Statistical analysis were performed for all quantified proteins and transcripts, independently of the 

number of patients in whom the proteins and/or transcripts were quantified. 

The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium 

database with the identifier PXD009089.41 

 

Transcriptomics analysis 

RNA isolation and sequencing 

Total RNA was isolated from fresh frozen tumor tissues with the with TRIzol reagent (Invitrogen, 

Carlsbad, California, USA). RNA extraction could not be performed for 3 patients (samples #5, #12 and 

#15 in supplementary table 1) because of the lack of enough tissue available. RNA integrity was 

assessed with the Agilent total RNA Pico Kit on a 2100 Bioanalyzer instrument (Agilent Technologies, 

Paolo Alto, USA). The sequencing library was prepared with the Ion AmpliSeq Transcriptome Human 

Gene Expression Panel (Thermo Fisher Scientific, Waltham, Massachusetts, USA) according to the 
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manufacturer’s protocol.42 Briefly, after reverse transcription of total RNA, the cDNAs were amplified 

by multiplex PCR including a total of 20,812 amplicons. These amplicons were then partially digested, 

and after barcoded sequencing adapter ligation, the libraries were loaded at a concentration of 75 pM 

on an Ion PI IC 200 chip using the Ion Chef Instrument (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). Finally, the sequencing took place on an Ion Proton sequencer with the Ion PI IC 

200 Kit, according to the manufacturer’s instructions (Thermo Fisher Scientific, Waltham, 

Massachusetts, USA). 

 

Analysis of RNA-sequence reads 

The raw reads were processed by the Torrent Suite analysis pipeline and mapped to the human 

genome assembly hg19 AmpliSeqTranscriptome. The Torrent AmpliSeqRNA Plugin was used to 

generate raw read counts which were further used for differential analysis. An average of 3.5 million 

reads were generated per sample with 93.25% reads on target and an average of 11,005 amplicons 

covered by at least 10 reads. We applied the R Bioconductor package DESeq2 to identify genes that 

were differentially expressed. The gene selection was based on the adjusted p-value. All genes with an 

adjusted p-value lower than 0.1 were selected as differentially expressed.43 

RNAseq raw data have been deposited in fastaq format in the EMBL-EBI ArrayExpress archive 

(https://www.ebi.ac.uk/arrayexpress/) with the accession number E-MTAB-6597. 
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Figure legend 

Figure 1.  Top six differentially abundant proteins and genes between chemorefractory and 

chemosensitive patients. For each protein, dots represent the distribution of the intensities of the 

peptides quantified in each group of patients. For each gene, dots represent the log2 normalized read 

count distribution of the considered gene for each patient in each group. 
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Table 1. Patients’ characteristics. 

 Chemosensitive Chemorefractory p value 

Age (years)   0.58 

Median 55 57  

range 18-79 31-73  

Sex, n (%)   0.55 

Male 9/12 (75) 5/8 (63)  

Female 3/12 (25) 3/8 (37)  

Ann Arbor Stage, n (%)   0.08 

1-2 6/12 (50) 1/8 (13)  

3-4 6/12 (50) 7/8 (87)  

aaIPI, n (%)   0.04 

0-1 7/12 (58) 1/8 (13)  

2-3 5/12 (42) 7/8 (87)  

Response to first-line, n (%)   NA 

Complete response 12/12 (100) 2/8 (25)  

Primary refractory NA 6/8 (75)  

Number of treatment lines   NA 

Median 1 5  

Range 1 3-7  

Cell of origin, n (%)   0.93 

GC 7/10 (70) 5/7 (72)  

ABC 1/10 (10) 1/7 (14)  

Unclassifiable 2/10 (20) 1/7 (14)  

Abbreviations: aaPIP, age-adjusted International Prognostic Index; GC, Germinal Center B-Cell-Like; 

ABC, Activated B-Cell-Like; NA, Not Applicable 
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Table 2. Sub-list of 22 differentially abundant transcripts/proteins couples at both transcriptomics and proteomics levels. 

Protein name Gene name 
Proteomics Transcriptomics 

log2FC (R vs S) q-value log2FC (R vs S) adjusted p-value 

C-X-C motif chemokine 13 CXCL13 2,9 0.006 1,6 0.019 

Indoleamine 2,3-dioxygenase 1 IDO1 2,9 <0.001 1,7 0.061 

Granzyme H GZMH 2,7 0.028 1,7 0.047 

Protein THEMIS2 THEMIS2 1,2 0.015 1,3 0.067 

Granzyme K GZMK 0,6 0.017 1,5 0.089 

Complement C3 C3 0,3 <0.001 -1,4 0.060 

Hexokinase-3 HK3 1,7 <0.001 1,9 0.028 

Superoxide dismutase [Mn], mitochondrial SOD2 1,2 <0.001 1,6 0.039 

Protein S100-A8 S100A8 1,7 <0.001 1,7 0.066 

Protein S100-A4 S100A4 0,9 0.003 1,4 0.020 

PRA1 family protein 3 ARL6IP5 0,5 0.009 0,9 0.089 

rRNA 2'-O-methyltransferase fibrillarin FBL -0,4 0.006 -0,8 0.070 

40S ribosomal protein S18 RPS18 -0,3 0.011 -1,1 0.076 

40S ribosomal protein S6 RPS6 -0,3 0.043 -0,9 0.033 

40S ribosomal protein S12 RPS12 -0,4 0.009 -0,9 0.089 

Alpha-1-antitrypsin SERPINA1 1,1 0.007 1,8 0.039 

Serpin B6 SERPINB6 1,2 <0.001 1,5 0.001 

Phosphatidylinositol 3,4,5-trisphosphate-dependent 
Rac exchanger 1 protein 

PREX1 0,8 0.006 1,1 0.067 

Ceruloplasmin CP 0,6 <0.001 1,7 0.083 

CD97 antigen CD97 0,5 0.003 1,2 0.074 

B-cell antigen receptor complex-associated protein 
beta chain 

CD79B -1,7 0.013 -1,3 0.024 

Syntaxin-11 STX11 1,4 <0.001 1,2 0.070 

Abbreviations: Log2FC, log2 fold-change; R, chemorefractory patients; S, chemosensitive patients 
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Table 3. Gene Ontology-Biological Process enrichment among the differentially expressed proteins 

using the PANTHER database system. 

Gene Ontology-Biological Process Fold enrichment p value FDR 

Chemorefractory patients 

Fibrinolysis 8.5 0.0001 < 0.0001 

Regulation of complement activation 4.1 < 0.0001 0.0065 

Platelet activation 3.5 0.0002 0.0198 

Platelet degranulation 3.2 0.0001 0.0154 

Inflammatory response 3.2 < 0.0001 0.0001 

humoral immune response 3.1 < 0.0001 0.0051 

Neutrophil degranulation 2.5 < 0.0001 < 0.0001 

negative regulation of immune system 
process 

2.5 
0.0004 0.0034 

activation of immune response 2.4 < 0.0001 0.0018 

Chemosensitive patients 

Ribosome biogenesis 3.2 < 0.0001 < 0.0001 

rRNA processing 3.4 < 0.0001 < 0.0001 

FDR: False Discovery Rate 
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Figure 1. 

 


