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In this paper we study a model describing the displacement of a linearly elastic flexural shell subjected to given dynamic loads from the computational point of view. The model under consideration takes the form of a set of hyperbolic variational equations posed over the space of admissible linearized inextensional displacements, and a set of initial conditions. Since the original model is not suitable for the implementation of a finite element method, we conduct the experiments on the corresponding penalised model. It was recently shown that the solution to such a penalised model is a good approximation of the solution to the original model. Numerical tests are therefore conducted on the the penalised model; the approximation of the solution to the penalised model is obtained via Newmark's scheme, which is then implemented and tested for shells having the following middle surfaces: a portion of a cylinder, and a portion of a cone. For sake of completeness, we also present the results of the numerical tests related to a model describing the displacement of a linearly elastic elliptic membrane shell under the action of given dynamic loads.

Introduction

Flexural shells are widely used in many applicative fields such as physics, engineering and material science. Some remarkable applications involving the usage of such shells are: reinforced oil palm shell and palm oil clinker concrete (PSCC) beam [START_REF] Huda | Flexural performance of reinforced oil palm shell and palm oil clinker concrete (pscc) beam[END_REF], smart composite shell panels [START_REF] Singh | Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with pfrc actuator[END_REF], functionally graded spherical shell panel [START_REF] Kar | Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel[END_REF], anisogrid lattice conical shells [START_REF] Totaro | Flexural, torsional, and axial global stiffness properties of anisogrid lattice conical shells in composite material[END_REF], and reinforced Eco-friendly coconut shell concrete [START_REF] Jayaprithika | Stress-strain characteristics and flexural behaviour of reinforced eco-friendly coconut shell concrete[END_REF]. Because of its wide range of applications, the theory of flexural shells is one of the most important branches in Mathematical Elasticity.

Unlike the static case, which was addressed by Ciarlet and his associates in the references [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF], [START_REF] Ciarlet | Justification of a two-dimensional shallow shell model in linearized elasticity[END_REF], [START_REF] Ciarlet | Justification of the two-dimensional equations of a linearly elastic shallow shell[END_REF], [START_REF] Ciarlet | On the ellipticity of linear membrane shell equations[END_REF], [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations[END_REF], [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations[END_REF], [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells: "generalized membrane shells[END_REF], [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations[END_REF], [START_REF] Ciarlet | Donati compatibility conditions for membrane and flexural shells[END_REF], [START_REF] Ciarlet | An obstacle problem for elliptic membrane shells[END_REF], [START_REF] Ciarlet | Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique[END_REF], [START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF], [START_REF] Ciarlet | An obstacle problem for Koiter's shells[END_REF], there are very few reference about the time-dependent case. In this direction we cite, for instance, the papers [START_REF] Xiao | Asymptotic analysis of dynamic problems for linearly elastic shells-justification of equations for dynamic flexural shells[END_REF] and [START_REF] Xiao | Asymptotic analysis of dynamic problems for linearly elastic shells-justification of equations for dynamic Koiter shells[END_REF].

To our best knowledge, there are no references that treat the numerical simulation for wellestablished models describing the dynamics of flexural shells.

In Section 2 we present some geometrical and analytical background; in Section 3 we formulate the problem describing the displacement of a flexural shell when it is subjected to given dynamic loads; in Section 4 we formulate the corresponding penalised problem, which is easier to treat in a context of numerical simulations, we recall the result establishing the existence and uniqueness of the solution of the model under consideration, and we analyse the convergence of the solution of the penalised model to the solution of the original model; in Sections 5 and 6, we rigorously state the algorithm that implements Newmark's scheme for the penalised problem and we discuss the convergence of the approximate solution it outputs to the solution of the original model; finally, in Sections 7, 8, and 9 we perform numerical experiments in the case where the middle surface of the linearly elastic shell under consideration is a portion of a cylinder, a portion of a cone, and a spherical cap, respectively.

Geometrical preliminaries

Let ω be a domain in R 2 , let y = (y α ) denote a generic point in ω, and let ∂ α ∶= ∂ ∂y α and ∂ αβ ∶= ∂ 2 ∂y α ∂y β . A mapping θ ∈ C 1 (ω; E 3 ) is an immersion if the two vectors a α (y) ∶= ∂ α θ(y) are linearly independent at each point y ∈ ω. Then the image θ(ω) of the set ω under the mapping θ is a surface in E 3 , equipped with y 1 , y 2 as its curvilinear coordinates. Given any point y ∈ ω, the vectors a α (y) span the tangent plane to the surface θ(ω) at the point θ(y), the unit vector a 3 (y) ∶= a 1 (y) ∧ a 2 (y) a 1 (y) ∧ a 2 (y)

is normal to θ(ω) at θ(y), the three vectors a i (y) form the covariant basis at θ(y), and the three vectors a j (y) defined by the relations a j (y) ⋅ a i (y) = δ j i form the contravariant basis at θ(y); note that the vectors a β (y) also span the tangent plane to θ(ω) at θ(y) and that a 3 (y) = a 3 (y).

The first fundamental form of the surface θ(ω) is defined by means of its covariant components

a αβ ∶= a α ⋅ a β = a βα ∈ C 0 (ω),
or by means of its contravariant components a αβ ∶= a α ⋅ a β = a βα ∈ C 0 (ω).

Note that the symmetric matrix field (a αβ ) is the inverse of the matrix field (a αβ ), that a β = a αβ a α and a α = a αβ a β , and that the area element along θ(ω) is given at each point θ(y), y ∈ ω, by a(y) dy, where a ∶= det(a αβ ) ∈ C 0 (ω).

Given an immersion θ ∈ C 2 (ω; E 3 ), the second fundamental form of the surface θ(ω) is defined by means of its covariant components

b αβ ∶= ∂ α a β ⋅ a 3 = -a β ⋅ ∂ α a 3 = b βα ∈ C 0 (ω),
or by means of its mixed components b β α ∶= a βσ b ασ ∈ C 0 (ω), and the Christoffel symbols associated with the immersion θ are defined by

Γ σ αβ ∶= ∂ α a β ⋅ a σ = Γ σ βα ∈ C 0 (ω).
The Gaussian curvature at each point θ(y), y ∈ ω, of the surface θ(ω) is defined by

κ(y) ∶= det(b αβ (y)) det(a αβ (y)) = det b β α (y)
(the denominator in the above relation does not vanish since θ is assumed to be an immersion). Note that the Gaussian curvature κ(y) at the point θ(y) is also equal to the product of the two principal curvatures at this point. A surface θ(ω) defined by means of an immersion θ ∈ C 2 (ω; E 3 ) is said to be elliptic if its Gaussian curvature is everywhere > 0 in ω, or equivalently, if there exists a constant κ 0 such that 0 < κ 0 ≤ κ(y) for all y ∈ ω.

Given an immersion θ ∈ C 2 (ω; E 3 ) and a vector field η = (η i ) ∈ C 1 (ω; R 3 ), the vector field η ∶= η i a i can be viewed as a displacement field of the surface θ(ω), thus defined by means of its covariant components η i over the vectors a i of the contravariant bases along the surface. If the norms η i C 1 (ω) are small enough, the mapping (θ + η i a i ) ∈ C 1 (ω; E 3 ) is also an immersion, so that the set (θ + η i a i )(ω) is also a surface in E 3 , equipped with the same curvilinear coordinates as those of the surface θ(ω), called the deformed surface corresponding to the displacement field η = η i a i . One can then define the first fundamental form of the deformed surface by means of its covariant components

a αβ (η) ∶= (a α + ∂ α η) ⋅ (a β + ∂ β η),
and the second fundamental form of the deformed surface by means of its covariant components

b αβ (η) ∶= ∂ α (a β + ∂ β η) ⋅ (a 1 + ∂ 1 η) ∧ (a 2 + ∂ 2 η) (a 1 + ∂ 1 η) ∧ (a 2 + ∂ 2 η)
The linear part with respect to η in the difference 1 2 (a αβ (η)a αβ ) is called the linearized change of metric tensor associated with the displacement field η i a i , the covariant components of which are then given by

γ αβ (η) = 1 2 (a α ⋅ ∂ β η + ∂ α η ⋅ a β ) = 1 2 (∂ β η α + ∂ α η β ) -Γ σ αβ η σ -b αβ η 3 = γ βα (η).
The linear part with respect to η in the difference (b αβ (η)b αβ ) is called the linearized change of curvature tensor associated with the displacement field η i a i , the covariant components of which are then given by

ρ αβ (η) = (∂ αβ η -Γ σ αβ ∂ σ η) ⋅ a 3 = ∂ αβ η 3 -Γ σ αβ ∂ σ η 3 -b σ α b σβ η 3 + b σ α (∂ β η σ -Γ τ βσ η τ ) + b τ β (∂ α η τ -Γ σ ατ η σ ) + (∂ α b τ β + Γ τ ασ b σ β -Γ σ αβ b τ σ )η τ = ρ βα (η).
Let us now recall the definition of the time-dependent version of the linearised change of metric tensor γ αβ . Consider the operator

γαβ ∶ L 2 (0, T ; H 1 (ω) × H 1 (ω) × L 2 (ω)) → L 2 (0, T ; L 2 (ω)), Prepared using sagej.cls defined by γαβ (η)(t) ∶= γ αβ (η(t)) for all η ∈ L 2 (0, T ; H 1 (ω) × H 1 (ω) × L 2 (ω)),
for almost all (a.a. in what follows) t ∈ (0, T ). This operator is well-defined, linear, and continuous (cf., [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]).

Let us also recall the definition of the time-dependent version of the linearised change of curvature tensor ρ αβ . Consider the operator

ραβ ∶ L 2 (0, T ; H 1 (ω) × H 1 (ω) × H 2 (ω)) → L 2 (0, T ; L 2 (ω)), defined by ραβ (η)(t) ∶= ρ αβ (η(t)) for all η ∈ L 2 (0, T ; H 1 (ω) × H 1 (ω) × H 2 (ω)),
for a.a. t ∈ (0, T ). This operator is clearly well-defined, linear, and continuous (cf., [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]).

A natural model for time-dependent flexural shells

Let ω be a domain in R 2 with boundary γ, and let γ 0 be a non-empty relatively open subset of γ.

Let I be an interval of the form (0, T ), with T < ∞.

For each ε > 0, we define the sets

Ω ε ∶= ω × ]-ε, ε[ and Γ ε ± ∶= ω × {±ε} , we let x ε = (x ε i ) designate a generic point in the set Ω ε , and let ∂ ε i ∶= ∂ ∂x ε i . Hence we have x ε α = y α and ∂ ε α = ∂ α . Define, also, the set Γ ε 0 ∶= γ 0 × [-ε, ε],
which is thus a subset of the lateral face of the undeformed reference configuration.

In all that follows, we are given an injective immersion θ ∈ C 3 (ω; E 3 ) and ε > 0, and we consider a shell with middle surface θ(ω) and with constant thickness 2ε. This means that the reference configuration of the shell is the set Θ(Ω ε ), where the mapping Θ ∶ Ω ε → E 3 is defined by

Θ(x ε ) ∶= θ(y) + x ε 3 a 3 (y) at each point x ε = (y, x ε 3 ) ∈ Ω ε .
Note that the injectivity assumption is made here for physical reasons, but that is otherwise not needed in the proofs. One can then show (cf. Theorem 3.1-1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF] or Theorem 4.1-1 of [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF]) that, if the thickness ε > 0 is small enough, such a mapping Θ ∈ C 2 (Ω ε ; E 3 ) is a C 2 -diffeomorphism from Ω ε onto Θ(Ω ε ), hence is in particular an injective immersion, in the sense that the three vectors

g ε i (x ε ) ∶= ∂ ε i Θ(x ε )
are linearly independent at each point x ε ∈ Ω ε ; these vectors then constitute the covariant basis at the point Θ(x ε ), while the three vectors g j,ε (x ε ), defined by the relations

g j,ε (x ε ) ⋅ g ε i (x ε ) = δ j i ,
constitute the contravariant basis at the same point.

It will be implicitly assumed in what follows that the immersion θ ∈ C 3 (ω; E 3 ) is injective and that ε > 0 is small enough so that Θ ∶ Ω ε → E 3 is a C 2 -diffeomorphism onto its image.

We henceforth assume that the shell is made of a homogeneous and isotropic linearly elastic material and that its reference configuration Θ(Ω ε ) is a natural state, i.e., is stress free. As a result of these assumptions, the elastic behavior of this elastic material is completely characterized by its two Lamé constants λ ≥ 0 and µ > 0 (see, e.g., Section 3.8 in [START_REF] Ciarlet | Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity[END_REF]). The positive constant ρ designates the mass density of the shell per unit volume.

We also assume that the shell is subjected to applied body forces whose density per unit volume is defined by means of its contravariant components f i,ε ∈ L ∞ (0, T ; L 2 (Ω ε )), i.e., over the vectors g ε i of the covariant bases; to applied surface forces whose density per unit area is defined by means of its contravariant components h i,ε ∈ L ∞ (0, T ; L 2 (Γ ε + ∪ Γ ε -)), i.e., over the vectors g ε i of the covariant bases; and to a homogeneous boundary condition of place along the portion Γ ε 0 of its lateral face, i.e., the admissible displacement fields vanish on Γ ε 0 . For a.a. t ∈ (0, T ), we can thus define the contravariant components p i,ε (t) of the vector p ε = (p i,ε ) over the vectors a i of the covariant bases by

p i,ε (t) ∶= ε -ε f i,ε (t) dx ε 3 + h i,ε + (t) + h i,ε -(t) ∈ L 2 (ω) for a.a. t ∈ (0, T ),
where

h i,ε ± (t) ∶= h i,ε (t)(⋅, ±ε) ∈ L 2 (ω), for a.a. t ∈ (0, T ). Define the space V K (ω) ∶= {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); η i = ∂ ν η 3 = 0 on γ 0 },
where the symbol ∂ ν denotes the outer unit normal derivative operator along γ. The space V K (ω) is the one used for formulating the two-dimensional equations governing Koiter's model (see the series of papers [START_REF] Koiter | On the foundations of the linear theory of thin elastic shells. I, II[END_REF], [START_REF] Ciarlet | Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations[END_REF], [START_REF] Ciarlet | An obstacle problem for Koiter's shells[END_REF] and [START_REF] Ciarlet | A confinement problem for a linearly elastic Koiter's shell[END_REF]).

Define the norm ⋅ V K (ω) by

η V K (ω) ∶= α η α 2 1,ω + η 3 2 2,ω 1 2 for each η = (η i ) ∈ V K (ω),
Next, we define the fourth-order two-dimensional elasticity tensor of the shell, viewed here as a two-dimensional linearly elastic body, by means of its contravariant components a αβστ ∶= 4λµ λ + 2µ a αβ a στ + 2µ a ασ a βτ + a ατ a βσ .

Following the terminology proposed in Section 6.1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF], a linearly elastic shell is said to be a flexural shell if the following two additional assumptions are satisfied: first, length γ 0 > 0 (an assumption that is satisfied if γ 0 is a non-empty relatively open subset of γ, as here), and second, the following space of admissible linearized inextensional displacements:

V F (ω) ∶= {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); η i = ∂ ν η 3 = 0 on γ 0 and γ αβ (η) = 0 in ω}, contains nonzero functions, i.e., V F (ω) ≠ {0}.
Classical examples of flexural shells are, for instance, cylindrical shells, conical shells and plates (see, respectively, Figures 6.1-1, 6.1-2, and 6.1-3 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]).

To begin with, we state a crucial inequality that holds for general surfaces.

Prepared using sagej.cls Theorem 3.1. Let ω be a domain in R 2 and let θ ∈ C 3 (ω; E 3 ) be an immersion. Let γ 0 be a non-empty relatively open subset of γ. Define the space

V K (ω) ∶= {η = (η i ) ∈ H 1 (ω) × H 1 (ω) × H 2 (ω); η i = ∂ ν η 3 = 0 on γ 0 }.
Then there exists a constant c = c(ω, γ 0 , θ) > 0 such that

α η α 2 1,ω + η 3 2 2,ω 1 2 ≤ c α,β γ αβ (η) 2 0,ω + α,β ρ αβ (η) 2 0,ω 1 2 
,

for all η = (η i ) ∈ V K (ω).
The above inequality, which is due to Bernadou & Ciarlet [START_REF] Bernadou | Sur l'ellipticité du modèle linéaire de coques de W. T. Koiter[END_REF] and was later improved by Bernadou, Ciarlet & Miara [START_REF] Bernadou | Existence theorems for two-dimensional linear shell theories[END_REF] (see also Theorem 2.6-4 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]), constitutes an example of a Korn inequality on a general surface; it constitutes a "Korn inequality" in the sense that it provides a basic estimate of an appropriate norm of a displacement field defined on a surface in terms of an appropriate norm of a specific "measure of strain" (here, the linearized change of metric tensor and the linearized change of curvature tensor) corresponding to the displacement field under consideration.

A natural formulation of a set of time-dependent two-dimensional equations ("two-dimensional", in the sense that they are posed over the two-dimensional subset ω) can be derived by slightly modifying the model proposed by Xiao in the paper [START_REF] Xiao | Asymptotic analysis of dynamic problems for linearly elastic shells-justification of equations for dynamic Koiter shells[END_REF], where time-dependent Koiter's shells are studied.

Let us introduce the problem P ε F (ω), which constitutes the point of departure of our analysis.

Problem P ε F (ω). Find a vector field ζ ε = (ζ ε i ) ∶ (0, T ) → V F (ω) such that ζ ε ∈ L ∞ (0, T ; V F (ω)), ζε ∈ L ∞ (0, T ; L 2 (ω)), ζε ∈ L ∞ (0, T ; V * F (ω)),
that satisfies the following variational equations

2ε 3 ρ d 2 dt 2 ω ζ ε i (t)η i √ a dy + ε 3 3 ω a αβστ ρ στ (ζ ε (t))ρ αβ (η) √ a dy = ω p i,ε (t)η i √ a dy, for all η = (η i ) ∈ V F (ω)
, in the sense of distributions in (0, T ), and that satisfies the following initial conditions

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ζ ε (0) = ζ 0 , ζε (0) = ζ 1 , (1) 
where

ζ 0 ∈ V F (ω) and ζ 1 ∈ L 2 (ω) are prescribed. ∎ We say that ζ ε is a weak solution of Problem P ε F (ω) if ζ ε ∈ L ∞ (0, T ; V F (ω)), ζε ∈ L ∞ (0, T ; L 2 (ω)), ζε ∈ L ∞ (0, T ; V * F (ω)),
if ζ ε satisfies the variational equations of Problem P ε F (ω) in the sense of distributions in (0, T ), and also satisfies the initial conditions [START_REF] Huda | Flexural performance of reinforced oil palm shell and palm oil clinker concrete (pscc) beam[END_REF].

We say that ζ ε is a strong solution of Problem P ε F (ω) if

ζ ε ∈ C 0 ([0, T ]; V F (ω)) ∩ C 1 ([0, T ]; L 2 (ω)),
if ζ ε satisfies the variational equations of Problem P ε F (ω) in the sense of distributions in (0, T ), and also satisfies the initial conditions [START_REF] Huda | Flexural performance of reinforced oil palm shell and palm oil clinker concrete (pscc) beam[END_REF]. Let us recall that the existence and uniqueness of a strong solution to Problem P ε F (ω) has been established in Theorem 4.1 of [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]. The proof was carried out by generalizing a classical argument, which can be found in [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF].

Penalisation of the considered problem

To fix the ideas, from now onward, we identify L 2 (ω) and L 2 (ω) with their respective dual spaces, and we equip them with the following inner products

(η, ξ) ∈ L 2 (ω) × L 2 (ω) → ω ηξ √ a dy, (η, ξ) ∈ L 2 (ω) × L 2 (ω) → ω η i ξ i √ a dy.
It is worth mentioning that these inner products are also conventionally denoted by the symbols (⋅, ⋅) L 2 (ω) and (⋅, ⋅) L 2 (ω) , respectively.

A possible way to prove the existence and uniqueness of solutions of Problem P ε F (ω) without relying on the abstract functional spaces introduced in Section 4 of [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF] (see also [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]), consists in adapting the penalty scheme described in Chapter II, Section 4 of [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF] (see also [START_REF] Ciarlet | Introduction to Numerical Linear Algebra and Optimisation[END_REF]) to formulate an alternate problem posed over the function space V K (ω), which does not take into account the constraint appearing in the definition of the space V F (ω).

Observe first that V K (ω) is dense in L 2 (ω) and that

V K (ω) ↪↪ L 2 (ω) ↪↪ V * K (ω).
Let κ > 0 denote the penalty parameter and let us introduce the corresponding "penalised" problem P ε F,κ (ω).

Problem P ε F,κ (ω). Find a vector field ζ ε κ = (ζ ε i,κ ) ∶ [0, T ] → V K (ω) such that ζ ε κ ∈ C 0 ([0, T ]; V K (ω)) ∩ C 1 ([0, T ]; L 2 (ω)),
that satisfies the following variational equations

2ε 3 ρ d 2 dt 2 ω ζ ε i,κ (t)η i √ a dy + ε 3 3 ω a αβστ ρ στ (ζ ε κ (t))ρ αβ (η) √ a dy + 1 κ ω a αβστ γ στ (ζ ε κ (t))γ αβ (η) √ a dy = ω p i,ε (t)η i √ a dy,
for all η ∈ V K (ω), in the sense of distributions in (0, T ), and which satisfies the initial conditions (1). ∎

Prepared using sagej.cls

We say that

ζ ε κ is a weak solution of Problem P ε F,κ (ω) if ζ ε κ ∈ L ∞ (0, T ; V K (ω)), ζε κ ∈ L ∞ (0, T ; L 2 (ω)), ζε κ ∈ L ∞ (0, T ; V * K (ω)),
if ζ ε κ satisfies the variational equations of Problem P ε F,κ (ω) in the sense of distributions in (0, T ), and also satisfies the initial conditions [START_REF] Huda | Flexural performance of reinforced oil palm shell and palm oil clinker concrete (pscc) beam[END_REF].

We say that

ζ ε κ is a strong solution of Problem P ε F,κ (ω) if ζ ε κ ∈ C 0 ([0, T ]; V K (ω)) ∩ C 1 ([0, T ]; L 2 (ω)), if ζ ε κ satisfies the variational equations of Problem P ε F,κ (ω)
in the sense of distributions in (0, T ), and also satisfies the initial conditions [START_REF] Huda | Flexural performance of reinforced oil palm shell and palm oil clinker concrete (pscc) beam[END_REF].

For each κ > 0, let us define the bilinear form

a κ ∶ V K (ω) × V K (ω) → R by a κ (ξ, η) ∶= ε 3 3 ω a αβστ ρ στ (ξ)ρ αβ (η) √ a dy + 1 κ ω a αβστ γ στ (ξ)γ αβ (η) √ a dy.
The bilinear form a κ (⋅, ⋅) is continuous over the space V K (ω), i.e., there exists a constant C κ > 0, which depends on κ, such that

a κ (ξ, η) ≤ C κ ξ V K (ω) η V K (ω) , for all ξ, η ∈ V K (ω).
For κ > 0 sufficiently small (recall that the small parameter ε > 0 is fixed), the uniform positivedefiniteness of the elasticity tensor of the shell (a αβστ ) (cf. Theorem 3.3-2 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]) and Korn's inequality on a general surface (Theorem 3.1) give the existence of a constant c > 0 such that

a κ (η, η) = ε 3 3 ω a αβστ ρ στ (η)ρ αβ (η) √ a dy + 1 κ ω a αβστ γ στ (η)γ αβ (η) √ a dy ≥ ε 3 3 α,β ρ αβ (η) 2 0,ω + γ αβ (η) 2 0,ω ≥ c α η α 2 1,ω + η 3 2 2,ω , for all η ∈ V K (ω), namely, the bilinear form a κ (⋅, ⋅) is V K (ω)-elliptic.
Let us recall that Problem P ε F,κ (ω) admits a unique strong solution (see, e.g., Theorem 5.1 of [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]).

Theorem 4.1. Problem P ε F,κ (ω) admits a unique strong solution ζ ε κ ∈ C 0 ([0, T ]; V K (ω)) ∩ C 1 ([0, T ]; L 2 (ω)).
Letting κ → 0, we obtain that the family (ζ ε κ ) κ>0 of solutions to Problem P ε F,κ (ω) converges to the unique strong solution ζ ε of Problem P ε F (ω) with the following modes of convergences Prepared using sagej.cls (cf., Theorem 6.1 of [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]):

ζ ε κ * ⇀ ζ ε , in L ∞ (0, T ; V K (ω)) as κ → 0, ζε κ * ⇀ ζε , in L ∞ (0, T ; L 2 (ω)) as κ → 0, ζε κ * ⇀ ζε , in L ∞ (0, T ; V * F (ω)) as κ → 0, ζ ε κ ⇀ ζ ε , in C 0 ([0, T ]; L 2 (ω)) as κ → 0, ζε κ ⇀ ζε , in C 0 ([0, T ]; V * F (ω)) as κ → 0.
(

) 2 
The main existence and uniqueness result can be then rigorously stated.

Theorem 4.2. Problem P ε F (ω) admits a unique weak solution ζ ε .

5 Semi-discretisation in space by means of a conforming finite element method

In this section we rigorously present a suitable finite element method to approximate the solution of Problem P ε F,κ (ω). Following [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF] and [START_REF] Brenner | The mathematical theory of finite element methods[END_REF], we recall some basic terminology and definitions. In what follows the letter h denotes a quantity approaching zero. We denote by (T h ) h>0 a family of triangulations of the domain ω, henceforth assumed to be polygonal, made of triangles and we let T denote any element of such a family. Let us first recall, following [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF] and [START_REF] Brenner | The mathematical theory of finite element methods[END_REF], the rigorous definition of finite element in R n , where n ≥ 1 is an integer.

A finite element in R n is a triple (T, P, N ) where: (i) T is a closed subset of R n with a nonempty interior and a Lipschitz-continuous boundary, (ii) P is a finite dimensional space of real-valued functions defined over T , (iii) N is is a finite set of linearly independent linear forms N i , 1 ≤ i ≤ dim P , defined over the space P .

By definition, it is assumed that the set N is P -unisolvent in the following sense: given any real scalars α i , 1 ≤ i ≤ dim P , there exists a unique function g ∈ P which satisfies

N i (g) = α i , 1 ≤ i ≤ dim P.
It is worth mentioning that each well-defined finite element satisfies the following requirement (cf., e.g., page 79 of [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF]): dim P = card N .

It is henceforth assumed that the degrees of freedom, N i , lie in the dual space of a function space larger than P like, for instance, a Sobolev space (see [START_REF] Brenner | The mathematical theory of finite element methods[END_REF]). For brevity we shall conform our terminology to the one of [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF], calling the sole set T a finite element. Define the diameter of any finite element T as follows:

h T = diam T ∶= max x,y∈T
xy .

Let us also define ρ T ∶= sup{diam B; B is a ball contained in T }.

A triangulation T h is said to be regular (cf., e.g., [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF]) if:
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(ii) The quantity h ∶= max{h T > 0; T ∈ T h } approaches zero.

There is of course an ambiguity in the meaning of h, which was first regarded as a parameter associated with the considered family of triangulations, and which next denotes a geometrical entity. Nevertheless, in this paper, we have conformed to this standard notation (cf., e.g., [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF]). In the rest of this section, the parameter h is assumed to be fixed.

The spatial variable is discretised by means of finite element method presented in [START_REF] Ciarlet | The Finite Element Method for Elliptic Problems[END_REF]. We use a triangle of type (1) for approximating the tangential components ζ ε α,κ of the sought displacement vector field, and a conforming C 1 finite element, more specifically, a Hsieh-Clough-Tocher triangle (henceforth, HCT triangle), for approximating the transverse component ζ ε 3,κ of the sought displacement vector field.

In what follows, the notation P k (K), k ≥ 1, designates the space formed by the restriction to a triangle K ∈ T h of all the polynomials of degree ≤ k in two variables.

Let us now rigorously introduce the finite element spaces that will be exploited to numerically approximate the solution to the model under consideration. Define

V h ∶= V h1 × V h2 × V h3 ,
where

V hα ∶= {η h ∈ C 0 (ω); η h K ∈ P 1 (K) for each K ∈ T h and η h = 0 on γ 0 }, and 
V h3 ∶= {η h ∈ C 1 (ω); η h Ki ∈ P 3 (K i ) for all 1 ≤ i ≤ 3
and for all K = ⊍K i ∈ T h , η h is C 1continuous at each interior vertex, ∂ ν η h is continuous at each mid-point of the interior edge, η h = 0 at each vertex that belongs to γ 0 , ∂ ν η h = 0 at each mid-point that belongs to γ 0 }.

Let us introduce the semi-discrete approximate problem corresponding to Problem P ε F,κ (ω), which is denoted in what follows by P κ F,h . We drop the dependence on the parameter ε for keeping the notation easy. It should however be observed that tthe solution to P κ F,h also depends on ε.

Problem P κ F,h . Find a vector field ζ κ h = (ζ κ i,h ) ∶ [0, T ] → V h that
satisfies the following system of ordinary differential equations with respect to the variable t

2ε 3 ρ d 2 dt 2 ω ζ κ i,h (t)η i,h √ a dy + ε 3 3 ω a αβστ ρ στ (ζ κ h (t))ρ αβ (η h ) √ a dy + 1 κ ω a αβστ γ στ (ζ κ h (t))γ αβ (η h ) √ a dy = ω p i,ε (t)η i,h √ a dy,
Prepared using sagej.cls for all η h ∈ V h and which satisfies the initial conditions

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ζ κ h (0) = ζ 0,h , ζκ h (0) = ζ 1,h , (3) 
where ζ 0,h is the projection of the given vector field ζ 0 onto the space V h with respect to the standard inner product of V K (ω), while ζ 1,h is the projection of the given vector field ζ 1 onto the space V h with respect to the L 2 (ω) inner product (cf., e.g., page 13 of [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]). ∎

We then have that the following existence and uniqueness result holds (cf. Theorem 8.4-1 of [34] or Section 14.5 of [START_REF] Quarteroni | Numerical Approximation of Partial Differential Equations[END_REF]).

Theorem 5.1. Problem P κ F,h admits a unique solution.

Total discretisation in time

The total discretisation in time of Problem P κ F,h is performed using Newmark's scheme for hyperbolic equations (cf., e.g., the seminal paper [START_REF] Newmark | A method of computation for structural dynamics[END_REF] and Chapter 8 of [START_REF] Raviart | Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles[END_REF]).

Let us consider a division of the interval [0, T ] made of N points, where N is any positive integer. Define the time step ∆t ∶= T N , the time instant t n ∶= n∆t, the approximations ζ n,κ h ≃ ζ κ h (t n ), and the vectors p n ∶= p ε (t n ) ∈ L 2 (ω), where n = 0, . . . , N .

We can then exhibit Newmark's scheme corresponding to Problem P κ F,h . Algorithm . For each n = 0, . . . , N -2, find ζ n h ∈ V h such that

2ε 3 ρ (∆t) 2 (ζ n+2,κ h -2ζ n+1,κ h + ζ n,κ h , e h ) L 2 (ω) + a κ βζ n+2,κ h + 1 2 -2β + γ ζ n+1,κ h + 1 2 + β -γ ζ n,κ h , e h = βp n+2 + 1 2 -2β + γ p n+1 + 1 2 + β -γ p n , e h L 2 (ω)
, for all e h ∈ V h .

(

) 4 
where β and γ are given nonnegative real constants (cf., e.g., Section 8.5 of [START_REF] Raviart | Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles[END_REF]). The vector field ζ 1,κ h is obtained as the unique solution of the following variational equations

2ε 3 ρ (∆t) 2 (ζ 1,κ h -ζ 0,h -∆tζ 1,h , e h ) L 2 (ω) + a κ βζ 1,κ h + 1 2 -β ζ 0,h , e h = βp 1 + 1 2 -β p 0 , e h L 2 (ω)
, for all e h ∈ V h .

(5)

∎

Observe that the constants β and γ cannot be chosen arbitrarily. Indeed, following Section 8.6 of [START_REF] Raviart | Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles[END_REF], the stability of Newmark's scheme is achieved when

γ > 1 2 and β ≥ (1 2 + γ) 2 4 . (6) 
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We recall that if

β < (1 2 + γ) 2 4 ,
then the validity of extra specific stability conditions must be verified (cf., e.g, Theorems 8.5-1 and 8.6-1 of [START_REF] Raviart | Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles[END_REF]).

Let us now discuss the convergence of the proposed algorithm in the case where the constants β and γ are chosen as in [START_REF] Ciarlet | A justification of the two-dimensional linear plate model[END_REF], the stability condition (8.6-30) in Theorem 8.6-2 of [START_REF] Raviart | Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles[END_REF] holds, and the solution to Problem P ε F,κ (ω) is more regular with respect to the variable t, i.e.,

ζ ε κ ∈ C 2 ([0, T ]; V K (ω)) ∩ C 3 ([0, T ]; L 2 (ω)).
Under these additional assumptions, for each n = 0, . . . , N , we obtain the following estimate:

ζ n,κ h -ζ ε (t n ) L 2 (ω) ≤ ζ n,κ h -ζ ε κ (t n ) L 2 (ω) + ζ ε κ (t n ) -ζ ε (t n ) L 2 (ω) = O(h) + O(κ).
This shows that, if h and κ are sufficiently small, the each approximate solution ζ n,κ h output by ( 4)-( 5), with n = 0, . . . , N , is a good approximation (in the sense of the L 2 (ω) norm) of the solution ζ ε of Problem P ε F (ω) evaluated at the time instant t n , again with n = 0, . . . , N . We also observe that, under additional regularity assumptions, the latter estimate can be improved (cf., e.g., Theorem 8.7-2 of [START_REF] Raviart | Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles[END_REF]).

Numerical experiments: Cylindrical shells

We conduct our first set of numerical tests in the case where the middle surface of the flexural shell under consideration is a portion of a cylinder (cf. Figure 1).

We consider a domain ω shaped as follows ω ∶= {(y 1 , y 2 ) ∈ R 2 ; 0 < y 1 < π and 0 < y 2 < 1}, where γ 0 , the region of the boundary at which the clamping occurs, takes the following form

γ 0 ∶= {(y 1 , y 2 ) ∈ R 2 ; y 1 = π, y 2 ∈ [0, 1]}.
In curvilinear coordinates, the middle surface is given by the mapping θ defined by θ(y 1 , y 2 ) ∶= (r cos y 1 , r sin y 1 , hy 2 ), for all (y 1 , y 2 ) ∈ ω, where r > 0 and h > 0.

Prepared using sagej.cls This means that the displacement field vanishes along one generatrix of the corresponding cylindrical surface. As initial conditions in Problem P ε F (ω), we take ζ 0 = ζ 1 = 0. Then the covariant basis of the tangent plane to θ(ω) at the point θ(y 1 , y 2 ) is given by a 1 = (-r sin y 1 , r cos y 1 , 0),

a 2 = (0, 0, h), a 3 = a 3 = (cos y 1 , sin y 1 , 0).
The covariant components of the first fundamental form of θ(ω) are given by

a 11 = r 2 , a 12 = a 21 = 0, a 22 = h 2 , and a = det(a αβ ) = r 2 h 2 .
The contravariant components of metric tensors on θ(ω) are given by a 11 = r -2 , a 12 = a 21 = 0, a 22 = h -2 , so that we obtain the following a 1 = a 11 a 1 = (-r -1 sin y 1 , r -1 cos y 1 , 0), a 2 = a 22 a 2 = (0, 0, h -1 ).

Since

∂ 1 a 1 = (-r cos y 1 , -r sin y 1 , 0), ∂ 2 a 1 = (0, 0, 0), ∂ 1 a 2 = ∂ 2 a 2 = (0, 0, 0),
then, the covariant and mixed components of the second fundamental form of θ(ω) are given by

b 11 = -r, b 12 = b 21 = b 22 = 0, b 1 1 = a 11 b 11 = -r -1 , b 1 2 = b 2 1 = b 2 2 = 0.
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The Christoffel symbols of θ(ω) are given by

Γ 1 11 = Γ 1 12 = Γ 1 21 = Γ 1 22 = 0, Γ 2 11 = Γ 2 12 = Γ 2 21 = Γ 2 22 = 0.
In what follows, we take r = 0.20m, h = 0.40m (cf. [START_REF] Goncalves | Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell[END_REF]). We take the Young's modulus as in [START_REF] Goncalves | Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell[END_REF], i.e., E = 2.1 × 10 11 Pa, [START_REF] Ciarlet | Justification of a two-dimensional shallow shell model in linearized elasticity[END_REF] and the Poisson ratio as (cf. [START_REF] Goncalves | Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell[END_REF])

ν = 0.3. ( 8 
)
Since the Lamé constants, the Young's modulus [START_REF] Ciarlet | Justification of a two-dimensional shallow shell model in linearized elasticity[END_REF] and the Poisson's ratio ( 8) are related as follows

λ = Eν (1 + ν)(1 -2ν) , µ = E 2(1 + ν) , (9) 
so that, plugging ( 7) and ( 8) into ( 9 The mass density per unit volume of the shell is taken as in [START_REF] Goncalves | Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell[END_REF], i.e., ρ = 7.85 × 10 3 kg m 3 .

For the time being, we set the penalty parameter κ equal to 10 -6 and γ = 0.6.

To recapitulate, the parameters used in the experiments that output Figure 3 are the following r = 0.20m,

h = 0.40m, ε = 0.002m, E = 2.1 × 10 11 Pa, ν = 0.3, ρ = 7.85 × 10 3 kg m 3 , κ = 10 -6 , γ = 0.6, β = (1 2 + γ) 2 4 .
We implement Newmark's scheme ( 4)-( 5) by means of the software FreeFem++ (see [START_REF] Hecht | New development in FreeFem ++[END_REF]), and we visualise the results using ParaView (see [START_REF] Ahrens | ParaView: An End-User Tool for Large Data Visualization[END_REF]).

In our experiments we use a mesh made of 2,700 elements, as displayed in Figure 2. We consider the following dynamic loads

p 1,ε (t, y 1 , y 2 ) = 0, p 2,ε (t, y 1 , y 2 ) = 0, p 3,ε (t, y 1 , y 2 ) = 20ty 1 .
The deformations of the cylindrical shell under consideration at different time instants are shown in Figure 3, for a time-step ∆t = 0.01s. The colouring meaning is described by the vertical gauge on the right hand side of each mesh. The generatrix on the left part of the displayed cylinders corresponds to the clamped part of the boundary. In the following implementation, we applied a scaling factor of order 1,000 in ParaView, to visualise a more progressive evolution of the displacement field magnitude. In the following tables 1, 2, and 3, we illustrate the deformation of the middle surface of the shell, by displaying how the displacement fields at three random points of the middle surface of the shell change as time passes, and the penalty parameter κ varies.

Table 1. Displacement vectors at three random points of the middle surface of the shell at time instants t = 0.01s and t = 0.05s, with time-step ∆t = 0.01, and penalty parameters κ = 10 -6 and κ = 10 -8 . The following tables 4, 6, and 8 report the evaluations of the norms

Penalty

ζ n,κ h -ζ n,κ ′ h L 2 (ω) , i.e.
, the L 2 (ω)-residuals of the approximate solutions evaluated at the same time instant t n , constructed using the same mesh size h, but corresponding to different values κ and κ ′ of the penalty parameter.

The purpose of tables 4, 6, and 8 is to numerically confirm that for all time instants t n , the sequence (ζ n,κ h ) κ>0 is a Cauchy sequence in L 2 (ω). The data we obtained agree with the conclusion Prepared using sagej.cls of Theorems 4.1 and 4.2. In particular, we recall, again, that in the proof of the latter (cf. [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]), the following convergence was obtained (cf. ( 2)):

ζ ε κ → ζ ε , in C 0 ([0, T ]; L 2 (ω)) as κ → 0.
Tables 5,7, and 9 confirm that the same conclusion holds if the value of γ changes, provided, however, that γ ≥ 1 2. We conduct our second set of numerical tests in the case where the middle surface of the flexural shell under consideration is a portion of a cone (cf. Figure 4).
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ω ∶= {(y 1 , y 2 ) ∈ R 2 ; 0 < y 1 < π and 0.4 < y 2 < 1}, where γ 0 , the region of the boundary at which the clamping occurs, takes the form

γ 0 ∶= {(y 1 , y 2 ) ∈ R 2 ; y 1 = π, y 2 ∈ [0.4, 1]}.
In curvilinear coordinates (see [START_REF] Ciarlet | An Introduction to Differential Geometry with Applications to Elasticity[END_REF] and also Chapter 8 of [START_REF] Ciarlet | Linear and Nonlinear Functional Analysis with Applications[END_REF]), the middle surface is given by the mapping θ defined by θ(y 1 , y 2 ) = (by 2 cos y 1 , by 2 sin y 1 , cy 2 ),

where b > 0 and c > 0. 

a 3 = a 3 = c cos y 1 √ b 2 + c 2 , c sin y 1 √ b 2 + c 2 , -b √ b 2 + c 2 .
The covariant components of metric tensors on θ(ω) are given by

a 11 = a 1 ⋅ a 1 = b 2 y 2 2 , a 21 = a 12 = 0, a 22 = b 2 + c 2 and a = det(a αβ ) = b 2 y 2 2 (b 2 + c 2 ).
The contravariant components of the first fundamental form of θ(ω) are given by

a 11 = 1 b 2 y 2 2 , a 21 = a 12 = 0, a 22 = 1 b 2 + c 2 ,
so that we obtain the following

a 1 = a 11 a 1 = -sin y 1 by 2 , cos y 1 by 2 , 0 , a 2 = a 22 a 2 = b cos y 1 b 2 + c 2 , b sin y 1 b 2 + c 2 , c b 2 + c 2 .
Since,

∂ 1 a 1 = (-by 2 cos y 1 , -by 2 sin y 1 , 0), ∂ 2 a 1 = ∂ 1 a 2 = (-b sin y 1 , b cos y 1 , 0), ∂ 2 a 2 = (0, 0, 0),
then the covariant and mixed components of the second fundamental form of θ(ω) are given by

b 11 = -bcy 2 √ b 2 + c 2 , b 12 = b 21 = b 22 = 0, b 1 1 = -c by 2 √ b 2 + c 2 , b 2 1 = b 1 2 = b 2 2 = 0.
Then the Christoffel symbols of θ(ω) are given by

Γ 2 11 = -b 2 y 2 b 2 + c 2 , Γ 1 12 = Γ 1 21 = y 2 -1 , Γ 1 11 = Γ 2 12 = Γ 2 21 = Γ 1 22 = Γ 2 22 = 0.
We take the material parameters including Young's modulus, Poisson ratio and density like those in Section 7. We take b = 0.20m and c = 0.40m.

We implement Newmark's scheme (4)-( 5) by means of the software FreeFem++ (cf. [START_REF] Hecht | New development in FreeFem ++[END_REF]) and we visualise the results using ParaView (cf. [START_REF] Ahrens | ParaView: An End-User Tool for Large Data Visualization[END_REF]). In our experiments we use a mesh made of 4,500 elements, as displayed in Figure 5. 

β = (1 2 + γ) 2 4 .
We consider the following dynamic loads

p 1,ε (t, y 1 , y 2 ) = 10t, p 2,ε (t, y 1 , y 2 ) = exp(t), p 3,ε (t, y 1 , y 2 ) = sin(t).
The deformations of the shell at different times are shown in Figure 6 for a time-step ∆t = 0.01s. We observe that the clamping occurs at the left generatrix of the cylinder. 

Final remarks: numerical experiments for the elliptic membrane shells model

We conduct our third, and last, set of numerical tests in the case where the linearly elastic shell under consideration is an elliptic membrane shell (cf., Section 7 of [START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]). Following the terminology proposed in Section 4.1 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF], such a shell is said to be an elliptic membrane shell if the following two additional assumptions are satisfied: first, γ 0 = γ, i.e., the homogeneous boundary condition of place is imposed over the entire lateral face γ × [-ε, ε] of the shell, and second, its middle surface θ(ω) is elliptic, according to the definition given in Section 2. Note that the assumption γ 0 = γ implies that the space V K (ω) introduced in Section 3 now reduces to V K (ω) = H 1 0 (ω) × H 1 0 (ω) × H 2 0 (ω). To begin with, we recall a crucial inequality that holds for elliptic surfaces (cf., e.g., Theorem 2.7-3 of [START_REF] Ciarlet | Mathematical Elasticity[END_REF]).

Theorem 9.1. Let ω be a domain in R 2 and let θ ∈ C 3 (ω; E 3 ) be an immersion such that θ(ω) is an elliptic surface. Define the space

V M (ω) ∶= H 1 0 (ω) × H 1 0 (ω) × L 2 (ω),
and the norm ⋅ V M (ω) by

η V M (ω) ∶= α η α 2 1,ω + η 3 2 0,ω 1 2 
for each η = (η i ) ∈ V M (ω).
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Then there exists a constant c = c(ω, θ) > 0 such that

η V M (ω) ≤ c α,β γ αβ (η) 2 0,ω 1 2 
for all η = (η i ) ∈ V M (ω).

A natural formulation of a set of time-dependent two-dimensional equations (again, "twodimensional", in the sense that they are posed over the two-dimensional subset ω) can be derived in the same way as in Section 3.

Let us introduce the problem P ε M (ω), describing the dynamics of an elliptic membrane shell. Problem P ε M (ω). We consider a linearly elastic elliptic membrane shell whose middle surface is a spherical cap of the unit sphere. The basis radius of the selected spherical cap is denoted by r and, in general, such a quantity r must be less or equal than the radius of the sphere which is here taken for constructing the spherical cap. In particular, in the case of the unit sphere, it must be r ≤ 1.

The circumference constituting the basis of the spherical cap is parametrised as follows

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ y 1 = r cos(t), y 2 = r sin(t), 0 ≤ t ≤ 2π.
The spherical cap surface is then parametrised as follows θ(y 1 , y 2 ) = ry 1 , ry 2 , 1y 2 1y 2 2sin(arccos(r)) , Prepared using sagej.cls for all (y 1 , y 2 ) such that y 2 1 + y 2 2 ≤ 1. Let us recall that, for elliptic membrane shells, we have that the clamping occurs along the entire lateral boundary of the basis of the spherical cap. As initial conditions in Problem P ε M (ω), we take

ζ 0 = ζ 1 = 0.
Since the computation of the geometrical entities introduced in Section 1 involves a lot of machinery, we just limit ourselves to displaying the figures describing the evolution of the displacement magnitude over the middle surface under consideration. For performing the numerical experiments, we used the following parameters: We implements Newmark's scheme by means of the software FreeFem++ (cf. e.g., [START_REF] Hecht | New development in FreeFem ++[END_REF]) and we visualise the results in ParaView (cf., e.g., [START_REF] Ahrens | ParaView: An End-User Tool for Large Data Visualization[END_REF]). We construct a mesh by relying on the potentialities of the software FreeFem++: More specifically, we indicate the compiler to divide the basis of the spherical cap into 100 arcs. The length of these arcs denotes the size of the mesh (see Figure 8). We consider the following applied body force densities and surface force densities: p 1,ε (t, y 1 , y 2 ) = 0, p 2,ε (t, y 1 , y 2 ) = 0, p 3,ε (t, y 1 , y 2 ) = sin(t).

The deformations of the shell at different times are shown in Figure 9 for a time-step ∆t = 0.01s. In the experiments we conducted, we applied a scaling factor of order 10,000 in ParaView, to visualise a more progressive evolution of the displacement field magnitude. 

Figure 1 .

 1 Figure 1. A cylindrical shell.

  ), we obtain λ = 1.21 × 10 11 Pa, µ = 8.08 × 10 10 Pa.

Figure 2 .

 2 Figure 2. Mesh of the cylindrical surface θ(ω) made of 2,700 elements.

Figure 3 .

 3 Figure 3. n = 90, m = 30, ∆t = 0.01. The number of points of the mesh that are processed by the software FreeFem++ is determined by the quantities n and m.

Figure 4 .

 4 Figure 4. A conical shell.

Figure 5 .

 5 Figure 5. Mesh of the conical surface θ(ω) made of 4,500 elements.

Figure 6 .

 6 Figure 6. n = 150, m = 30, ∆t = 0.01.

  Find a vector fieldζ ε = (ζ ε i ) ∶ [0, T ] → V M (ω) such that ζ ε ∈ C 0 ([0, T ]; V M (ω)) ∩ C 1 ([0, T ]; L 2 (ω)),that satisfies the following variational equations2ερ d 2 dt 2 ω ζ ε i (t)η i √ a dy + ε ω a αβστ γ στ (ζ ε (t))γ αβ (η) √ a dy = ω p i,ε (t)η i √ a dy, for all η = (η i ) ∈ V M (ω), in the sense of distributions in (0, T ), and that satisfies the following initial conditions⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ζ ε (0) = ζ 0 , ζε (0) = ζ 1 ,whereζ 0 ∈ V M (ω) and ζ 1 ∈ L 2 (ω) are prescribed. ∎ We say that ζ ε is a strong solution of Problem P ε M (ω) if ζ ε ∈ C 0 ([0, T ]; V M (ω)) ∩ C 1 ([0, T ]; L 2 (ω)),if ζ ε satisfies the variational equations of Problem P ε M (ω) in the sense of distributions in (0, T ), and also satisfies the initial conditions.The existence and uniqueness result is then classically established (cf., e.g., Theorem 8.2-2 of [34] and Theorem 7.2 of[START_REF] Piersanti | An existence and uniqueness theorem for the dynamics of flexural shells[END_REF]). Theorem 9.2. Problem P ε M (ω) admits a unique strong solution ζ ε ∈ C 0 ([0, T ]; V M (ω)) ∩ C 1 ([0, T ]; L 2 (ω)).

Figure 7 .

 7 Figure 7. A spherical cap.

r

  = 0.50m, ε = 0.002m, E = 2.1 × 10 11 Pa, ν = 0.3, ρ = 7.85 × 10 3 kg m 3 , κ = 10 -6 , γ = 0.6, β = (1 2 + γ) 2 4 .
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Figure 8 .

 8 Figure 8. Spherical mesh constructed by relying on the potentialities of the software FreeFem++. The mesh size is obtained dividing by 100 the length of the circumference constituting the basis of the spherical cap.

Figure 9 .

 9 Figure 9. n = 150, m = 30, ∆t = 0.01.

Table 2 .

 2 Displacement vectors at three random points of the middle surface of the shell at time instants t = 0.60s and t = 0.90s, with time-step ∆t = 0.01, and penalty parameters κ = 10 -8 and κ = 10 -12 .

	parameter	κ = 10 -6	Penalty parameter	κ = 10 -8
	Time	t = 0.01s	t = 0.05s	Time	t = 0.01s	t = 0.05s
	x	-1.30384e-06	-3.04204e-06	x	4.12591e-09	9.63102e-09
	y	-8.39842e-09	-1.95938e-08	y	8.92493e-09	2.08305e-08
	z	4.51353e-52	1.78963e-51	z	-1.08597e-54	-6.8079e-54
	x	-5.26531e-07	-1.22844e-06	x	-4.56679e-10	-1.06501e-09
	y	-3.2931e-07	-7.68309e-07	y	7.66398e-09	1.78874e-08
	z	1.37419e-40	4.04022e-40	z	7.2741e-44	4.59639e-43
	x	2.91321e-07	6.79693e-07	x	-1.82165e-09	-4.25175e-09
	y	-1.63053e-07	-3.80427e-07	y	7.19426e-10	1.67921e-09
	z	-4.21245e-28	2.74884e-28	z	-8.03791e-32	1.79875e-31
	Penalty parameter	κ = 10 -8	Penalty parameter	κ = 10 -12
	Time	t = 0.60s	t = 0.90s	Time	t = 0.60s	t = 0.90s
	x	8.54092e-08	1.26722e-07	x	-2.70342e-11	-4.01393e-11
	y	1.84684e-07	2.73988e-07	y	-1.73792e-13	-2.5811e-13
	z	-3.65128e-51	-1.19752e-50	z	-3.75327e-54	-8.87914e-54
	x	-9.42638e-09	-1.39806e-08	x	-1.0906e-11	-1.61949e-11
	y	1.58591e-07	2.35278e-07	y	-6.82084e-12	-1.01286e-11
	z	2.48864e-40	8.12662e-40	z	4.69783e-43	1.09072e-42
	x	-3.7694e-08	-5.59281e-08	x	6.03201e-12	8.95624e-12
	y	1.48882e-08	2.20905e-08	y	-3.37652e-12	-5.0134e-12
	z	3.21975e-28	7.90172e-28	z	1.09084e-30	1.49654e-30

Table 3 .

 3 Displacement vectors at three random points of the middle surface of the shell at time instants t = 1.00s and t = 1.20s, with time-step ∆t = 0.01, and penalty parameters κ = 10 -6 and κ = 10 -12 .

	Penalty parameter	κ = 10 -6	Penalty parameter	κ = 10 -12
	Time	t = 1.00s	t = 1.20s	Time	t = 1.00s	t = 1.20s
	x	-4.43328e-05	-5.3025e-05	x	-4.44892e-11	-5.31926e-11
	y	-2.85605e-07	-3.41629e-07	y	-2.86123e-13	-3.42136e-13
	z	3.45195e-48	5.81452e-48	z	-1.23685e-53	-2.09736e-53
	x	-1.7904e-05	-2.14152e-05	x	-1.79514e-11	-2.1465e-11
	y	-1.11978e-05	-1.33938e-05	y	-1.12272e-11	-1.34246e-11
	z	1.18632e-36	2.10533e-36	z	1.51811e-42	2.56202e-42
	x	9.90621e-06	1.18531e-05	x	9.92774e-12	1.1872e-11
	y	-5.5445e-06	-6.63435e-06	y	-5.55716e-12	-6.6454e-12
	z	-1.79321e-24	-1.58878e-24	z	1.62687e-30	2.02813e-30

Table 4 .

 4 Let γ = 0.6.

				The following
	table reports the measurements of
	the L 2	(ω)-residuals of the
	approximate solutions at a given
	time instant corresponding to
	κ = 10 -6 and κ ′	= 10 -12 ,
	respectively.	
	Time	κ = 10 -6 and κ ′	= 10 -12
	0.10s	9.105035061047419e-09
	0.20s	3.058470544333727e-08
	0.30s	6.449066960406247e-08
	0.40s	1.1132909131539029e-07
	0.50s	1.709097468250036e-07
	0.60s	2.4282536616866065e-07
	0.70s	3.268063050746276e-07
	0.80s	4.235323308277976e-07
	0.90s	5.340243748167916e-07
	1.00s	6.566224369986849e-07
	1.10s	7.938369859511519e-07
	1.20s	9.393890067106388e-07
	1.30s	1.0992038539893267e-06
	1.40s	1.2735584835066714e-06

Table 5 .

 5 Let γ = 0.8.

				The following
	table reports the measurements of
	the L 2	(ω)-residuals of the
	approximate solutions at a given
	time instant, corresponding to
	κ = 10 -6 and κ ′	= 10 -12 ,
	respectively.	
	Time	κ = 10 -6 and κ ′	= 10 -12
	0.10s	9.13022435949277e-09
	0.20s	3.070720172772241e-08
	0.30s	6.494699395353533e-08
	0.40s	1.118847259753477e-07
	0.50s	1.7143718680912363e-07
	0.60s	2.4377342081430797e-07
	0.70s	3.289644619106159e-07
	0.80s	4.2650850161955456e-07
	0.90s	5.367803325526587e-07
	1.00s	6.599655611907805e-07
	1.10s	7.958275201187722e-07
	1.20s	9.432864826616698e-07
	1.30s	1.1050444278868415e-06
	1.40s	1.279027281245845e-06

Table 6 .

 6 Let γ = 0.6.

				The following
	table reports the measurements of
	the L 2	(ω)-residuals of the
	approximate solutions at a given
	time instant, corresponding to
	κ = 10 -8 and κ ′	= 10 -12 ,
	respectively.	
	Time	κ = 10 -8 and κ ′	= 10 -12
	0.10s	9.092922670431935e-13
	0.20s	3.0551785666233502e-12
	0.30s	6.469394300280324e-12
	0.40s	1.1151143158076022e-11
	0.50s	1.7097534957261284e-11
	0.60s	2.4308028522236183e-11
	0.70s	3.2755013818368175e-11
	0.80s	4.2462762579475536e-11
	0.90s	5.351133923228302e-11
	1.00s	6.576490708244588e-11
	0.10s	7.913665593178143e-11
	1.20s	9.40539128322055e-11
	1.30s	1.101622383552461e-10
	1.40s	1.2757241762698354e-10

Table 7 .

 7 Let γ = 0.8.

				The following
	table reports the measurements of
	the L 2	(ω)-residuals of the
	approximate solutions at a given
	time instant corresponding to
	κ = 10 -8 and κ ′	= 10 -12 ,
	respectively.	
	Time	κ = 10 -8 and κ ′	= 10 -12
	0.10s	9.094450770700801e-13
	0.20s	3.0567125182168985e-12
	0.30s	6.472054232239331e-12
	0.40s	1.1146741953492408e-11
	0.50s	1.707449421183145e-11
	0.60s	2.429095630126807e-11
	0.70s	3.273958834829574e-11
	0.80s	4.248234062530869e-11
	0.90s	5.3447325375494504e-11
	1.00s	6.571991607584821e-11
	1.10s	7.924678756800441e-11
	1.20s	9.405025523912434e-11
	1.30s	1.1008702063087494e-10
	1.40s	1.2746396794594706e-10

Table 8 .

 8 Let γ = 0.6.

				The following
	table reports the measurements of
	the L 2	(ω)-residuals of the
	approximate solutions at a given
	time instant, corresponding to
	κ = 10 -6 and κ ′	= 10 -8 , respectively.
	Time	κ = 10 -6 and κ ′	= 10 -8
	0.10s	8.923964821442561e-09
	0.20s	2.9976395853899877e-08
	0.30s	6.320529449051073e-08
	0.40s	1.0911183801720238e-07
	0.50s	1.6750799347387358e-07
	0.60s	2.3799061869290796e-07
	0.70s	3.2029549991047165e-07
	0.80s	4.150932011593057e-07
	0.90s	5.233865140892298e-07
	1.00s	6.43545490928386e-07
	1.10s	7.780641080033482e-07
	1.20s	9.20683782879014e-07
	1.30s	1.0773057672601421e-06
	1.40s	1.248193238692263e-06

Table 9 .

 9 Let γ = 0.8.

			The following
	table reports the measurements of
	the L 2	(ω)-residuals of the
	approximate solutions at a given
	time instant, corresponding to
	κ = 10 -6 and κ ′	= 10 -8 , respectively.
	Time step	κ = 10 -6 and κ ′	= 10 -8
		0.10s	8.948887406047657e-09
		0.20s	3.0097516796473584e-08
		0.30s	6.365679263476454e-08
		0.40s	1.0966235518986009e-07
		0.50s	1.6803244705417505e-07
		0.60s	2.3893088971871273e-07
		0.70s	3.224336170677912e-07
		0.80s	4.1803768169472007e-07
		0.90s	5.261212689644947e-07
		1.00s	6.468596630947034e-07
		1.10s	7.800238491287989e-07
		1.20s	9.245426633263189e-07
		1.30s	1.0830954084400757e-06
		1.40s	1.2536181134137052e-06
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