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Abstract
In this paper we study a model describing the displacement of a linearly elastic flexural shell subjected
to given dynamic loads from the computational point of view. As expected, this model takes the form
of a set of hyperbolic variational equations posed over the space of admissible linearized inextensional
displacements, and a set of initial conditions. Since the original model is defined over spaces that are
not amenable for the implementation of a finite element method, we conduct the experiments on the
corresponding penalised model. It was recently shown that the solution to such a penalised model is a
good approximation of the solution to the original model. The numerical tests are therefore conducted
on the the penalised model; the approximation of the solution to the penalised model is obtained via
Newmark’s scheme, which is then implemented and tested for shells having the following middle surfaces:
a portion of a cylinder, and a portion of a cone. For sake of completeness, we also present the results of
the numerical tests related to a model describing the displacement of a linearly elastic elliptic membrane
shell under the action of given dynamic loads.

Keywords
Flexural shells, Elliptic membrane shells, finite element method, Newmark’s scheme, cylindrical shell,
conical shell, spherical shell

1 Introduction

Flexural shells are widely used in many applicative fields such as physics, engineering and material
science. Some remarkable applications involving the usage of such shells are: reinforced oil palm shell
and palm oil clinker concrete (PSCC) beam [1], smart composite shell panels [2], functionally graded

1 School of Sciences, Xi’an University of Technology, Xi’an, P.R. China
2 Department of Mathematics and Computer Science, University of Perugia, Perugia, Italy
3 Institute of Mathematics and Scientific Computing, Karl-Franzens-Universitat, Graz, Austria

Corresponding author:
Paolo Piersanti, Institute of Mathematics and Scientific Computing, Karl-Franzens-Universitat Graz, 36 Heinrichstrasse,
Graz, Austria
Email: paolo.piersanti@uni-graz.at

Prepared using sagej.cls [Version: 2016/06/24 v1.10]



2 Journal Title XX(X)

spherical shell panel [3], anisogrid lattice conical shells [4], and reinforced Eco-friendly coconut shell
concrete [5]. Because of its wide range of applications, the theory of flexural shells is one of the
most important branches in Mathematical Elasticity.

Unlike the static case, which was addressed by Ciarlet and his associates in the references [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], there are very few reference about the
time-dependent case. In this direction we cite, for instance, the papers [19] and [20].

To our best knowledge, there are no references that treat the numerical simulation for well-
established models describing the dynamics of flexural shells.

In Section 2 we present some geometrical and analytical background; in Section 3 we formulate
the problem describing the displacement of a flexural shell when it is subjected to given dynamic
loads; in Section 4 we formulate the corresponding penalised problem, which is easier to treat in
a context of numerical simulations, we recall the result establishing the existence and uniqueness
of the solution of the model under consideration, and we analyse the convergence of the solution
to the penalised model to the solution of the original model; in Sections 5 and 6, we rigorously
state the algorithm that implements Newmark’s scheme for the penalised problem and we discuss
the convergence of the discretised solution it outputs to the solution of the original model; finally,
in Sections 7, 8, and 9 we perform numerical experiments in the case where the middle surface of
the linearly elastic shell under consideration is a portion of a cylinder, a portion of a cone, and a
spherical cap, respectively.

2 Geometrical preliminaries

For details about the classical notions of differential geometry recalled in this section see, e.g., [21]
or [22].

Greek indices, except ε and ν, take their values in the set {1,2}, while Latin indices, except
when they are used for indexing sequences, take their values in the set {1,2,3}, and the summation
convention with respect to repeated indices is systematically used in conjunction with these two
rules. The notation E3 designates the three-dimensional Euclidean space; the Euclidean inner
product and the vector product of u,v ∈ E3 are denoted u ⋅ v and u ∧ v; the Euclidean norm of
u ∈ E3 is denoted ∣u∣. The notation δji designates the Kronecker symbol.

Given an open subset Ω of Rn, notations such as L2(Ω), Hm(Ω), or Hm
0 (Ω), m ≥ 1, designate the

usual Lebesgue and Sobolev spaces, and the notation D(Ω) designates the space of all functions that
are infinitely differentiable over Ω and have compact support in Ω. The notation ∥⋅∥X designates
the norm in a normed vector space X. The dual space of a vector space X is denoted by X∗ and
the duality pair between X∗ and X is denoted by X∗⟨⋅, ⋅⟩X . Spaces of vector-valued functions are
denoted with boldface letters. Lebesgue-Bochner spaces defined over a bounded open interval I
(cf. [23]), are denoted Lp(I;H), where H is a Banach space and 1 ≤ p ≤∞. The notation ∥⋅∥0,Ω

designates the norm of the Lebesgue space L2(Ω), and the notation ∥⋅∥m,Ω, designates the norm
of the Sobolev space Hm(Ω), m ≥ 1. The notation ∥⋅∥Lp(I;H) designates the norm of the Lebesgue-

Bochner space Lp(I;H). The notations η̇ and η̈ denote the first weak derivative with respect to
t ∈ I and second weak derivative with respect to t ∈ I of a scalar function η defined over the interval
I. The notations η̇ and η̈ denote the first weak derivative with respect to t ∈ I and second weak
derivative with respect to t ∈ I of a vector-valued function η defined over the interval I.

A domain in Rn is a bounded and connected open subset Ω of Rn, whose boundary ∂Ω is
Lipschitz-continuous, the set Ω being locally on a single side of ∂Ω.

Prepared using sagej.cls



Shen, Piersanti and Piersanti 3

Let ω be a domain in R2, let y = (yα) denote a generic point in ω, and let ∂α ∶= ∂/∂yα and
∂αβ ∶= ∂2/∂yα∂yβ . A mapping θ ∈ C1(ω;E3) is an immersion if the two vectors

aα(y) ∶= ∂αθ(y)

are linearly independent at each point y ∈ ω. Then the image θ(ω) of the set ω under the mapping
θ is a surface in E3, equipped with y1, y2 as its curvilinear coordinates. Given any point y ∈ ω, the
vectors aα(y) span the tangent plane to the surface θ(ω) at the point θ(y), the unit vector

a3(y) ∶=
a1(y) ∧ a2(y)
∣a1(y) ∧ a2(y)∣

is normal to θ(ω) at θ(y), the three vectors ai(y) form the covariant basis at θ(y), and the three
vectors aj(y) defined by the relations

aj(y) ⋅ ai(y) = δji

form the contravariant basis at θ(y); note that the vectors aβ(y) also span the tangent plane to
θ(ω) at θ(y) and that a3(y) = a3(y).

The first fundamental form of the surface θ(ω) is defined by means of its covariant components

aαβ ∶= aα ⋅ aβ = aβα ∈ C0(ω),

or by means of its contravariant components

aαβ ∶= aα ⋅ aβ = aβα ∈ C0(ω).

Note that the symmetric matrix field (aαβ) is the inverse of the matrix field (aαβ), that
aβ = aαβaα and aα = aαβaβ , and that the area element along θ(ω) is given at each point θ(y), y ∈ ω,

by
√
a(y)dy, where

a ∶= det(aαβ) ∈ C0(ω).

Given an immersion θ ∈ C2(ω;E3), the second fundamental form of the surface θ(ω) is defined
by means of its covariant components

bαβ ∶= ∂αaβ ⋅ a3 = −aβ ⋅ ∂αa3 = bβα ∈ C0(ω),

or by means of its mixed components

bβα ∶= aβσbασ ∈ C0(ω),

and the Christoffel symbols associated with the immersion θ are defined by

Γσαβ ∶= ∂αaβ ⋅ aσ = Γσβα ∈ C0(ω).

The Gaussian curvature at each point θ(y), y ∈ ω, of the surface θ(ω) is defined by

κ(y) ∶= det(bαβ(y))
det(aαβ(y))

= det (bβα(y))
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(the denominator in the above relation does not vanish since θ is assumed to be an immersion).
Note that the Gaussian curvature κ(y) at the point θ(y) is also equal to the product of the two
principal curvatures at this point.

A surface θ(ω) defined by means of an immersion θ ∈ C2(ω;E3) is said to be elliptic if its Gaussian
curvature is everywhere > 0 in ω, or equivalently, if there exists a constant κ0 such that

0 < κ0 ≤ κ(y) for all y ∈ ω.

Given an immersion θ ∈ C2(ω;E3) and a vector field η = (ηi) ∈ C1(ω;R3), the vector field

η̃ ∶= ηiai

can be viewed as a displacement field of the surface θ(ω), thus defined by means of its covariant
components ηi over the vectors ai of the contravariant bases along the surface. If the norms
∥ηi∥C1(ω) are small enough, the mapping (θ + ηiai) ∈ C1(ω;E3) is also an immersion, so that the

set (θ + ηiai)(ω) is also a surface in E3, equipped with the same curvilinear coordinates as those
of the surface θ(ω), called the deformed surface corresponding to the displacement field η̃ = ηiai.
One can then define the first fundamental form of the deformed surface by means of its covariant
components

aαβ(η) ∶= (aα + ∂αη̃) ⋅ (aβ + ∂βη̃),
and the second fundamental form of the deformed surface by means of its covariant components

bαβ(η) ∶= ∂α(aβ + ∂βη̃) ⋅
(a1 + ∂1η̃) ∧ (a2 + ∂2η̃)
∣(a1 + ∂1η̃) ∧ (a2 + ∂2η̃)∣

The linear part with respect to η̃ in the difference
1

2
(aαβ(η) − aαβ) is called the linearized change

of metric tensor associated with the displacement field ηia
i, the covariant components of which are

then given by

γαβ(η) =
1

2
(aα ⋅ ∂βη̃ + ∂αη̃ ⋅ aβ)

= 1

2
(∂βηα + ∂αηβ) − Γσαβησ − bαβη3 = γβα(η).

The linear part with respect to η̃ in the difference (bαβ(η) − bαβ) is called the linearized change
of curvature tensor associated with the displacement field ηia

i, the covariant components of which
are then given by

ραβ(η) = (∂αβη̃ − Γσαβ∂ση̃) ⋅ a3

= ∂αβη3 − Γσαβ∂ση3 − bσαbσβη3

+ bσα(∂βησ − Γτβσητ) + bτβ(∂αητ − Γσατησ)
+ (∂αbτβ + Γτασb

σ
β − Γσαβb

τ
σ)ητ = ρβα(η).

Let us now recall the definition of the time-dependent version of the linearized change of metric
tensor γαβ . Consider the operator

γ̃αβ ∶ L2(0, T ;H1(ω) ×H1(ω) ×L2(ω))→ L2(0, T ;L2(ω)),
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defined by
γ̃αβ(η)(t) ∶= γαβ(η(t)) for all η ∈ L2(0, T ;H1(ω) ×H1(ω) ×L2(ω)),

for almost all (a.a. in what follows) t ∈ (0, T ). This operator is well-defined, linear, and continuous
(cf., [24]).

Let us also recall the definition of the time-dependent version of the linearized change of curvature
tensor ραβ . Consider the operator

ρ̃αβ ∶ L2(0, T ;H1(ω) ×H1(ω) ×H2(ω))→ L2(0, T ;L2(ω)),

defined by
ρ̃αβ(η)(t) ∶= ραβ(η(t)) for all η ∈ L2(0, T ;H1(ω) ×H1(ω) ×H2(ω)),

for a.a. t ∈ (0, T ). This operator is clearly well-defined, linear, and continuous (cf., [24]).

3 A natural model for time-dependent flexural shells

Let ω be a domain in R2 with boundary γ, and let γ0 be a non-empty relatively open subset of γ.
Let I be an interval of the form (0, T ), with T <∞.

For each ε > 0, we define the sets

Ωε ∶= ω × ]−ε, ε[ and Γε
±
∶= ω × {±ε} ,

we let xε = (xεi ) designate a generic point in the set Ωε, and let ∂εi ∶= ∂/∂xεi . Hence we have xεα = yα
and ∂εα = ∂α. Define, also, the set

Γε0 ∶= γ0 × [−ε, ε],
which is thus a subset of the lateral face of the undeformed reference configuration.

In all that follows, we are given an injective immersion θ ∈ C3(ω;E3) and ε > 0, and we consider
a shell with middle surface θ(ω) and with constant thickness 2ε. This means that the reference
configuration of the shell is the set Θ(Ωε), where the mapping Θ ∶ Ωε → E3 is defined by

Θ(xε) ∶= θ(y) + xε3a3(y) at each point xε = (y, xε3) ∈ Ωε.

Note that the injectivity assumption is made here for physical reasons, but that is otherwise not
needed in the proofs. One can then show (cf. Theorem 3.1-1 of [21] or Theorem 4.1-1 of [22]) that,
if the thickness ε > 0 is small enough, such a mapping Θ ∈ C2(Ωε;E3) is a C2-diffeomorphism from
Ωε onto Θ(Ωε), hence is in particular an injective immersion, in the sense that the three vectors

gεi (xε) ∶= ∂εiΘ(xε)

are linearly independent at each point xε ∈ Ωε; these vectors then constitute the covariant basis at
the point Θ(xε), while the three vectors gj,ε(xε), defined by the relations

gj,ε(xε) ⋅ gεi (xε) = δji ,

constitute the contravariant basis at the same point.
It will be implicitly assumed in what follows that the immersion θ ∈ C3(ω;E3) is injective and

that ε > 0 is small enough so that Θ ∶ Ωε → E3 is a C2-diffeomorphism onto its image.
We henceforth assume that the shell is made of a homogeneous and isotropic linearly elastic

material and that its reference configuration Θ(Ωε) is a natural state, i.e., is stress free. As a result
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of these assumptions, the elastic behavior of this elastic material is completely characterized by its
two Lamé constants λ ≥ 0 and µ > 0 (see, e.g., Section 3.8 in [25]). The positive constant ρ designates
the mass density of the shell per unit volume.

We also assume that the shell is subjected to applied body forces whose density per unit volume is
defined by means of its contravariant components f i,ε ∈ L∞(0, T ;L2(Ωε)), i.e., over the vectors gεi
of the covariant bases; to applied surface forces whose density per unit area is defined by means of
its contravariant components hi,ε ∈ L∞(0, T ;L2(Γε

+
∪ Γε

−
)), i.e., over the vectors gεi of the covariant

bases; and to a homogeneous boundary condition of place along the portion Γε0 of its lateral face,
i.e., the admissible displacement fields vanish on Γε0. For a.a. t ∈ (0, T ), we can thus define the
contravariant components pi,ε(t) of the vector pε = (pi,ε) over the vectors ai of the covariant bases
by

pi,ε(t) ∶= {∫
ε

−ε
f i,ε(t)dxε3 + hi,ε+ (t) + hi,ε

−
(t)} ∈ L2(ω) for a.a. t ∈ (0, T ),

where hi,ε
±

(t) ∶= hi,ε(t)(⋅,±ε) ∈ L2(ω), for a.a. t ∈ (0, T ).
Define the space

V K(ω) ∶= {η = (ηi) ∈H1(ω) ×H1(ω) ×H2(ω);ηi = ∂νη3 = 0 on γ0},

where the symbol ∂ν denotes the outer unit normal derivative operator along γ. The space V K(ω)
is the one used for formulating the two-dimensional equations governing Koiter’s model (see the
series of papers [26], [11], [18] and [17]).

Define the norm ∥ ⋅ ∥V K(ω) by

∥η∥V K(ω) ∶= {∑
α

∥ηα∥2
1,ω + ∥η3∥2

2,ω}
1/2

for each η = (ηi) ∈ V K(ω),

Next, we define the fourth-order two-dimensional elasticity tensor of the shell, viewed here as a
two-dimensional linearly elastic body, by means of its contravariant components

aαβστ ∶= 4λµ

λ + 2µ
aαβaστ + 2µ (aασaβτ + aατaβσ) .

Following the terminology proposed in Section 6.1 of [21], a linearly elastic shell is said to be
a flexural shell if the following two additional assumptions are satisfied: first, lengthγ0 > 0 (an
assumption that is satisfied if γ0 is a non-empty relatively open subset of γ, as here), and second,
the following space of admissible linearized inextensional displacements:

V F (ω) ∶= {η = (ηi) ∈H1(ω) ×H1(ω) ×H2(ω);
ηi = ∂νη3 = 0 on γ0 and γαβ(η) = 0 in ω},

contains nonzero functions, i.e.,

V F (ω) ≠ {0}.

Classical examples of flexural shells are, for instance, cylindrical shells, conical shells and plates
(see, respectively, Figures 6.1-1, 6.1-2, and 6.1-3 of [21]).

To begin with, we state a crucial inequality that holds for general surfaces.
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Theorem 3.1. Let ω be a domain in R2 and let θ ∈ C3(ω;E3) be an immersion. Let γ0 be a
non-empty relatively open subset of γ. Define the space

V K(ω) ∶= {η = (ηi) ∈H1(ω) ×H1(ω) ×H2(ω);ηi = ∂νη3 = 0 on γ0}.

Then there exists a constant c = c(ω, γ0,θ) > 0 such that

{∑
α

∥ηα∥2
1,ω + ∥η3∥2

2,ω}
1/2

≤ c{∑
α,β

∥γαβ(η)∥2
0,ω +∑

α,β

∥ραβ(η)∥2
0,ω}

1/2

,

for all η = (ηi) ∈ V K(ω).

The above inequality, which is due to Bernadou & Ciarlet [27] and was later improved by
Bernadou, Ciarlet & Miara [28] (see also Theorem 2.6-4 of [21]), constitutes an example of a Korn
inequality on a general surface; it constitutes a “Korn inequality” in the sense that it provides
a basic estimate of an appropriate norm of a displacement field defined on a surface in terms
of an appropriate norm of a specific “measure of strain” (here, the linearized change of metric
tensor and the linearized change of curvature tensor) corresponding to the displacement field under
consideration.

A natural formulation of a set of time-dependent two-dimensional equations (“two-dimensional”,
in the sense that they are posed over the two-dimensional subset ω) can be derived by slightly
modifying the model proposed by Xiao in the paper [20], where time-dependent Koiter’s shells are
studied.

Let us introduce the problem PεF (ω), which constitutes the point of departure of our analysis.

Problem PεF (ω). Find a vector field ζε = (ζεi ) ∶ (0, T )→ V F (ω) such that

ζε ∈ L∞(0, T ;V F (ω)),
ζ̇
ε ∈ L∞(0, T ;L2(ω)),
ζ̈
ε ∈ L∞(0, T ;V ∗

F (ω)),

that satisfies the following variational equations

2ε3ρ
d2

dt2
∫
ω
ζεi (t)ηi

√
ady + ε

3

3
∫
ω
aαβστρστ(ζε(t))ραβ(η)

√
ady = ∫

ω
pi,ε(t)ηi

√
ady,

for all η = (ηi) ∈ V F (ω), in the sense of distributions in (0, T ), and that satisfies the following
initial conditions ⎧⎪⎪⎨⎪⎪⎩

ζε(0) = ζ0,

ζ̇
ε(0) = ζ1,

(1)

where ζ0 ∈ V F (ω) and ζ1 ∈ L2(ω) are prescribed.
∎

We say that ζε is a weak solution of Problem PεF (ω) if

ζε ∈ L∞(0, T ;V F (ω)),
ζ̇
ε ∈ L∞(0, T ;L2(ω)),
ζ̈
ε ∈ L∞(0, T ;V ∗

F (ω)),
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if ζε satisfies the variational equations of Problem PεF (ω) in the sense of distributions in (0, T ),
and also satisfies the initial conditions (1).

We say that ζε is a strong solution of Problem PεF (ω) if

ζε ∈ C0([0, T ];V F (ω)) ∩ C1([0, T ];L2(ω)),

if ζε satisfies the variational equations of Problem PεF (ω) in the sense of distributions in (0, T ), and
also satisfies the initial conditions (1). Let us recall that the existence and uniqueness of a strong
solution to Problem PεF (ω) has been established in Theorem 4.1 of [24]. The proof was carried out
by generalizing a classical argument, which can be found in [29].

4 Penalty scheme for the considered problem

To fix the ideas, from now onward, we identify L2(ω) and L2(ω) with their respective dual spaces,
and we equip them with the following inner products

(η, ξ) ∈ L2(ω) ×L2(ω)→ ∫
ω
ηξ

√
ady,

(η,ξ) ∈ L2(ω) ×L2(ω)→ ∫
ω
ηiξi

√
ady.

It is worth mentioning that these inner products are also conventionally denoted by the symbols
(⋅, ⋅)L2(ω) and (⋅, ⋅)L2

(ω), respectively.
A possible way to prove the existence and uniqueness of solutions of Problem PεF (ω) without

relying on the abstract functional spaces introduced in Section 4 of [24] (see also [29]), consists in
adapting the penalty scheme described in Chapter II, Section 4 of [30] (see also [31]) to formulate
an alternate problem posed over the function space V K(ω), which does not take into account the
constraint appearing in the definition of the space V F (ω).

Observe first that V K(ω) is dense in L2(ω) and that

V K(ω)↪↪ L2(ω)↪↪ V ∗

K(ω).

Let κ > 0 denote the penalty parameter and let us introduce the corresponding “penalized”
problem PεF,κ(ω).

Problem PεF,κ(ω). Find a vector field ζεκ = (ζεi,κ) ∶ [0, T ]→ V K(ω) such that

ζεκ ∈ C0([0, T ];V K(ω)) ∩ C1([0, T ];L2(ω)),

that satisfies the following variational equations

2ε3ρ
d2

dt2
∫
ω
ζεi,κ(t)ηi

√
ady + ε

3

3
∫
ω
aαβστρστ(ζεκ(t))ραβ(η)

√
ady

+ 1

κ
∫
ω
aαβστγστ(ζεκ(t))γαβ(η)

√
ady = ∫

ω
pi,ε(t)ηi

√
ady,

for all η ∈ V K(ω), in the sense of distributions in (0, T ), and which satisfies the initial
conditions (1).

∎
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We say that ζεκ is a weak solution of Problem PεF,κ(ω) if

ζεκ ∈ L∞(0, T ;V K(ω)),
ζ̇
ε

κ ∈ L∞(0, T ;L2(ω)),
ζ̈
ε

κ ∈ L∞(0, T ;V ∗

K(ω)),
if ζεκ satisfies the variational equations of Problem PεF,κ(ω) in the sense of distributions in (0, T ),
and also satisfies the initial conditions (1).

We say that ζεκ is a strong solution of Problem PεF,κ(ω) if

ζεκ ∈ C0([0, T ];V K(ω)) ∩ C1([0, T ];L2(ω)),
if ζεκ satisfies the variational equations of Problem PεF,κ(ω) in the sense of distributions in (0, T ),
and also satisfies the initial conditions (1).

For each κ > 0, let us define the bilinear form aκ ∶ V K(ω) ×V K(ω)→ R by

aκ(ξ,η) ∶=
ε3

3
∫
ω
aαβστρστ(ξ)ραβ(η)

√
ady + 1

κ
∫
ω
aαβστγστ(ξ)γαβ(η)

√
ady.

The bilinear form aκ(⋅, ⋅) is continuous over the space V K(ω), i.e., there exists a constant Cκ > 0,
which depends on κ, such that

∣aκ(ξ,η)∣ ≤ Cκ∥ξ∥V K(ω)∥η∥V K(ω), for all ξ,η ∈ V K(ω).
For κ > 0 sufficiently small (recall that the small parameter ε > 0 is fixed), the uniform positive-

definiteness of the elasticity tensor of the shell (aαβστ) (cf. Theorem 3.3-2 of [21]) and Korn
inequality on a general surface (Theorem 3.1) give the existence of a constant c > 0 such that

aκ(η,η) =
ε3

3
∫
ω
aαβστρστ(η)ραβ(η)

√
ady + 1

κ
∫
ω
aαβστγστ(η)γαβ(η)

√
ady

≥ ε
3

3
∑
α,β

{∥ραβ(η)∥2
0,ω + ∥γαβ(η)∥2

0,ω}

≥ c{∑
α

∥ηα∥2
1,ω + ∥η3∥2

2,ω} ,

for all η ∈ V K(ω), namely, the bilinear form aκ(⋅, ⋅) is V K(ω)-elliptic.
Let us recall that Problem PεF,κ(ω) admits a unique strong solution (see, e.g., Theorem 5.1 of [24]).

Theorem 4.1. Problem PεF,κ(ω) admits a unique strong solution ζεκ ∈ C0([0, T ];V K(ω)) ∩
C1([0, T ];L2(ω)).

Letting κ→ 0, we obtain that the unique solution ζεκ of Problem PεF,κ(ω) converges to the unique
strong solution ζε of Problem PεF (ω) with the following modes of convergences (cf., Theorem 6.1
of [24]):

ζεκ
∗⇀ ζε, in L∞(0, T ;V K(ω)) as κ→ 0,

ζ̇
ε

κ

∗⇀ ζ̇ε, in L∞(0, T ;L2(ω)) as κ→ 0,

ζ̈
ε

κ

∗⇀ ζ̈ε, in L∞(0, T ;V ∗

F (ω)) as κ→ 0,

ζεκ ⇀ ζε, in C0([0, T ];L2(ω)) as κ→ 0,

ζ̇
ε

κ ⇀ ζ̇
ε
, in C0([0, T ];V ∗

F (ω)) as κ→ 0.

(2)
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The main existence and uniqueness result can be then rigorously stated.

Theorem 4.2. Problem PεF (ω) admits a unique weak solution ζε.

5 Semi-discretisation in space by means of a conforming finite element
method

In this section we rigorously present a suitable finite element method to approximate the solution of
Problem PεF,κ(ω). Following [32] and [33], we recall some basic terminology and definitions. In what
follows the letter h denotes a quantity approaching zero. For brevity, the same notation C (with or
without subscripts) designates a positive constant independent of h, which can take different values
at different places. We denote by (Th)h>0 a family of triangulations of the domain ω, henceforth
assumed to be polygonal, made of triangles and we let T denote any element of such a family. Let
us first recall, following [32] and [33], the rigorous definition of finite element in Rn, where n ≥ 1 is
an integer. A finite element in Rn is a triple (T,P,N ) where:

(i) T is a closed subset of Rn with a nonempty interior and a Lipschitz-continuous boundary,
(ii) P is a finite dimensional space of real-valued functions defined over T ,
(iii) N is is a finite set of linearly independent linear forms Ni, 1 ≤ i ≤ dimP , defined over the

space P .
By definition, it is assumed that the set N is P -unisolvent in the following sense: given any real

scalars αi, 1 ≤ i ≤ dimP , there exists a unique function g ∈ P which satisfies

Ni(g) = αi, 1 ≤ i ≤ dimP.

It is worth mentioning that each well-defined finite element satisfies the following requirement
(cf., e.g., page 79 of [32]):

dimP = card N .

It is henceforth assumed that the degrees of freedom, Ni , lie in the dual space of a function
space larger than P like, for instance, a Sobolev space (see [33]). For brevity we shall conform our
terminology to the one of [32], calling the sole set T a finite element. Define the diameter of any
finite element T as follows:

hT = diam T ∶= max
x,y∈T

∣x − y∣.

Let us also define

ρT ∶= sup{diam B;B is a ball contained in T}.

A triangulation Th is said to be regular (cf., e.g., [32]) if:
(i) There exists a constant σ > 0, independent of h, such that

for all T ∈ Th,
hT
ρT

≤ σ.

(ii) The quantity h ∶= max{hT > 0;T ∈ Th} approaches zero.
There is of course an ambiguity in the meaning of h, which was first regarded as a parameter

associated with the considered family of triangulations, and which next denotes a geometrical entity.
Nevertheless, in this paper, we have conformed to this standard notation (cf., e.g., [32]). In the rest
of this section, the parameter h is assumed to be fixed.
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The spatial variable is discretised by means of finite element method presented in [32]. We
use a triangle of type (1) for approximating the tangential components ζεα,κ of the sought

displacement vector field, and a conforming C1 finite element, more specifically, a Hsieh-Clough-
Tocher triangle (henceforth, HCT triangle), for approximating the transverse component ζε3,κ of the
sought displacement vector field.

In what follows, the notation Pk(K), k ≥ 1, designates the space formed by the restriction to a
triangle K ∈ Th of all the polynomials of degree ≤ k in two variables.

Let us now rigorously introduce the finite element spaces that will be exploited to numerically
approximate the solution to the model under consideration. Define

V h ∶= Vh1 × Vh2 × Vh3,

where

Vhα ∶= {ηh ∈ C0(ω); ηh∣K ∈ P1(K) for each

K ∈ Th and ηh = 0 on γ0},

and

Vh3 ∶= {ηh ∈ C1(ω); ηh∣Ki ∈ P3(Ki) for all 1 ≤ i ≤ 3

and for all K = ⊍Ki ∈ Th,
ηh is C1 − continuous at each interior vertex,

∂νηh is continuous at each mid-point of the interior edge,

ηh = 0 at each vertex that belongs to γ0,

∂νηh = 0 at each mid-point that belongs to γ0}.

Let us introduce the semi-discrete approximate problem corresponding to Problem PεF,κ(ω), which
is denoted in what follows by PκF,h. We drop the dependence on the parameter ε for keeping the
notation easy. It should however be observed that solutions to PκF,h depend also on ε.

Problem PκF,h. Find a vector field ζκh = (ζκi,h) ∶ [0, T ]→ V h that satisfies the following system of
ordinary differential equations with respect to the variable t

2ε3ρ
d2

dt2
∫
ω
ζκi,h(t)ηi,h

√
ady + ε

3

3
∫
ω
aαβστρστ(ζκh(t))ραβ(ηh)

√
ady

+ 1

κ
∫
ω
aαβστγστ(ζκh(t))γαβ(ηh)

√
ady = ∫

ω
pi,ε(t)ηi,h

√
ady,

for all ηh ∈ V h and which satisfies the initial conditions

⎧⎪⎪⎨⎪⎪⎩

ζκh(0) = ζ0,h,

ζ̇
κ

h(0) = ζ1,h,
(3)

where ζ0,h is the projection of the given vector field ζ0 onto the space V h with respect to the standard
inner product of V K(ω), while ζ1,h is the projection of the given vector field ζ1 onto the space V h

with respect to the L2(ω) inner product (cf., e.g., page 13 of [24]). ∎
We then have that the following existence and uniqueness result holds (cf. Theorem 8.4-1 of [34]

or Section 14.5 of [35]).

Theorem 5.1. Problem PκF,h admits a unique solution.
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6 Total discretisation

The time discretization of Problem PκF,h is performed using Newmark’s scheme for hyperbolic
equations (cf., e.g., Chapter 8 of [34]).

Let us consider a division of the interval [0, T ] made of N points, where N is any positive integer.
Define the time step ∆t ∶= T /N , the time instant tn ∶= n∆t, the approximations ζn,κh ≃ ζκh(tn), and

the vectors pn ∶= pε(tn) ∈ L2(ω), where n = 0, . . . ,N .
We can then exhibit Newmark’s scheme corresponding to Problem PκF,h.

Algorithm . For each n = 0, . . . ,N − 2, find ζnh ∈ V h such that

2ε3ρ

(∆t)2
(ζn+2,κ
h − 2ζn+1,κ

h + ζn,κh ,eh)L2
(ω)

+ aκ (βζn+2,κ
h + (1

2
− 2β + γ)ζn+1,κ

h + (1

2
+ β − γ)ζn,κh ,eh)

= (βpn+2 + (1

2
− 2β + γ)pn+1 + (1

2
+ β − γ)pn,eh)

L2
(ω)

,

for all eh ∈ V h.

(4)

where β and γ are given nonnegative real constants (cf., e.g., Section 8.5 of [34]).
The vector field ζ1,κ

h is obtained as the unique solution of the following variational equations

2ε3ρ

(∆t)2
(ζ1,κ
h − ζ0,h −∆tζ1,h,eh)L2

(ω)

+ aκ (βζ1,κ
h + (1

2
− β)ζ0,h,eh)

= (βp1 + (1

2
− β)p0,eh)

L2
(ω)

, for all eh ∈ V h.

(5)

∎

Observe that the constants β and γ cannot be chosen arbitrarily. Indeed, following Section 8.6
of [34], the stability of Newmark’s scheme is achieved when

γ > 1

2
and β ≥ (1/2 + γ)2

4
. (6)

We recall that if

β < (1/2 + γ)2

4
,

then the validity of extra specific stability conditions must be verified (cf., e.g, Sections 8.5 and 8.6
of [34]).

Let us now discuss the convergence of the proposed algorithm in the case where the constants β
and γ are like in (6), the stability condition (8.6-30) in Theorem 8.6-2 of [34] holds, and the solution
to Problem PεF,κ(ω) is more regular with respect to the variable t, i.e.,

ζεκ ∈ C2([0, T ];V K(ω)) ∩ C3([0, T ];L2(ω)).
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As a result, for each n = 0, . . . ,N , we obtain the following estimate:

∥ζn,κh − ζε(tn)∥L2
(ω) ≤ ∥ζn,κh − ζεκ(tn)∥L2

(ω) + ∥ζεκ(tn) − ζε(tn)∥L2
(ω) = O(h) +O(κ).

This shows that, if h and κ are sufficiently small, the each approximate solution ζn,κh output

by (4)- (5), with n = 0, . . . ,N , is a good approximation (in the sense of the L2(ω) norm) of the
solution ζε of Problem PεF (ω) evaluated at the time instant tn, again with n = 0, . . . ,N . We also
observe that, under additional regularity assumptions, the latter estimate can be improved (cf.,
e.g., Theorem 8.7-2 of [34]).

7 Numerical experiments: Cylindrical shells

We conduct our first set of numerical tests in the case where the middle surface of the flexural shell
under consideration is a portion of a cylinder (cf. Fig. 1).

We consider a domain ω shaped as follows

ω ∶= {(y1, y2) ∈ R2; 0 < y1 < π and 0 < y2 < 1},

where γ0, the region of the boundary at which the clamping occurs, takes the following form

γ0 ∶= {(y1, y2) ∈ R2; y1 = π, y2 ∈ [0,1]}.

In curvilinear coordinates, the middle surface is given by the mapping θ defined by

θ(y1, y2) ∶= (r cos y1, r sin y1, hy2), for all (y1, y2) ∈ ω,

where r ∶= 0.20m, h ∶= 0.40m (cf. [36]).

Figure 1. A cylindrical shell.

This means that the displacement field vanishes along one generatrix of the corresponding
cylindrical surface. As initial conditions in Problem PεF (ω), we take ζ0 = ζ1 = 0.

Then the covariant basis of the tangent plane to θ(ω) at the point θ(y1, y2) is given by

a1 = (−r sin y1, r cos y1,0),
a2 = (0,0, h),
a3 = a3 = (cos y1, sin y1,0).
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The covariant components of the first fundamental form of θ(ω) are given by

a11 = r2, a12 = a21 = 0, a22 = h2,

and

a = det(aαβ) = r2h2.

The contravariant components of metric tensors on θ(ω) are given by

a11 = r−2, a12 = a21 = 0, a22 = h−2,

so that we obtain the following

a1 = a11a1 = (−r−1 sin y1, r
−1 cos y1,0), a2 = a22a2 = (0,0, h−1).

Since

∂1a1 = (−r cos y1,−r sin y1,0),
∂2a1 = (0,0,0),

∂1a2 = ∂2a2 = (0,0,0),

then, the covariant and mixed components of the second fundamental form of θ(ω) are given by

b11 = −r,
b12 = b21 = b22 = 0,

b11 = a11b11 = −r−1,

b12 = b21 = b22 = 0.

The Christoffel symbols of θ(ω) are given by

Γ1
11 = Γ1

12 = Γ1
21 = Γ1

22 = 0,

Γ2
11 = Γ2

12 = Γ2
21 = Γ2

22 = 0.

We take the Young’s modulus as in [36], i.e.,

E = 2.1 × 1011Pa, (7)

and the Poisson ratio as (cf. [36])

ν = 0.3. (8)

Since the Lamé constants, the Young’s modulus (7) and the Poisson’s ratio (8) are related as
follows

λ = Eν

(1 + ν)(1 − 2ν) , µ = E

2(1 + ν) , (9)

plugging (7) and (8) into (9) yields

λ = 1.21 × 1011Pa, µ = 8.08 × 1010Pa.
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The mass density per unit volume of the shell is taken as in [36], i.e.,

ρ = 7.85 × 103kg/m3.

For the time being, we set the penalty parameter κ equal to 10−6.
To recapitulate, the parameters used in the experiments presented in this section are the following

r = 0.20m,

h = 0.40m,

ε = 0.002m,

E = 2.1 × 1011Pa,

ν = 0.3,

ρ = 7.85 × 103kg/m3,

κ = 10−6,

γ = 0.6,

β = (1/2 + γ)2

4
,

We implement Newmark’s scheme (4)- (5) by means of the software FreeFem++ (cf. [37]), and
we visualize the results using ParaView (cf. [38]).

In our experiments we use a mesh made of 2,700 elements, as displayed in Fig. 2.

Figure 2. Mesh of the cylindrical surface θ(ω) made of 2,700 elements.

We consider the following applied body force densities and surface force densities

f1,ε(t, y1, y2) = 0,

f2,ε(t, y1, y2) = 0,

f3,ε(t, y1, y2) = 20ty1,

h1,ε(t, y1, y2) = 0,

h2,ε(t, y1, y2) = 0,

h3,ε(t, y1, y2) = 0.
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The choice of null applied surface force densities is solely owing to a rendering difficulty of the
software that has been utilised for visualising the action of the displacement on the given surface.

The deformations of the cylindrical shell under consideration at different time instants are shown
in Figure 4, for a time-step ∆t = 0.01s. The colouring meaning is described by the vertical gauge
on the right hand side of each mesh. The left generatrix of the cylinder corresponds to the clamped
part of the boundary. In the following implementation, we applied a scaling factor of order 1,000 in
ParaView, to visualise a more progressive evolution of the displacement field magnitude.

(a) t = 0.00s (b) t = 0.10s (c) t = 0.20s

(d) t = 0.30s (e) t = 0.40s (f) t = 0.50s

(g) t = 0.60s (h) t = 0.70s (i) t = 0.80s
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(j) t = 0.90s (k) t = 1.00s (l) t = 1.10s

Figure 4. n = 90, m = 30, ∆t = 0.01. The number of points of the mesh that are processed by the software
FreeFem++ is determined by the quantities n and m.

We illustrate the deformation of the middle surface of the shell, by displaying how the
displacement fields at three random points of the middle surface of the shell change as time passes,
and the penalty parameter κ varies.

Table 1. Displacement vectors at three random points of the middle surface of the shell at time instants
t = 0.01s and t = 0.05s, with time-step ∆t = 0.01, and penalty parameters κ = 10−6 and κ = 10−8.

Penalty
parameter

κ = 10−6
Penalty

parameter
κ = 10−8

Time t = 0.01s t = 0.05s Time t = 0.01s t = 0.05s

x -1.30384e-06 -3.04204e-06 x 4.12591e-09 9.63102e-09

y -8.39842e-09 -1.95938e-08 y 8.92493e-09 2.08305e-08

z 4.51353e-52 1.78963e-51 z -1.08597e-54 -6.8079e-54

x -5.26531e-07 -1.22844e-06 x -4.56679e-10 -1.06501e-09

y -3.2931e-07 -7.68309e-07 y 7.66398e-09 1.78874e-08

z 1.37419e-40 4.04022e-40 z 7.2741e-44 4.59639e-43

x 2.91321e-07 6.79693e-07 x -1.82165e-09 -4.25175e-09

y -1.63053e-07 -3.80427e-07 y 7.19426e-10 1.67921e-09

z -4.21245e-28 2.74884e-28 z -8.03791e-32 1.79875e-31

Table 2. TDisplacement vectors at three random points of the middle surface of the shell at time instants
t = 0.60s and t = 0.90s, with time-step ∆t = 0.01, and penalty parameters κ = 10−8 and κ = 10−12.

Penalty
parameter

κ = 10−8
Penalty

parameter
κ = 10−12

Time t = 0.60s t = 0.90s Time t = 0.60s t = 0.90s

x 8.54092e-08 1.26722e-07 x -2.70342e-11 -4.01393e-11

y 1.84684e-07 2.73988e-07 y -1.73792e-13 -2.5811e-13

z -3.65128e-51 -1.19752e-50 z -3.75327e-54 -8.87914e-54

x -9.42638e-09 -1.39806e-08 x -1.0906e-11 -1.61949e-11

y 1.58591e-07 2.35278e-07 y -6.82084e-12 -1.01286e-11

z 2.48864e-40 8.12662e-40 z 4.69783e-43 1.09072e-42

x -3.7694e-08 -5.59281e-08 x 6.03201e-12 8.95624e-12

y 1.48882e-08 2.20905e-08 y -3.37652e-12 -5.0134e-12

z 3.21975e-28 7.90172e-28 z 1.09084e-30 1.49654e-30
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Table 3. Displacement vectors at three random points of the middle surface of the shell at time instants
t = 1.00s and t = 1.20s, with time-step ∆t = 0.01, and penalty parameters κ = 10−6 and κ = 10−12.

Penalty
parameter

κ = 10−6
Penalty

parameter
κ = 10−12

Time t = 1.00s t = 1.20s Time t = 1.00s t = 1.20s

x -4.43328e-05 -5.3025e-05 x -4.44892e-11 -5.31926e-11

y -2.85605e-07 -3.41629e-07 y -2.86123e-13 -3.42136e-13

z 3.45195e-48 5.81452e-48 z -1.23685e-53 -2.09736e-53

x -1.7904e-05 -2.14152e-05 x -1.79514e-11 -2.1465e-11

y -1.11978e-05 -1.33938e-05 y -1.12272e-11 -1.34246e-11

z 1.18632e-36 2.10533e-36 z 1.51811e-42 2.56202e-42

x 9.90621e-06 1.18531e-05 x 9.92774e-12 1.1872e-11

y -5.5445e-06 -6.63435e-06 y -5.55716e-12 -6.6454e-12

z -1.79321e-24 -1.58878e-24 z 1.62687e-30 2.02813e-30

The following Tables 8, 6, and 4 report the evaluations of the norms ∥ζn,κh − ζn,κ
′

h ∥L2
(ω), i.e., the

L2(ω)-residuals of the approximate solutions evaluated at the same time instant tn, constructed
using the same mesh size h, but corresponding to different values of the penalty parameter.

The purpose of Tables 8, 6, and 4 is to numerically confirm that for all time instants tn, the
sequence (ζn,κh )κ>0 is a Cauchy sequence in L2(ω). The data we obtained agree with the conclusion
of Theorems 4.1 and 4.2. In particular, we recall, again, that in the proof of the latter (cf. [24]), the
following convergence was obtained (cf. (2)):

ζεκ → ζε, in C0([0, T ];L2(ω)) as κ→ 0.

Table 4. Let γ = 0.6. The following
table reports the measurements of
the L2

(ω)-residuals of the
approximate solutions at a given
time instant corresponding to
κ = 10−6 and κ′ = 10−12,
respectively.

Time κ = 10−6 and κ′ = 10−12

0.10s 9.105035061047419e-09

0.20s 3.058470544333727e-08

0.30s 6.449066960406247e-08

0.40s 1.1132909131539029e-07

0.50s 1.709097468250036e-07

0.60s 2.4282536616866065e-07

0.70s 3.268063050746276e-07

0.80s 4.235323308277976e-07

0.90s 5.340243748167916e-07

1.00s 6.566224369986849e-07

1.10s 7.938369859511519e-07

1.20s 9.393890067106388e-07

1.30s 1.0992038539893267e-06

1.40s 1.2735584835066714e-06

Table 5. Let γ = 0.8. The following
table reports the measurements of
the L2

(ω)-residuals of the
approximate solutions at a given
time instant, corresponding to
κ = 10−6 and κ′ = 10−12,
respectively.

Time κ = 10−6 and κ′ = 10−12

0.10s 9.13022435949277e-09

0.20s 3.070720172772241e-08

0.30s 6.494699395353533e-08

0.40s 1.118847259753477e-07

0.50s 1.7143718680912363e-07

0.60s 2.4377342081430797e-07

0.70s 3.289644619106159e-07

0.80s 4.2650850161955456e-07

0.90s 5.367803325526587e-07

1.00s 6.599655611907805e-07

1.10s 7.958275201187722e-07

1.20s 9.432864826616698e-07

1.30s 1.1050444278868415e-06

1.40s 1.279027281245845e-06
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Table 6. Let γ = 0.6. The following
table reports the measurements of
the L2

(ω)-residuals of the
approximate solutions at a given
time instant, corresponding to
κ = 10−8 and κ′ = 10−12,
respectively.

Time κ = 10−8 and κ′ = 10−12

0.10s 9.092922670431935e-13

0.20s 3.0551785666233502e-12

0.30s 6.469394300280324e-12

0.40s 1.1151143158076022e-11

0.50s 1.7097534957261284e-11

0.60s 2.4308028522236183e-11

0.70s 3.2755013818368175e-11

0.80s 4.2462762579475536e-11

0.90s 5.351133923228302e-11

1.00s 6.576490708244588e-11

0.10s 7.913665593178143e-11

1.20s 9.40539128322055e-11

1.30s 1.101622383552461e-10

1.40s 1.2757241762698354e-10

Table 7. Let γ = 0.8. The following
table reports the measurements of
the L2

(ω)-residuals of the
approximate solutions at a given
time instant corresponding to
κ = 10−8 and κ′ = 10−12,
respectively.

Time κ = 10−8 and κ′ = 10−12

0.10s 9.094450770700801e-13

0.20s 3.0567125182168985e-12

0.30s 6.472054232239331e-12

0.40s 1.1146741953492408e-11

0.50s 1.707449421183145e-11

0.60s 2.429095630126807e-11

0.70s 3.273958834829574e-11

0.80s 4.248234062530869e-11

0.90s 5.3447325375494504e-11

1.00s 6.571991607584821e-11

1.10s 7.924678756800441e-11

1.20s 9.405025523912434e-11

1.30s 1.1008702063087494e-10

1.40s 1.2746396794594706e-10

Table 8. Let γ = 0.6. The following
table reports the measurements of
the L2

(ω)-residuals of the
approximate solutions at a given
time instant, corresponding to
κ = 10−6 and κ′ = 10−8, respectively.

Time κ = 10−6 and κ′ = 10−8

0.10s 8.923964821442561e-09

0.20s 2.9976395853899877e-08

0.30s 6.320529449051073e-08

0.40s 1.0911183801720238e-07

0.50s 1.6750799347387358e-07

0.60s 2.3799061869290796e-07

0.70s 3.2029549991047165e-07

0.80s 4.150932011593057e-07

0.90s 5.233865140892298e-07

1.00s 6.43545490928386e-07

1.10s 7.780641080033482e-07

1.20s 9.20683782879014e-07

1.30s 1.0773057672601421e-06

1.40s 1.248193238692263e-06

Table 9. Let γ = 0.8. The following
table reports the measurements of
the L2

(ω)-residuals of the
approximate solutions at a given
time instant, corresponding to
κ = 10−6 and κ′ = 10−8, respectively.

Time step κ = 10−6 and κ′ = 10−8

0.10s 8.948887406047657e-09

0.20s 3.0097516796473584e-08

0.30s 6.365679263476454e-08

0.40s 1.0966235518986009e-07

0.50s 1.6803244705417505e-07

0.60s 2.3893088971871273e-07

0.70s 3.224336170677912e-07

0.80s 4.1803768169472007e-07

0.90s 5.261212689644947e-07

1.00s 6.468596630947034e-07

1.10s 7.800238491287989e-07

1.20s 9.245426633263189e-07

1.30s 1.0830954084400757e-06

1.40s 1.2536181134137052e-06

8 Numerical experiments: Conical shells

We conduct our second set of numerical tests in the case where the middle surface of the flexural
shell under consideration is a portion of a cone (cf. Fig. 5).
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e consider a domain ω shaped as follows:

ω ∶= {(y1, y2) ∈ R2; 0 < y1 < π and 0.4 < y2 < 1},

where γ0, the region of the boundary at which the clamping occurs, takes the form

γ0 ∶= {(y1, y2) ∈ R2; y1 = π, y2 ∈ [0.4,1]}.

In curvilinear coordinates (see [22] and also Chapter 8 of [39]), the middle surface is given by the
mapping θ defined by

θ(y1, y2) = (by2 cos y1, by2 sin y1, cy2),
where b ∶= 0.20m, c ∶= 0.40m.

Figure 5. A conical shell.

It means that the vanishing displacement field is contained in one generatrix of the conical shell.
As initial conditions in Problem PεF (ω), we take ζ0 = ζ1 = 0.
Then the covariant basis of the tangent plane to θ(ω) at the point θ(y1, y2) is given by

a1 = (−by2 sin y1, by2 cos y1,0),
a2 = (b cos y1, b sin y1, c),

a3 = a3 = ( c cos y1√
b2 + c2

,
c sin y1√
b2 + c2

,
−b√
b2 + c2

) .

The covariant components of metric tensors on θ(ω) are given by

a11 = a1 ⋅ a1 = b2y2
2, a21 = a12 = 0, a22 = b2 + c2

and
a = det(aαβ) = b2y2

2(b2 + c2).
The contravariant components of the first fundamental form of S are given by

a11 = 1

b2y2
2
, a21 = a12 = 0, a22 = 1

b2 + c2 ,
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so that we obtain the following

a1 = a11a1 = (− sin y1

by2
,
cos y1

by2
,0) ,

a2 = a22a2 = (b cos y1

b2 + c2 ,
b sin y1

b2 + c2 ,
c

b2 + c2 ) .

Since,

∂1a1 = (−by2 cos y1,−by2 sin y1,0),
∂2a1 = ∂1a2 = (−b sin y1, b cos y1,0),
∂2a2 = (0,0,0),

then the covariant and mixed components of the second fundamental form of S are given by

b11 =
−bcy2√
b2 + c2

, b12 = b21 = b22 = 0,

b11 =
−c

by2

√
b2 + c2

, b21 = b12 = b22 = 0.

Then the Christoffel symbols of θ(ω) are given by

Γ2
11 =

−b2y2

b2 + c2 , Γ1
12 = Γ1

21 = y2
−1, Γ1

11 = Γ2
12 = Γ2

21 = Γ1
22 = Γ2

22 = 0.

We take the material parameters including Young’s modulus, Poisson ratio and density like those
in the Section 7. Like before, assume that the applied surface forces do not play any contributive
role, i.e., they are assumed to be constantly null.

We implement Newmark’s scheme (4)- (5) by means of the software FreeFem++ (cf. [37]) and
we visualise the results using ParaView (cf.[38]). In our experiments we use a mesh made of 4,500
elements, as displayed in Fig. 6.

Figure 6. Mesh of the conical surface θ(ω) made of 4,500 elements.
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For conducting the numerical tests, we make use of the following parameters

b = 0.20m,

c = 0.40m,

ε = 0.002m,

E = 2.1 × 1011Pa,

ν = 0.3,

ρ = 7.85 × 103kg/m3,

κ = 10−6,

γ = 0.6,

β = (1/2 + γ)2

4
,

We consider the following applied body force densities and surface force densities

f1,ε(t, y1, y2) = 10t,

f2,ε(t, y1, y2) = exp(t),
f3,ε(t, y1, y2) = sin(t),
h1,ε(t, y1, y2) = 0,

h2,ε(t, y1, y2) = 0,

h3,ε(t, y1, y2) = 0.

The deformations of the shell at different times are shown in Figure 8 for a time-step ∆t = 0.01s.
We observe that the clamping occurs at the left generatrix of the cylinder. In the following
implementation, we applied a scaling factor of order 1.0 in ParaView, to visualise a more progressive
evolution of the displacement field magnitude.

(a) t = 0.00s (b) t = 0.10s (c) t = 0.20s
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(d) t = 0.30s (e) t = 0.40s (f) t = 0.50s

(g) t = 0.60s (h) t = 0.70s (i) t = 0.80s

(j) t = 0.90s (k) t = 1.00s (l) t = 1.10s

Figure 8. n = 150, m = 30, ∆t = 0.01.

9 Final remarks: numerical experiments for the elliptic membrane shells
model

We conduct our third, and last, set of numerical tests in the case where the linearly elastic shell
under consideration is a linearly elastic elliptic membrane shell (cf., Section 7 of [24]).

Following the terminology proposed in Section 4.1 of [21], such a shell is said to be an elliptic
membrane shell if the following two additional assumptions are satisfied: first, γ0 = γ, i.e., the
homogeneous boundary condition of place is imposed over the entire lateral face γ × [−ε, ε] of the
shell, and second, its middle surface θ(ω) is elliptic, according to the definition given in Section 2.
Note that the assumption γ0 = γ implies that the space V K(ω) introduced in Section 3 now reduces
to

V K(ω) =H1
0(ω) ×H1

0(ω) ×H2
0(ω).
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To begin with, we recall a crucial inequality that holds for elliptic surfaces (cf., e.g., Theorem 2.7-3
of [21]).

Theorem 9.1. Let ω be a domain in R2 and let θ ∈ C3(ω;E3) be an immersion such that θ(ω) is
an elliptic surface. Define the space

V M(ω) ∶=H1
0(ω) ×H1

0(ω) ×L2(ω),

and the norm ∥ ⋅ ∥V M (ω) by

∥η∥V M (ω) ∶= {∑
α

∥ηα∥2
1,ω + ∥η3∥2

0,ω}
1/2

for each η = (ηi) ∈ V M(ω).

Then there exists a constant c = c(ω,θ) > 0 such that

∥η∥V M (ω) ≤ c{∑
α,β

∥γαβ(η)∥2
0,ω}

1/2

for all η = (ηi) ∈ V M(ω).

A natural formulation of a set of time-dependent two-dimensional equations (again, “two-
dimensional”, in the sense that they are posed over the two-dimensional subset ω) can be derived
in the same way as in Section 3.

Problem PεM(ω). Find a vector field ζε = (ζεi ) ∶ [0, T ]→ V M(ω) such that

ζε ∈ C0([0, T ];V M(ω)) ∩ C1([0, T ];L2(ω)),

that satisfies the following variational equations

2ερ
d2

dt2
∫
ω
ζεi (t)ηi

√
ady + ε∫

ω
aαβστγστ(ζε(t))γαβ(η)

√
ady = ∫

ω
pi,ε(t)ηi

√
ady,

for all η = (ηi) ∈ V M(ω), in the sense of distributions in (0, T ), and that satisfies the following
initial conditions ⎧⎪⎪⎨⎪⎪⎩

ζε(0) = ζ0,

ζ̇
ε(0) = ζ1,

where ζ0 ∈ V M(ω) and ζ1 ∈ L2(ω) are prescribed. ∎
We say that ζε is a strong solution of Problem PεM(ω) if

ζε ∈ C0([0, T ];V M(ω)) ∩ C1([0, T ];L2(ω)),

if ζε satisfies the variational equations of Problem PεM(ω) in the sense of distributions in (0, T ),
and also satisfies the initial conditions.

Let us introduce the problem PεM(ω), describing the evolution of time-dependent elliptic
membrane shells. We observe that, in this case, there is no need to “penalise” Problem PεM(ω),
since it is posed over a space that satisfies all the assumption of the spectral theorem (cf., e.g.,
Theorem 6.2-1 of [34]). The existence and uniqueness thus follow classically (cf., e.g., Theorem 8.2-
2 of [34] and Theorem 7.2 of [24]), and Newmark’s scheme can be applied directly to Problem
PεM(ω).
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Theorem 9.2. Problem PεM(ω) admits a unique strong solution ζε ∈ C0([0, T ];V M(ω)) ∩
C1([0, T ];L2(ω)).

We consider a linearly elastic elliptic membrane shell whose middle surface is a spherical cap of
the unit sphere. The basis radius of the selected spherical cap, denoted by r, is taken equal to 0.5.
In general, r must be less or equal than the radius of the sphere which is taken for constructing
the spherical cap. The circumference constituting the basis of the spherical cap is parametrised as
follows ⎧⎪⎪⎨⎪⎪⎩

y1 = r cos(t),
y2 = r sin(t),

0 ≤ t ≤ 2π.

The surface is then parametrised as follows

θ(y1, y2) = (ry1, ry2,
√

1 − y2
1 − y2

2 − sin(arccos(r))) ,

for all (y1, y2) such that
√
y2

1 + y2
2 ≤ 1.

Figure 9. A spherical cap.

Let us recall that, for elliptic membrane shells, we have that the clamping occurs along the entire
lateral boundary of the basis of the spherical cap.

As initial conditions in Problem PεM(ω), we take ζ0 = ζ1 = 0.
Since the computation of the geometrical entities introduced in Section 1 involves a lot of

machinery, we just limit ourselves to displaying the numerical results we obtained. For performing
the numerical experiments, we used the following parameters

r = 0.50m,

ε = 0.002m,

E = 2.1 × 1011Pa,

ν = 0.3,

ρ = 7.85 × 103kg/m3,

κ = 10−6,

γ = 0.6,

β = (1/2 + γ)2

4
,
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We implements Newmark’s scheme by means of the software FreeFem++ (cf. e.g., [37]) and
we visualise the results in ParaView (cf., e.g., [38]). We mesh the surface under consideration by
relying on the potentialities of the software FreeFem++: More specifically, we indicate the compiler
to divide the basis of the spherical cap into 100 arcs. The length of these arcs denotes the size of
the mesh (see Fig. 10).

Figure 10. Spherical mesh constructed by relying on the potentialities of the software FreeFem++. The mesh
size is obtained dividing by 100 the length of the circumference constituting the basis of the spherical cap.

We consider the following applied body force densities and surface force densities

f1,ε(t, y1, y2) = 0,

f2,ε(t, y1, y2) = 0,

f3,ε(t, y1, y2) = sin(t),
h1,ε(t, y1, y2) = 0,

h2,ε(t, y1, y2) = 0,

h3,ε(t, y1, y2) = 0.

The deformations of the shell at different times are shown in Figure 12 for a time-step ∆t = 0.01s.
In the following implementation, we applied a scaling factor of order 10,000 in ParaView, to visualise
a more progressive evolution of the displacement field magnitude.

(a) t = 0.00s (b) t = 0.10s (c) t = 0.20s
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(d) t = 0.30s (e) t = 0.40s (f) t = 0.50s

(g) t = 0.60s (h) t = 0.70s (i) t = 0.80s

(j) t = 0.90s (k) t = 1.00s (l) t = 1.10s

Figure 12. n = 150, m = 30, ∆t = 0.01.
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