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Abstract—This paper presents an ellipsoidal set-membership
state estimation technique for discrete-time linear time-invariant
descriptor systems with bounded perturbations and noises. The
approach proceeds off-line by minimizing a parameter with
respect to a linear matrix inequality (LMI). The system state
of the considered descriptor system is guaranteed to belong to
an ellipsoidal set at each time instant. Finally, the proposed
technique is analyzed via an illustrative example.

Index Terms—descriptor systems, set-membership state esti-
mation

I. INTRODUCTION

A mathematical model is in general required for the in-
vestigation of systems dynamics via analysis and simulation.
Usually, the behavior of a dynamical system is described by
differential equations. However, many physical systems are
modeled using differential equations coupled with algebraic
equations to take into account the conservation laws (mass,
volume or energy conservation laws). Overall, the system can
be modeled using a combination of differential and algebraic
equations, i.e. by differential-algebraic equations (DAE). In
control engineering, these systems are known as descriptor
systems or singular systems [1]. The formulation of descriptor
systems retains the physical meaning of the modeled system,
e.g. mechanical systems taking into account constraints related
to contact phenomena [2]. It is therefore useful in electrical
networks [3], power [4], chemical [5], biological [6] and
economic [2] systems, aircraft modeling [7] etc. In the last few
decades, the development of reliable studies for the stability
[8], controllability [9], [10] and observability [11], [12] of
descriptor systems have been the center of attention for more
and more researchers. The need of these studies arises from
the fact that descriptor systems offer a more general overview
of the system description than the standard state-space system.
Indeed, when the descriptor matrix is the identity matrix, the
descriptor representation is equivalent to the standard state-
space representation [13]. In order to make descriptor systems
accessible to expert or non-specialist users, a descriptor system
toolbox for Matlab has been introduced in [14] providing new
tools to manipulate generalized state-space systems, both for
the case of continuous- and discrete-time systems. In addition,
this toolbox proposes numerous extensions for systems with

singular descriptor matrix and provides robust tools for fault
detection and isolation of descriptor systems.

In control theory, knowing the system state is necessary to
solve different control problems, nevertheless the state vari-
ables can not always be determined by direct observation [15].
This issue is mainly tackled by state observers that provide
an estimate of the state of a given real system, from input
and output measurements, taking into consideration possible
perturbations and measurement noises [16]. Among the work
done in literature, state observers are designed for linear [13],
[17] and non-linear descriptor systems [18], [19], [20], [21],
[22]. Due to its simplicity and efficiency, the Kalman filter [15]
is a powerful tool widely used in stochastic state estimation
for classical and descriptor systems [23], [24], [25] via its
different versions. The stochastic approaches, including the
classical Kalman filter, assume known distribution of the state
perturbation and measurement noises.

Alternatively, a growing part of literature has examined
(mainly for standard state-space systems) deterministic state
estimation techniques that considers more realistic assump-
tions of unknown but bounded perturbations and measurement
noises [26], [27]. These techniques can be classified into
two main categories: interval state observers [28], where the
state is approximated by its interval hull, and set-membership
state estimation techniques [29], where the state belongs to
a deterministic set with a known geometrical structure. In
set-membership state estimation approaches, the evolution
of the system state at each time instant is described by a
set consistent with the model of the system, the bounded
perturbations and measurement noises simultaneously. Among
these sets are, for example, polytopes [30], zonotopes [31],
[32], [33] and ellipsoids [34], [35]. Generally, the ellipsoidal
set is privileged in literature for its simplicity [36]. Lately,
the Kalman filter and a guaranteed ellipsoidal estimation
technique were compared in [37], showing a better accuracy
for the considered set-membership technique but with higher
computational complexity compared to the classical Kalman
filter. Various papers discussed merging both stochastic and
deterministic approaches in one technique. For instance, a
zonotopic Kalman observer has been presented in [38], [39],
[40], introducing a new notion of filter covariation for standard



state-space systems. The same problem is treated in a different
manner in [41], where the estimated state via the Kalman filter
is constrained by a given zonotope at each time instant. Indeed,
the set-membership state estimation techniques were firstly
introduced to standard linear time invariant systems, before
inspiring similar approaches for descriptor systems. In this
context, a zonotopic set-membership state estimation approach
has been proposed in [42], [43] for discrete-time descriptor
systems subject to uncertainties and unknown inputs.

Despite the fact that set-membership state estimation tech-
niques offer a good estimation accuracy, while maintaining
a realistic aspect of the problem, there is a lack of set-
membership state estimation approaches for descriptor sys-
tems. Therefore, in the present paper, set-membership state
estimation techniques are formulated as feasible optimiza-
tion problems solved to compute guaranteed bounds for the
components of the state vector of descriptor systems subject
to bounded perturbations and measurement noises. In this
context, the main contribution of this paper is to extend the
off-line guaranteed ellipsoidal set-membership state estimation
approach from [44] for linear time invariant discrete-time
descriptor systems. In this context, a constant observer gain
matrix for the considered descriptor system is computed off-
line via a linear matrix inequality (LMI) optimization problem.
The radius of the ellipsoidal set estimating the state at each
time instant is computed using a very simple equation to
avoid high computational complexity. Indeed, using the off-
line technique the system state of any descriptor system is
guaranteed to belong to an ellipsoid at each time instant.

The remainder of the paper proceeds as follows. Section II
gives a brief formulation of the estimation problem. Section
III presents the off-line ellipsoidal set-membership state esti-
mation technique for linear discrete-time descriptor systems.
To illustrate the results, an example is provided in Section IV.
Conclusions and perspectives are drawn in the last section.

Notation. Here, [a,b] defined by {x ∈ IR : a≤ x≤ b}
denotes an interval. Thus, the box B = [−1,1] refers
to a unitary interval. Throughout the paper, Bn = {x ∈
([a1,b1], . . . , [an,bn])

> : ai = −1,bi = 1, i = 1, . . . ,n} ⊂ IRn is
a unitary box composed by n unitary intervals. The notation
In is used for the identity matrix of dimensions n× n, while
A> stands for the transpose of the matrix A. A symmet-
ric matrix M = M> ∈ IRn×n is called a positive definite
matrix, designated by M � 0, if z>Mz > 0, for all vector
z ∈ IRn\{0n}. Additionally, the notation E (P, x̄,ρ) = {x ∈
IRnx : (x− x̄)>P(x− x̄) ≤ ρ} is used to refer to the ellipsoid
with x̄ as center, ρ its so called radius and P = P> � 0 its
shape matrix. The symbol ∗ is used to denote symmetrical
terms of a linear matrix inequality.

II. PROBLEM STATEMENT

Let us consider the following discrete-time linear time in-
variant descriptor system described by the following equations{

Exk+1 = Axk +Buk +Dwk,
yk = Cxk +Fwk,

(1)

where xk ∈ IRnx is the state vector, uk ∈ IRnu the input vector
and yk ∈ IRny the output vector at time instant k. Here, the
perturbations are unknown but bounded by unitary boxes
such that wk ∈ Bnw . Moreover, appropriate dimensions are
considered for the system matrices E ∈ IRnx×nx , A ∈ IRnx×nx ,
B ∈ IRnx×nu , C ∈ IRny×nx , D ∈ IRnx×nw and F ∈ IRny×nw .
Besides, the initial state belongs to the ellipsoid

E (P0, x̄0,ρ0) = {x ∈ IRnx : (x− x̄0)
>P0(x− x̄0)≤ ρ0}, (2)

with P0 = P>0 � 0 being the shape matrix, x̄0 the center and
ρ0 the so called radius. In a descriptor system, E is a possible
singular matrix with

rank(E)≤ nx. (3)

Notice that if E = Inx , then (1) leads to the standard state-space
representation. In order to guarantee the observability of the
descriptor system (1), it is assumed that

rank
[

E
C

]
= nx, (4)

and
rank

[
λE−A

C

]
= nx,∀λ ∈ C. (5)

Expressions (4) and (5), guaranteeing infinite observability
and finite observability, respectively (see [1], [2]), are needed
to ensure the existence of Luenberger type observers for a
descriptor system ([1], [45]). Additionally, since (4) holds,
there exists two matrices T ∈ IRnx×nx and N ∈ IRnx×ny such
that

T E +NC = Inx . (6)

We now show that this equality allows us to compute xk+1
from xk, uk, wk and wk+1. Multiplying by T the first equation
of system (1) and by N the second equation (evaluated at
k+1), we obtain{

T Exk+1 = TAxk +T Buk +T Dwk,
Nyk+1 = NCxk+1 +NFwk+1.

Equivalently,{
T Exk+1 = TAxk +T Buk +T Dwk,
NCxk+1 = Nyk+1−NFwk+1.

Adding both equalities, and taking into account the equality
TA+NC = Inx , we obtain

xk+1 = TAxk +T Buk +Nyk+1 +T Dwk−NFwk+1. (7)

If the system (1) is used for control purposes, its controlability
has to be assumed

rank
[
E B

]
= nx, (8)

and
rank

[
λE−A B

]
= nx,∀λ ∈ C. (9)

Conditions (4)-(8) guarantees a weakly minimal descriptor re-
alization. In the general case, a minimal descriptor realization
can be considered by ensuring AN (E)⊆R(E), where N (E)



and R(E) are the kernel and the range of the descriptor matrix
E, respectively ([2]).

In this framework, this paper investigates set-membership
state estimation approaches based on ellipsoids for the descrip-
tor system (1). Given an ellipsoidal estimation E (P, x̄k,ρk) for
the state xk from (1) at time instant k, the aim is to find an
ellipsoidal estimation for the state xk+1 at time instant k+1 of
the form E (P, x̄k+1,ρk+1). This problem is further addressed in
Section III where we detail an off-line guaranteed ellipsoidal
state estimation technique for descriptor systems.

III. OFF-LINE GUARANTEED ELLIPSOIDAL STATE
ESTIMATION FOR DESCRIPTOR SYSTEMS

In a typical set-membership state estimation problem, the
state estimation is done by intersecting the prediction state
set and the output strip based on the dynamical model (1).
Here, ellipsoids are used for implementing the set-membership
approach. Hence, the exact intersection between an ellipsoid
and a strip is difficult to compute. This reason motivates the
use (during the correction phase) of an outer approximation
of the intersection between an ellipsoid and a strip by an
ellipsoid.

This section details the guaranteed ellipsoidal state esti-
mation for the discrete-time descriptor system (1). Knowing
that the perturbations and noises are bounded, the proposed
approach minimizes the radius of the ellipsoidal estimation in
such way that, at each time instant k, the following inequality
is satisfied

ρk+1 ≤ βρk +σ , (10)

where β ∈ (0,1) is a real bounded number and σ is a strictly
positive scalar (σ > 0). We notice that (10) is equivalent to

ρk+1−ρk ≤ (β −1)ρk +σ . (11)

Since β −1 < 0, we infer that

ρk+1 ≤ ρk,

for every

ρk ≥
σ

1−β
.

With a pair of matrices T and N satisfying (6), a Luenberger
observer of the following form [46] is designed for the
descriptor system (1)

x̄k+1 = TAx̄k +T Buk +L(yk−Cx̄k)+Nyk+1, (12)

where L is the observer gain to be determined such that the
error between the real state and the nominal estimated state x̄k
asymptotically converges to zero. Guaranteeing the ellipsoidal
state estimation for the state vector xk at each time instant k is
shown in the following theorem, allowing to extend the results
from [44] to the considered descriptor system (1).

Theorem 1. Given a scalar β ∈ (0,1), matrices T and N
satisfying (6), and an initial state x0, suppose that there exist

a matrix P ∈ IRnx×nx , with P = P> � 0, a matrix Y ∈ IRnx×ny ,
and a scalar σ > 0 such that the linear matrix inequality βP ∗ ∗

0 σ ∗
PTA−YC (PT D−Y F)wa−PNFwb P

� 0, (13)

holds for all wa,wb ∈ Bnw . Then, the system state xk of the
descriptor system (1) satisfies

xk ∈ E (P, x̄k,ρk), ∀k ≥ 0,

where, defining L = P−1Y , x̄0 = x0, ρ0 = x̄>0 Px̄0, the sequence
x̄k+1 and ρk+1, k = 0,1 . . . , can be obtained from the recursive
expressions

x̄k+1 = TAx̄k +T Buk +Nyk+1 +L(yk−Cx̄k), (14)
ρk+1 = βρk +σ .

Proof. Since T and N satisfy (6), we have in virtue of equation
(7) that the state vector xk+1 of the descriptor system (1)
satisfies

xk+1 = TAxk +T Buk +Nyk+1 +T Dwk−NFwk+1, (15)

The estimation error zk is defined as the difference between
the real value of the state xk and the nominal estimated state
x̄k at time instant k, i.e. zk = xk− x̄k. Using (14) and (15), the
error dynamic equation is given by

zk+1 = TAzk +T Dwk−NFwk+1−L(yk−Cx̄k)

= (TA−LC)zk +(T D−LF)wk−NFwk+1

= ALzk +ηk, (16)

with

AL = TA−LC,

ηk = (T D−LF)wk−NFwk+1.

We notice that, for every k,

ηk ∈ ϒ = { (T D−LF)wa−NFwb : wa ∈ Bnw ,wb ∈ Bnw }.

To validate Theorem 1, we prove that if z>k Pzk ≤ ρk, then

z>k+1Pzk+1 = (ALzk +ηk)
>P(ALzk +ηk)≤ βρk +σ , ∀ηk ∈ ϒ.

(17)
Denoting

F0(zk,ηk) = βρk +σ − (ALzk +ηk)
>P(ALzk +ηk),

F1(zk) = ρk− z>k Pzk,

and using the S-Procedure [47], we have that (17) holds if
there exists µ > 0 such that

F0(zk,ηk)−µF1(zk)≥ 0, ∀zk ∈ IRnx , ∀ηk ∈ ϒ.

Choosing µ = β , and using the definitions of F0(zk,ηk) and
F1(zk), we obtain that (17) holds if for every zk ∈ IRnx and
every ηk ∈ ϒ:

σ − (ALzk +ηk)
>P(ALzk +ηk)+β z>k Pzk ≥ 0.



This can be rewritten in matrix form as[
zk
1

]> [ −A>L PAL +βP −A>L Pηk
−η>k PAL σ −η>k Pηk

][
zk
1

]
≥ 0,

for every zk ∈ IRn and every ηk ∈ ϒ. This is satisfied if[
−A>L PAL +βP −A>L Pηk
−η>k PAL σ −η>k Pηk

]
� 0, ∀ηk ∈ ϒ.

Equivalently,[
βP 0
0 σ

]
−
[

A>L P
η>k P

]
P−1 [ PAL Pηk

]
� 0,∀ηk ∈ ϒ.

The Schur complement [47] applied to the previous equation
leads to the following equivalent LMI βP 0 A>L P

0 σ η>k P
PAL Pηk P

� 0, ∀ηk ∈ ϒ.

From the equality AL = TA−LC, and the definition of ϒ we
obtain that (17) is satisfied if for every wa ∈ Bnw and every
wb ∈ Bnw βP ∗ ∗

0 σ ∗
PTA−YC (PT D−Y F)wa−PNFwb P

� 0,

with

Y = PL. (18)

This proves the claim of the theorem.

The reader will notice that, in practice, LMI (13) is verified
for every wa ∈ Bnw and every wb ∈ Bnw , if it holds for the set
of vertices of the considered unitary boxes.

The center of the ellipsoid is calculated using (12) which is
a special form of the Luenberger observer for linear discrete-
time descriptor systems, with the gain L = P−1Y found after
solving the linear matrix inequality (13). Considering the worst
case where ρk+1 = βρk+σ at each iteration is a sufficient con-
dition to guarantee the convergence of the sequence. Reducing
the size of the associated ellipsoid can be done by minimizing
σ subject to the LMI (13). Solving this LMI off-line to get
a constant matrix gain significantly reduces the computation
time of the technique. When we consider that the scalar β is a
real variable, the expression (13) is a case of a bilinear matrix
inequality (BMI). However, since β ∈ (0,1) is a bounded
variable, the BMI is rewritten as a linear matrix inequality
(LMI) problem by fixing the value of the scalar β successively
using either the bisection algorithm or an available BMI solver:
penbmi solver, for example [48].

In the next section, an illustrative example is considered
to show the performance of the proposed ellipsoidal state
estimation approaches.

IV. ILLUSTRATIVE EXAMPLE

Consider the discrete-time linear time-invariant descriptor
system (1) {

Exk+1 = Axk +Buk +Dwk,
yk = Cxk +Fwk,

with the following system matrices:

E =

1 0 0
0 1 0
0 0 0

, A =

0.5 0 0
0.8 0.95 0
−1 0.5 1

, B =

1 0
0 1
0 0

,

C =

[
1 0 1
1 −1 0

]
, D =

0.1 0 0 0 0
0 1.5 0 0 0
0 0 0.6 0 0

, and

F =

[
0 0 0 0.5 0
0 0 0 0 1.5

]
.

The input signal is u =
[
0.5sin(t)+1 −2cos(t)

]>, for t ∈[
0 5π

]
, with 50 sampling steps. The perturbation vector wk

is randomly generated with ‖wk‖∞ ≤ 1. The matrices E, A, B
and C satisfy the rank conditions (4), (5), (8), (9). A possible
solution satisfying condition (6) is

T =

 0.6667 0.3333 0
0.3333 0.6667 0
−0.6667 −0.3333 0

 and N =

0 0.3333
0 −0.3333
1 −0.3333

.

The initial state belongs to the ellipsoid1 E (P0, x̄0,ρ0), with
P0 = 10−9 · I3, x̄0 =

[
0 0 0

]>, and ρ0 = 10−9 as an arbitrary
initialization.

The off-line technique is tested and analyzed on the consid-
ered descriptor system. Simulation results are obtained with an
Intel Core i7−8750G 3.10 GHz, using the LMI solver mincx
of Matlab Robust Control Toolbox.
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Fig. 1. Bounds on x1

Simulation results plotted in Figs. 1-3 illustrate the bounds
(black lines) of each element x1, x2 and x3 of the state vector
after 50 iterations of the off-line ellipsoidal set-membership
state estimation technique, when solving LMI (13).

Illustrations show that the real state of the descriptor system
represented by the red stars is guaranteed to belong to the

1An arbitrary large ellipsoid is considered for the initialization.
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Fig. 2. Bounds on x2
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Fig. 3. Bounds on x3

bounds computed by the proposed technique at each time
instant k. The accuracy of this technique can be described
by the width of the ellipsoidal bounds shown in the figures,
that are in this case relatively large because the goal of this
technique is to find a state estimation set with very reduced
computation time. Indeed, in this simulation test, the elapsed
CPU time for the off-line ellipsoidal technique is 0.61 second
(see Table I).

TABLE I
CHARACTERISTICS OF THE OFF-LINE TECHNIQUE

Characteristics Off-line method
Simulation time 0.61 second
Volume of the estimation at steady state 44.69

The low computation time of the proposed technique is the
fruit of the off-line computation of the feasible set of the state
estimate.

Figure 4 illustrates the volume of the ellipsoid estimating the

state of the descriptor system at each time instant. The initial
volume (due to the initialization of x0 in an ample ellipsoid)
is relatively large before it decreases to reach a constant value
at steady state which is 44.69 as the characteristics Table I
shows. This confirms the fact that the volume of the ellipsoidal
estimation is minimized at each time instant. Additionally,
the proposed estimation technique offers a good accuracy
considering the short time it takes to run.
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Fig. 4. Volume of the estimation set at steady time

V. CONCLUSION

In this paper, we have proposed an extension of an off-line
approach of guaranteed ellipsoidal set-membership state esti-
mation technique for discrete-time linear descriptor systems
subject to bounded perturbations and noises. The approach
minimizes the ellipsoidal set (thus the ellipsoid’s volume)
estimating the state of the descriptor system once off-line.
The technique offers good accuracy and a short computational
time.

A promising perspective is to propose a new online el-
lipsoidal state estimation technique for descriptor systems
to improve the accuracy of the proposed off-line method,
while keeping the efficiency represented by the computational
time. Another perspective is to extend these techniques for
descriptor systems with interval uncertainties and apply them
in the fault detection context.
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