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I. INTRODUCTION

A mathematical model is in general required for the investigation of systems dynamics via analysis and simulation. Usually, the behavior of a dynamical system is described by differential equations. However, many physical systems are modeled using differential equations coupled with algebraic equations to take into account the conservation laws (mass, volume or energy conservation laws). Overall, the system can be modeled using a combination of differential and algebraic equations, i.e. by differential-algebraic equations (DAE). In control engineering, these systems are known as descriptor systems or singular systems [START_REF] Dai | Singular control systems[END_REF]. The formulation of descriptor systems retains the physical meaning of the modeled system, e.g. mechanical systems taking into account constraints related to contact phenomena [START_REF] Varga | Solving Fault Diagnosis Problems -Linear Synthesis Techniques[END_REF]. It is therefore useful in electrical networks [START_REF] Reis | Circuit synthesis of passive descriptor systems-a modified nodal approach[END_REF], power [START_REF] Hill | Stability theory for differential/algebraic systems with application to power systems[END_REF], chemical [START_REF] Biegler | Control and optimization with differential-algebraic constraints[END_REF], biological [START_REF] Liu | Passivity and optimal control of descriptor biological complex systems[END_REF] and economic [START_REF] Varga | Solving Fault Diagnosis Problems -Linear Synthesis Techniques[END_REF] systems, aircraft modeling [START_REF] Stevens | Aircraft control and simulation: dynamics, controls design, and autonomous systems[END_REF] etc. In the last few decades, the development of reliable studies for the stability [START_REF] Han | A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays[END_REF], controllability [START_REF] Bender | The linear-quadratic optimal regulator for descriptor systems[END_REF], [START_REF] Varga | On stabilization methods of descriptor systems[END_REF] and observability [START_REF] Campbell | Duality, observability, and controllability for linear time-varying descriptor systems[END_REF], [START_REF] Yip | Solvability, controllability, and observability of continuous descriptor systems[END_REF] of descriptor systems have been the center of attention for more and more researchers. The need of these studies arises from the fact that descriptor systems offer a more general overview of the system description than the standard state-space system. Indeed, when the descriptor matrix is the identity matrix, the descriptor representation is equivalent to the standard statespace representation [START_REF] Wang | Observer design for discrete-time descriptor systems: an LMI approach[END_REF]. In order to make descriptor systems accessible to expert or non-specialist users, a descriptor system toolbox for Matlab has been introduced in [START_REF] Varga | A descriptor systems toolbox for MATLAB[END_REF] providing new tools to manipulate generalized state-space systems, both for the case of continuous-and discrete-time systems. In addition, this toolbox proposes numerous extensions for systems with singular descriptor matrix and provides robust tools for fault detection and isolation of descriptor systems.

In control theory, knowing the system state is necessary to solve different control problems, nevertheless the state variables can not always be determined by direct observation [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF]. This issue is mainly tackled by state observers that provide an estimate of the state of a given real system, from input and output measurements, taking into consideration possible perturbations and measurement noises [START_REF] Luenberger | Observers for multivariable systems[END_REF]. Among the work done in literature, state observers are designed for linear [START_REF] Wang | Observer design for discrete-time descriptor systems: an LMI approach[END_REF], [START_REF] Darouach | Design of observers for descriptor systems[END_REF] and non-linear descriptor systems [START_REF] Koenig | Unknown input observers for switched nonlinear discrete time descriptor systems[END_REF], [START_REF] Shields | Observer design and detection for nonlinear descriptor systems[END_REF], [START_REF] Wu | State estimation and sliding-mode control of markovian jump singular systems[END_REF], [START_REF] Marx | Design of observers for Takagi-Sugeno descriptor systems with unknown inputs and application to fault diagnosis[END_REF], [START_REF] Estrada-Manzo | Unknown input estimation for nonlinear descriptor systems via LMIs and Takagi-Sugeno models[END_REF]. Due to its simplicity and efficiency, the Kalman filter [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF] is a powerful tool widely used in stochastic state estimation for classical and descriptor systems [START_REF] Ishihara | Robust Kalman filter for descriptor systems[END_REF], [START_REF] Nikoukhah | Kalman filtering for general discrete-time linear systems[END_REF], [START_REF] Nikoukhah | Kalman filtering and Riccati equations for descriptor systems[END_REF] via its different versions. The stochastic approaches, including the classical Kalman filter, assume known distribution of the state perturbation and measurement noises.

Alternatively, a growing part of literature has examined (mainly for standard state-space systems) deterministic state estimation techniques that considers more realistic assumptions of unknown but bounded perturbations and measurement noises [START_REF] Bertsekas | Recursive state estimation for a setmembership description of uncertainty[END_REF], [START_REF] Fogel | On the value of information in system identification-bounded noise case[END_REF]. These techniques can be classified into two main categories: interval state observers [START_REF] Pourasghar | Comparison of setmembership and interval observer approaches for state estimation of uncertain systems[END_REF], where the state is approximated by its interval hull, and set-membership state estimation techniques [START_REF] Schweppe | Recursive state estimation: Unknown but bounded errors and system inputs[END_REF], where the state belongs to a deterministic set with a known geometrical structure. In set-membership state estimation approaches, the evolution of the system state at each time instant is described by a set consistent with the model of the system, the bounded perturbations and measurement noises simultaneously. Among these sets are, for example, polytopes [START_REF] Walter | Exact recursive polyhedral description of the feasible parameter set for bounded-error models[END_REF], zonotopes [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF], [START_REF] Le | Zonotopic guaranteed state estimation for uncertain systems[END_REF], [START_REF] Le | Robust tube-based constrained predictive control via zonotopic set-membership estimation[END_REF] and ellipsoids [START_REF] Kurzhanski | Ellipsoidal calculus for estimation and control[END_REF], [START_REF] Ben Chabane | Improved set-membership estimation approach based on zonotopes and ellipsoids[END_REF]. Generally, the ellipsoidal set is privileged in literature for its simplicity [START_REF] Puig | Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies[END_REF]. Lately, the Kalman filter and a guaranteed ellipsoidal estimation technique were compared in [START_REF] Merhy | Comparison between two state estimation techniques for linear systems[END_REF], showing a better accuracy for the considered set-membership technique but with higher computational complexity compared to the classical Kalman filter. Various papers discussed merging both stochastic and deterministic approaches in one technique. For instance, a zonotopic Kalman observer has been presented in [START_REF] Combastel | Merging Kalman filtering and zonotopic state bounding for robust fault detection under noisy environment[END_REF], [START_REF] Pourasghar | FD-ZKF: A zonotopic Kalman filter optimizing fault detection rather than state estimation[END_REF], [START_REF] Combastel | Zonotopes and Kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence[END_REF], introducing a new notion of filter covariation for standard state-space systems. The same problem is treated in a different manner in [START_REF] Merhy | Zonotopic constrained Kalman filter based on a dual formulation[END_REF], where the estimated state via the Kalman filter is constrained by a given zonotope at each time instant. Indeed, the set-membership state estimation techniques were firstly introduced to standard linear time invariant systems, before inspiring similar approaches for descriptor systems. In this context, a zonotopic set-membership state estimation approach has been proposed in [START_REF] Wang | Set-membership approach and Kalman observer based on zonotopes for discrete-time descriptor systems[END_REF], [START_REF] Wang | Guaranteed state estimation and fault detection based on zonotopes for differentialalgebraic-equation systems[END_REF] for discrete-time descriptor systems subject to uncertainties and unknown inputs.

Despite the fact that set-membership state estimation techniques offer a good estimation accuracy, while maintaining a realistic aspect of the problem, there is a lack of setmembership state estimation approaches for descriptor systems. Therefore, in the present paper, set-membership state estimation techniques are formulated as feasible optimization problems solved to compute guaranteed bounds for the components of the state vector of descriptor systems subject to bounded perturbations and measurement noises. In this context, the main contribution of this paper is to extend the off-line guaranteed ellipsoidal set-membership state estimation approach from [START_REF] Ben Chabane | A new approach for guaranteed ellipsoidal state estimation[END_REF] for linear time invariant discrete-time descriptor systems. In this context, a constant observer gain matrix for the considered descriptor system is computed offline via a linear matrix inequality (LMI) optimization problem. The radius of the ellipsoidal set estimating the state at each time instant is computed using a very simple equation to avoid high computational complexity. Indeed, using the offline technique the system state of any descriptor system is guaranteed to belong to an ellipsoid at each time instant.

The remainder of the paper proceeds as follows. Section II gives a brief formulation of the estimation problem. Section III presents the off-line ellipsoidal set-membership state estimation technique for linear discrete-time descriptor systems. To illustrate the results, an example is provided in Section IV. Conclusions and perspectives are drawn in the last section.

Notation. Here, [a, b] defined by {x ∈ IR : a ≤ x ≤ b} denotes an interval. Thus, the box B = [-1, 1] refers to a unitary interval. Throughout the paper,

B n = {x ∈ ([a 1 , b 1 ], . . . , [a n , b n ]) : a i = -1, b i = 1, i = 1, . . . , n} ⊂ IR n
is a unitary box composed by n unitary intervals. The notation I n is used for the identity matrix of dimensions n × n, while A stands for the transpose of the matrix A. A symmetric matrix M = M ∈ IR n×n is called a positive definite matrix, designated by M 0, if z Mz > 0, for all vector z ∈ IR n \{0 n }. Additionally, the notation E (P, x, ρ) = {x ∈ IR n x : (xx) P(xx) ≤ ρ} is used to refer to the ellipsoid with x as center, ρ its so called radius and P = P 0 its shape matrix. The symbol * is used to denote symmetrical terms of a linear matrix inequality.

II. PROBLEM STATEMENT

Let us consider the following discrete-time linear time invariant descriptor system described by the following equations

Ex k+1 = Ax k + Bu k + Dw k , y k = Cx k + Fw k , (1) 
where x k ∈ IR n x is the state vector, u k ∈ IR n u the input vector and y k ∈ IR n y the output vector at time instant k. Here, the perturbations are unknown but bounded by unitary boxes such that w k ∈ B n w . Moreover, appropriate dimensions are considered for the system matrices E ∈ IR n x ×n x , A ∈ IR n x ×n x , B ∈ IR n x ×n u , C ∈ IR n y ×n x , D ∈ IR n x ×n w and F ∈ IR n y ×n w . Besides, the initial state belongs to the ellipsoid

E (P 0 , x0 , ρ 0 ) = {x ∈ IR n x : (x -x0 ) P 0 (x -x0 ) ≤ ρ 0 }, (2) 
with P 0 = P 0 0 being the shape matrix, x0 the center and ρ 0 the so called radius. In a descriptor system, E is a possible singular matrix with rank(E) ≤ n x .

(3)

Notice that if E = I n x , then (1) leads to the standard state-space representation. In order to guarantee the observability of the descriptor system (1), it is assumed that

rank E C = n x , (4) 
and

rank λ E -A C = n x , ∀λ ∈ C. (5) 
Expressions ( 4) and ( 5), guaranteeing infinite observability and finite observability, respectively (see [START_REF] Dai | Singular control systems[END_REF], [START_REF] Varga | Solving Fault Diagnosis Problems -Linear Synthesis Techniques[END_REF]), are needed to ensure the existence of Luenberger type observers for a descriptor system ([1], [START_REF] Hou | Design of a class of Luenberger observers for descriptor systems[END_REF]). Additionally, since (4) holds, there exists two matrices T ∈ IR n x ×n x and N ∈ IR n x ×n y such that

T E + NC = I n x . (6) 
We now show that this equality allows us to compute x k+1 from x k , u k , w k and w k+1 . Multiplying by T the first equation of system [START_REF] Dai | Singular control systems[END_REF] and by N the second equation (evaluated at k + 1), we obtain

T Ex k+1 = TAx k + T Bu k + T Dw k , Ny k+1 = NCx k+1 + NFw k+1 .
Equivalently,

T Ex k+1 = TAx k + T Bu k + T Dw k , NCx k+1 = Ny k+1 -NFw k+1 .
Adding both equalities, and taking into account the equality TA + NC = I n x , we obtain

x k+1 = TAx k + T Bu k + Ny k+1 + T Dw k -NFw k+1 . ( 7 
)
If the system (1) is used for control purposes, its controlability has to be assumed

rank E B = n x , (8) 
and

rank λ E -A B = n x , ∀λ ∈ C. (9) 
Conditions ( 4)-( 8) guarantees a weakly minimal descriptor realization. In the general case, a minimal descriptor realization can be considered by ensuring AN (E) ⊆ R(E), where N (E)

and R(E) are the kernel and the range of the descriptor matrix E, respectively ( [START_REF] Varga | Solving Fault Diagnosis Problems -Linear Synthesis Techniques[END_REF]).

In this framework, this paper investigates set-membership state estimation approaches based on ellipsoids for the descriptor system [START_REF] Dai | Singular control systems[END_REF]. Given an ellipsoidal estimation E (P, xk , ρ k ) for the state x k from (1) at time instant k, the aim is to find an ellipsoidal estimation for the state x k+1 at time instant k + 1 of the form E (P, xk+1 , ρ k+1 ). This problem is further addressed in Section III where we detail an off-line guaranteed ellipsoidal state estimation technique for descriptor systems.

III. OFF-LINE GUARANTEED ELLIPSOIDAL STATE ESTIMATION FOR DESCRIPTOR SYSTEMS

In a typical set-membership state estimation problem, the state estimation is done by intersecting the prediction state set and the output strip based on the dynamical model [START_REF] Dai | Singular control systems[END_REF]. Here, ellipsoids are used for implementing the set-membership approach. Hence, the exact intersection between an ellipsoid and a strip is difficult to compute. This reason motivates the use (during the correction phase) of an outer approximation of the intersection between an ellipsoid and a strip by an ellipsoid.

This section details the guaranteed ellipsoidal state estimation for the discrete-time descriptor system [START_REF] Dai | Singular control systems[END_REF]. Knowing that the perturbations and noises are bounded, the proposed approach minimizes the radius of the ellipsoidal estimation in such way that, at each time instant k, the following inequality is satisfied

ρ k+1 ≤ β ρ k + σ , (10) 
where β ∈ (0, 1) is a real bounded number and σ is a strictly positive scalar (σ > 0). We notice that (10) is equivalent to

ρ k+1 -ρ k ≤ (β -1)ρ k + σ . (11) 
Since β -1 < 0, we infer that

ρ k+1 ≤ ρ k ,
for every

ρ k ≥ σ 1 -β .
With a pair of matrices T and N satisfying (6), a Luenberger observer of the following form [START_REF] Wang | Observer design for discrete-time descriptor systems: An LMI approach[END_REF] is designed for the descriptor system (1)

xk+1 = TA xk + T Bu k + L(y k -C xk ) + Ny k+1 , ( 12 
)
where L is the observer gain to be determined such that the error between the real state and the nominal estimated state xk asymptotically converges to zero. Guaranteeing the ellipsoidal state estimation for the state vector x k at each time instant k is shown in the following theorem, allowing to extend the results from [START_REF] Ben Chabane | A new approach for guaranteed ellipsoidal state estimation[END_REF] to the considered descriptor system (1).

Theorem 1. Given a scalar β ∈ (0, 1), matrices T and N satisfying [START_REF] Liu | Passivity and optimal control of descriptor biological complex systems[END_REF], and an initial state x 0 , suppose that there exist a matrix P ∈ IR n x ×n x , with P = P 0, a matrix Y ∈ IR n x ×n y , and a scalar σ > 0 such that the linear matrix inequality [START_REF] Wang | Observer design for discrete-time descriptor systems: an LMI approach[END_REF] holds for all w a , w b ∈ B n w . Then, the system state x k of the descriptor system (1) satisfies

  β P * * 0 σ * PTA -YC (PT D -Y F)w a -PNFw b P   0,
x k ∈ E (P, xk , ρ k ), ∀k ≥ 0,
where, defining L = P -1 Y , x0 = x 0 , ρ 0 = x 0 P x0 , the sequence xk+1 and ρ k+1 , k = 0, 1 . . . , can be obtained from the recursive expressions

xk+1 = TA xk + T Bu k + Ny k+1 + L(y k -C xk ), ( 14 
)
ρ k+1 = β ρ k + σ .
Proof. Since T and N satisfy (6), we have in virtue of equation ( 7) that the state vector x k+1 of the descriptor system (1) satisfies

x k+1 = TAx k + T Bu k + Ny k+1 + T Dw k -NFw k+1 , (15) 
The estimation error z k is defined as the difference between the real value of the state x k and the nominal estimated state xk at time instant k, i.e. z k = x kxk . Using ( 14) and ( 15), the error dynamic equation is given by

z k+1 = TAz k + T Dw k -NFw k+1 -L(y k -C xk ) = (TA -LC)z k + (T D -LF)w k -NFw k+1 = A L z k + η k , (16) 
with

A L = TA -LC, η k = (T D -LF)w k -NFw k+1 .
We notice that, for every k,

η k ∈ ϒ = { (T D -LF)w a -NFw b : w a ∈ B n w , w b ∈ B n w }.
To validate Theorem 1, we prove that if z k Pz k ≤ ρ k , then

z k+1 Pz k+1 = (A L z k + η k ) P(A L z k + η k ) ≤ β ρ k + σ , ∀η k ∈ ϒ. ( 17 
) Denoting F 0 (z k , η k ) = β ρ k + σ -(A L z k + η k ) P(A L z k + η k ), F 1 (z k ) = ρ k -z k Pz k ,
and using the S-Procedure [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], we have that (17) holds if there exists µ > 0 such that

F 0 (z k , η k ) -µF 1 (z k ) ≥ 0, ∀z k ∈ IR n x , ∀η k ∈ ϒ.
Choosing µ = β , and using the definitions of F 0 (z k , η k ) and F 1 (z k ), we obtain that (17) holds if for every z k ∈ IR n x and every η k ∈ ϒ:

σ -(A L z k + η k ) P(A L z k + η k ) + β z k Pz k ≥ 0.
This can be rewritten in matrix form as

z k 1 -A L PA L + β P -A L Pη k -η k PA L σ -η k Pη k z k 1 ≥ 0,
for every z k ∈ IR n and every η k ∈ ϒ. This is satisfied if

-A L PA L + β P -A L Pη k -η k PA L σ -η k Pη k 0, ∀η k ∈ ϒ.
Equivalently,

β P 0 0 σ - A L P η k P P -1 PA L Pη k 0, ∀η k ∈ ϒ.
The Schur complement [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] applied to the previous equation leads to the following equivalent LMI

  β P 0 A L P 0 σ η k P PA L Pη k P   0, ∀η k ∈ ϒ.
From the equality A L = TA -LC, and the definition of ϒ we obtain that ( 17) is satisfied if for every w a ∈ B n w and every

w b ∈ B n w   β P * * 0 σ * PTA -YC (PT D -Y F)w a -PNFw b P   0, with Y = PL. (18) 
This proves the claim of the theorem.

The reader will notice that, in practice, LMI ( 13) is verified for every w a ∈ B n w and every w b ∈ B n w , if it holds for the set of vertices of the considered unitary boxes.

The center of the ellipsoid is calculated using [START_REF] Yip | Solvability, controllability, and observability of continuous descriptor systems[END_REF] which is a special form of the Luenberger observer for linear discretetime descriptor systems, with the gain L = P -1 Y found after solving the linear matrix inequality [START_REF] Wang | Observer design for discrete-time descriptor systems: an LMI approach[END_REF]. Considering the worst case where ρ k+1 = β ρ k +σ at each iteration is a sufficient condition to guarantee the convergence of the sequence. Reducing the size of the associated ellipsoid can be done by minimizing σ subject to the LMI [START_REF] Wang | Observer design for discrete-time descriptor systems: an LMI approach[END_REF]. Solving this LMI off-line to get a constant matrix gain significantly reduces the computation time of the technique. When we consider that the scalar β is a real variable, the expression ( 13) is a case of a bilinear matrix inequality (BMI). However, since β ∈ (0, 1) is a bounded variable, the BMI is rewritten as a linear matrix inequality (LMI) problem by fixing the value of the scalar β successively using either the bisection algorithm or an available BMI solver: penbmi solver, for example [START_REF] Kočvara | PENNON A Code for convex nonlinear and semidefinite programming[END_REF].

In the next section, an illustrative example is considered to show the performance of the proposed ellipsoidal state estimation approaches.

IV. ILLUSTRATIVE EXAMPLE Consider the discrete-time linear time-invariant descriptor system (1)

Ex k+1 = Ax k + Bu k + Dw k , y k = Cx k + Fw k ,
with the following system matrices:

E =   1 0 0 0 1 0 0 0 0   , A =   0.5 0 0 0.8 0.95 0 -1 0.5 1   , B =   1 0 0 1 0 0   , C = 1 0 1 1 -1 0 , D =  
0.1 0 0 0 0 0 1.5 0 0 0 0 0 0.6 0 0   , and F = 0 0 0 0.5 0 0 0 0 0 1.5 .

The input signal is u = 0.5 sin(t) + 1 -2 cos(t) , for t ∈ 0 5π , with 50 sampling steps. The perturbation vector w k is randomly generated with w k ∞ ≤ 1. The matrices E, A, B and C satisfy the rank conditions (4), ( 5), ( 8), [START_REF] Bender | The linear-quadratic optimal regulator for descriptor systems[END_REF]. A possible solution satisfying condition ( 6 The initial state belongs to the ellipsoid 1 E (P 0 , x0 , ρ 0 ), with P 0 = 10 -9 • I 3 , x0 = 0 0 0 , and ρ 0 = 10 -9 as an arbitrary initialization.

The off-line technique is tested and analyzed on the considered descriptor system. Simulation results are obtained with an Intel Core i7 -8750G 3.10 GHz, using the LMI solver mincx of Matlab Robust Control Toolbox. Simulation results plotted in Figs. 1-3 illustrate the bounds (black lines) of each element x 1 , x 2 and x 3 of the state vector after 50 iterations of the off-line ellipsoidal set-membership state estimation technique, when solving LMI [START_REF] Wang | Observer design for discrete-time descriptor systems: an LMI approach[END_REF].

Illustrations show that the real state of the descriptor system represented by the red stars is guaranteed to belong to the 1 An arbitrary large ellipsoid is considered for the initialization. The low computation time of the proposed technique is the fruit of the off-line computation of the feasible set of the state estimate.

Figure 4 illustrates the volume of the ellipsoid estimating the state of the descriptor system at each time instant. The initial volume (due to the initialization of x 0 in an ample ellipsoid) is relatively large before it decreases to reach a constant value at steady state which is 44.69 as the characteristics Table I shows. This confirms the fact that the volume of the ellipsoidal estimation is minimized at each time instant. Additionally, the proposed estimation technique offers a good accuracy considering the short time it takes to run. In this paper, we have proposed an extension of an off-line approach of guaranteed ellipsoidal set-membership state estimation technique for discrete-time linear descriptor systems subject to bounded perturbations and noises. The approach minimizes the ellipsoidal set (thus the ellipsoid's volume) estimating the state of the descriptor system once off-line. The technique offers good accuracy and a short computational time.

A promising perspective is to propose a new online ellipsoidal state estimation technique for descriptor systems to improve the accuracy of the proposed off-line method, while keeping the efficiency represented by the computational time. Another perspective is to extend these techniques for descriptor systems with interval uncertainties and apply them in the fault detection context.
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  The accuracy of this technique can be described by the width of the ellipsoidal bounds shown in the figures, that are in this case relatively large because the goal of this technique is to find a state estimation set with very reduced computation time. Indeed, in this simulation test, the elapsed CPU time for the off-line ellipsoidal technique is 0.61 second (see TableI).
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