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Introduction

In control systems, state estimators are
mainly used to �lter redundant data, to elim-
inate erroneous measurements and to pro-
duce reliable state estimations in the pres-
ence of measurement noises and perturba-
tions. In 1960, Kalman set the ground for
a new class of state estimation techniques by
introducing his famous powerful yet simple �l-
ter, that considers known (Gaussian) distri-
butions of measurement noises and state per-
turbations. Sometimes, the assumptions that
the classical �lter uses are not too realistic.
Therefore, as an alternative, the determinis-
tic approaches arose by considering unknown
but bounded perturbations and measurement
noises. Among this family, a particular inter-
esting approach is the set-membership state
estimation, where di�erent sets can be used.
The choice of the considered set mainly de-
pends on the application and on the trade-o�
between accuracy and simplicity. However,
despite the precision and the low complex-
ity that some set-membership state estimation
techniques can o�er, there is still a gap be-
tween theory and practice in this �eld. In this
context, few set-membership state estimators
were tested on new technologies, in particu-
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lar on Unmanned Aerial Vehicles (UAVs) [2],
[6] and robots [3], or extended to incorporate
physical state constraints [5]. In this work,
a zonotopic set-membership state estimation
technique is applied to the position estimation
of an octorotor model used for radar appli-
cations. The model complexity and the per-
turbations coming from di�erent sources make
the state estimation of the drone a challenging
problem. In this case, an accurate position es-
timation of the UAV is needed for the radar
to provide high resolution images.

Zonotopic set-membership

state estimation technique

Consider the following detectable discrete-
time linear time invariant system:

xk+1 = Axk + Buk + Eωk

yk = Cxk + Fωk
(1)

with xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny , and ωk

belonging to the unitary box Bnx+ny .

Theorem 1. (based on [7]) Consider x0 and
assume that the state xk belongs to the zono-
tope Z(pk,Hk) = pk⊕HkBm. Given a scalar
β ∈ (0, 1), if there exist a positive de�nite ma-
trix P = P> � 0 in Rnx×nx and a matrix
Y ∈ Rnx×ny for which the following linear ma-
trix inequality (LMI) holdsβP 0 A>P−C>Y>

∗ T>T E>P− F>Y>

∗ ∗ P

 � 0 (2)



then it is guaranteed that xk+1 ∈
Z(x̄k+1,Hk+1), ∀ωk ∈ Bnx+ny , where:

x̄k+1 = Ax̄k + Buk + L(yk −Cx̄k) (3)

Hk+1 = [ALHk η] (4)

with Y = PL, T =
[
E> F>

]>
, AL = A −

LC and η = E− LF.

Sketch of proof: The error zk = xk − x̄k

between the real state and the nominal es-
timated state at time k belongs to the cen-
tered zonotope HkBm. At time k+ 1, one has
zk+1 = ALzk + ηωk ∈ Hk+1Bm+nx+ny .
The non increase of the P-radius [4] of the

zonotopic error can be expressed such that
max

ẑ
‖Hk+1ẑ‖2P ≤ βmax

z
‖Hkz‖2P+max

t
‖Tt‖22

with the notations ẑ =
[
z> t>

]> ∈
Bm+nx+ny , z ∈ Bm and t ∈ Bnx+ny .
Using the reverse triangle inequality leads

to a su�cient condition for max
ẑ

(‖Hk+1ẑ‖2P−

β‖Hkz‖2P − ‖Tt‖22) ≤ 0. Extensively, ∀z, t,
the next expression is veri�ed

ẑ>H>k+1PHk+1ẑ−βz>HkPHkz−t>T>Tt ≤ 0
(5)

ReplacingHk+1ẑ = (A−LC)Hkz+(E−LF)t
in Eq. (5) and using the Schur complement
lead us to the LMI (2).

Octorotor modeling

The Mikrokopter ARF Okto-XL is equipped
with a micro-controller that provides fused
and �ltered information from the sensors
about the drone's position. A non-linear
dynamical model together with a linearized
model around the static hovering equilibrium
with null translational and rotational veloci-
ties and null roll, pitch and yaw angles exist
[1]. The linearized model [1] can be decou-
pled into three double integrator subsystems
and then discretized with a sampling period
Ts. However, for linear position estimation
problems, we only need the two subsystems
describing the longitudinal and the altitude
dynamics, respectively:

x1k+1
= Ax1k + B1u1k + E1ωk

y1k = Cx1k + F1ωk
(6)

x3k+1
= Ax3k + B3u3k + E3ωk

y3k = Cx3k + F3ωk
(7)

with x1k =
[
zk ψk Vzk ωzk

]>
, x3k =[

xk yk Vxk
Vyk
]>
, u1k =

[
FR
zk

τRzk
]>
,

u3k =
[
FR
xk

FR
yk

]>
, y1k =

[
zk ψk

]>
,

y3k =
[
xk yk

]>
, A =

[
I2 TsI2
02 I2

]
, B1 =

0 0
0 0
Ts
m 0

0 Ts
Izz

, B3 =


0 0
0 0
Ts
m 0

0 Ts
m

, C =
[
I2 02

]
.

The notations and parameter values are de-
tailed in [1]. Furthermore, the perturbations
and the measurement noises ωk are bounded
by the unitary box B6. Additionally, Ei =
εi ·

[
I4 04×2

]
, Fi = γi ·

[
04 I4×2

]
, for i ∈

{1, 3}, with εi and γi two scalars representing
the accuracy provided by the drone sensors.
The control inputs FR

x , F
R
y and FR

z are the
components of the resulting propeller's force,
whereas τRz is the component of the result-
ing propeller's torque expressed in the drone's
frame denoted by the superscript R.

Simulation results

The highest sampling period Ts = 0.02s of all
sensors is considered. The systems are fully
controllable and observable. Based on the
GPS, altimeter and gyroscope information,
the following values are considered for γ1 =
γ3 = 1 and ε1 = ε3 = 10−3. The UAV mass is
3.69kg and the inertia component Izz w.r.t. to
the z-axis is 0.0869kg·m2. The drone's behav-
ior was tested using a Matlab/Simulink simu-
lator implementing the non-linear model with
a linear quadratic integral (LQI) controller [1]
for which the nominal control inputs are then
fed into the linear designed system. A lin-
ear trajectory is simulated to validate the ef-
�ciency of the zonotopic set-membership esti-



mation technique. It corresponds to a take-o�
to an altitude of 50m and then to a �ight on
the x-axis with a linear constant speed. The
�ight duration is 235s.
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Figure 1: Bounds of the linear position x
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Figure 2: Bounds of the altitude z

Figure 1 shows the zonotopic bounds (in
blue) of the linear position x of the drone,
whereas Figure 2 presents the guaranteed esti-
mation bounds (in blue) of the altitude z. The
real state (in red) in both cases lies inside the
bounds despite of the considered measurement
noises and state perturbations.

Conclusion

A guaranteed zonotopic set-membership state
estimation technique has been considered
to compute the guaranteed linear position
bounds of an octorotor model.
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