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Abstract

This paper proposes a novel strategy for completing a flight plan with a quadrotor UAV, in the context of aerial video making.
The flight plan includes different types of waypoints to join, while respecting flight corridors and bounds on the derivatives of
the position of the quadrotor. To this aim, non-uniform clamped B-splines are used to parameterize the trajectory. The latter is
computed in order to minimize its overall duration, while ensuring the validation of the waypoints, satisfying the flight corridors
and respecting the maximum magnitude on its derivatives. A receding waypoint horizon is used in order to split the optimization
problem into smaller ones, which reduces the computation load when generating pieces of trajectories. The effectiveness of the
proposed trajectory generation technique is demonstrated by simulation and through an outdoor flight experiment on a quadrotor.
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1. Introduction

Multirotors have become a new standard for video making, as
it simplifies and significantly reduces the costs of aerial footage.
This has raised the interest in achieving autonomous perfor-
mance of cinematographic aerial shots. It usually requires the
generation of smooth trajectories, satisfying high level speci-
fications, based on the vocabulary and the specifications of a
cinematographer rather than of a drone pilot. Efforts in this re-
gard have been provided through different works Galvane et al.
(2013), Joubert et al. (2016), Roberts and Hanrahan (2016),
Fleureau et al. (2016), Engelhardt et al. (2016), Gebhardt et al.
(2016), Joubert (2017), Nägeli et al. (2017a), Nägeli et al.
(2017b), Galvane et al. (2017) and Galvane et al. (2018), and
have yield impressive results. Such autonomous sequences are
often specified in the form of waypoints to join successively,
sometime along with speed references, flight corridors or cam-
era behaviors. The performance of these flight plans then re-
quires the generation of feasible trajectories, meeting the re-
quirements of cinematography in terms of shape, speed profile
and smoothness.

The use of smooth piecewise polynomials to this aim is quite
popular. In Mellinger and Kumar (2011) trajectories are gener-
ated through the minimization of the root mean square of one
or several derivatives of the position, for a given duration of the
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overall trajectory. In this method, flight corridors were satis-
fied on a finite number of points (gridding). It was successfully
developped and applied on real systems Richter et al. (2013),
Richter et al. (2016), where a bi-level optimization is used to
optimize the trajectory duration and to ensure its feasibility.
In Joubert et al. (2015), a similar method is used for design-
ing a smooth path which evaluation is given by a discretized
timing law, in order to deal with the dynamics of the quadrotor
and its payload, and applied to cinematography. A continuous
alternative to this timing law is proposed in Roberts and Han-
rahan (2016), in which it was used to make a cinematographic
trajectory feasible without altering its shape. It was also used
in Joubert et al. (2016), as part of a method proposed to per-
form scripted aerial shots with quadrotors. In Rousseau et al.
(2018), instead of a timing law, a bi-level optimization is used
to optimize both the shape of the curve and its speed profile
simultaneously.

Motion primitives and their feasibility for quadrotors were
also studied in Schöllig et al. (2011), Mueller et al. (2015).
In Gebhardt et al. (2016), such primitives are obtained through
discretization of the trajectory and by solving an optimization
problem on the control inputs and the state of the quadrotor at
each step, and was especially suited for joining waypoints at
specified times. In Van Loock et al. (2013), minimum-time tra-
jectories for quadrotors are generated through convex optimiza-
tion, but their shape is not suitable for cinematography (e.g. the
quickest trajectory joining two points at the same altitude is not
a straight line, as it would be expected for cinematography).

Model Predictive Control (MPC) can also be considered to
tackle both the trajectory generation and tracking at the same
time. It has been successively applied to quadrotors in Bouf-
fard (2012), Abdolhosseini et al. (2013), Bangura and Mahony
(2014) and Kamel et al. (2015) and could be a candidate to
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perform both the feedback control and the smooth trajectory
generation simultaneously. Its use was suggested in Engelhardt
et al. (2016) for quadrotor cameras. In Nägeli et al. (2017a),
Nägeli et al. (2017b), an MPC strategy is used to generate tra-
jectories directly through the optimization of cinematographic
criteria, such as framing or occlusion, with obstacle avoidance
solutions. This requires the online resolution of a constrained
optimization problem.

An alternative approach consists into generating first a cine-
matographic path by interpolation of two camera poses, see for
instance Fleureau et al. (2016). Then, a steering method (such
as Galvane et al. (2013)) is used to complete the path. A sim-
ilar strategy is applied in Galvane et al. (2017) with a smooth
path generated using a method similar to Mellinger and Kumar
(2011).

Due to their useful properties to constrain the trajectory
and its derivatives inside convex regions, the use of B-spline
curves to parameterize the trajectory is also quite spread
now Van Loock et al. (2015), Stoican et al. (2017), Van Parys
and Pipeleers (2017), Mercy et al. (2017), Nguyen et al. (2018).
These curves are piecewise polynomials parameterized by a set
of control points and a vector of knots, defining when the curve
switches between two polynomial representations. Most of the
time though, a particular kind of B-spline is used, i.e. uniform
B-spline (also called cardinal B-spline), for which the knots are
equally spaced. Their advantage is that they can simplify some
of the calculation and allow some of them to be preformed off-
line. This can significantly speed up the B-spline generation
process which is useful for embedded systems. However, one
drawback is that it is difficult to generate time-optimal trajec-
tories using uniform B-splines, and other metrics are usually
optimized rather than the duration for their generation (e.g. the
length or the root mean square of a derivative). This can make
the generation of trajectories with both the shape and speed pro-
file suited for cinematography complex. In Stoican et al. (2017)
it is suggested to optimize the number of control points, which
can help improving the results for cinematography, but requires
the resolution of a Mixed Integer Problem (MIP).

This paper proposes a new method to generate minimum-
time B-spline trajectories for aerial cinematography. This strat-
egy has the advantage to directly generate a smooth and feasible
trajectory with adequate speed profiles, without computing an
additional timing law. To achieve this, the work Rousseau et al.
(2018) is improved by two means. Firstly, the present work
avoids the use of a bi-level optimization and only minimizes
the duration of the trajectory. This allows generating trajecto-
ries with better speed profiles and improves the numerical sta-
bility of the algorithm. Secondly, the framework of B-splines
is used in order to guarantee the validation of the constraints
over the entire trajectory, rather than on a finite set of points
(gridding). The results obtained with this trajectory generation
strategy, in the context of video making with quadrotors, are
then confronted to a simulation. Then, the use of non-uniform
clamped B-splines rather than uniform clamped B-splines is
discussed. Finally, in order to assess the quality of the ob-
tained trajectories in terms of feasibility and cinematographic
quality, a minimum-time trajectory (computed off-line) is per-

formed by a quadrotor during an outdoor flight experiment. As
main contributions, this paper proposes a new strategy for gen-
erating minimum-time B-spline trajectories and then its valida-
tion both in simulation and outdoor flight.

The paper is organized as follows. First, a specification of
the problem tackled by this work is given in Section 2. Then, in
order to facilitate the comprehension of this paper and to intro-
duce useful notations and preliminary results, a section about
B-splines and clamped B-splines is presented in Section 3. A
compact way to represent a piecewise clamped B-spline trajec-
tory is introduced in Section 4 and further used in Section 5 to
formulate the trajectory generation as an optimization problem.
The viability of this strategy is illustrated by an application to
quadrotor cinematography, with a simulation and an outdoor
flight in Section 6.

Notations. In the sequel, a, a, A respectively denote a scalar,
a vector and a matrix. The transpose of a matrix A is denoted
by A>. The set of strictly positive natural numbers is repre-
sented by N∗. The symbol 1n×m ∈ Rn×m defines a n-by-m matrix
whose elements are 1, while 0n×m ∈ Rn×m defines a n-by-m ma-
trix filled with zeros. In ∈ Rn×n designates the n-by-n identity
matrix. For i ∈ N, j ∈ N, with i < j, it is denoted by [[i, j]] the
set of consecutive positive integers {i, i + 1, . . . , j − 1, j}. Here,
Conv(S) designates the convex hull of a set S. For a vector
x ∈ Rn×1, the following notation is used ‖x‖2 =

√
x>x. For

two vectors u, v ∈ R3×1, the notation u× ∈ R3×3 is the skew
symmetric matrix such that u× v is equal to the vector product
u × v.

2. Problem statement

The high level reference considered in this paper is further
detailed. It consists in a 3D flight plan, typically used to specify
a path for a quadrotor. Though this work was developed in the
context of aerial video making, this high level reference remains
generic enough to be adapted to other applications.

2.1. Flight plan description

The considered flight plan consists in a serie of N + 1 con-
secutive waypoints {w0,w1, . . . ,wN}, i.e. a starting position w0
followed by N waypoints to join. Different types of waypoints
are further considered

• Stop waypoint. The drone stops on the waypoint. The
first and last waypoints of the flight plan are usually stop
waypoints, but they can also be used during the mission
for taking pictures, for standing at a given point in order to
record a panorama etc.

• Lock waypoint. The drone passes on the waypoint. This
kind of waypoint can be used to impose precisely the po-
sition of the drone when passing through a window or a
door for instance, or for specific camera shots.

• Sphere waypoint. The drone passes in a neighborhood of a
specified radius rwi around the waypoint. This allows the
drone to perform wider turns around the waypoint while
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remaining in the flight corridors, resulting in more natural
trajectories.

• Constrained waypoint. This is a special type of waypoint
that can not be chosen by the user. It imposes the deriva-
tives of the trajectory on the waypoint. It is used when the
receding waypoint horizon strategy described in Rousseau
et al. (2018) is adopted.

For each pair of waypoints, a reference speed vi, with i ∈
[[1,N]], and a flight corridor radius rcorri are also specified.

For such a flight plan, this work seeks to generate a feasi-
ble trajectory, satisfying the validation criteria of each waypoint
and respecting the speed references between each pair of way-
points. In order to be suitable for video making, the trajec-
tory should also be smooth and natural. This criterion will be
achieved by limiting the norm of the acceleration and the jerk
of the quadrotor (see Section 6).

2.2. Flight plan pre-processing

A pre-processing of the flight plan is performed in order to
check that the velocity references are pertinent and to split the
problem into simpler ones.

The reference speed on each piece of trajectory is clamped so
that the vertical component of the velocity lies within admissi-
ble bounds and so that the lateral speed does not exceed a given
limitation.

Furthermore, the flight plan is split at each stop waypoint
other than the first (i.e. w0) and the last (i.e. wN) waypoints.
Whenever two waypoints are superimposed, they are both re-
placed by stop waypoints and the flight plan is split. This re-
sults in several flight plans, containing only lock and sphere
waypoints, except for the first and the last ones. Trajectories
are separately generated for each flight plan and are then laid
end to end.

In this work, an algorithm for generating trajectories statisfy-
ing the specifications given above is proposed, based on the use
of B-spline curves. These latter are detailed in the next section.

3. Overview on B-splines

Basis-spline curves (commonly called B-spline curves) are
often considered as an extension of the Bézier curves. The
latter can be seen as one way to parameterize polynomials as
convex combinations of control points, weighted by Bernstein
polynomials. In a similar fashion, B-spline curves can be seen
as one way to parameterize piecewise polynomials as convex
combinations of control points, weighted by B-spline functions.
This is useful since piecewise polynomials allow to parameter-
ize rich trajectories while keeping the polynomial degree low.

B-spline curves are piecewise polynomial curves described
by

• A set of (n + 1) control points, which have a similar role
as the polynomial coefficients;

• A polynomial degree k;

• A set of (m + 1) knots defining where the curve switches
between two polynomial representations.

An example of such a B-spline curve of degree 2 is presented
on Figure 1, with the control points {pi}i∈[[0,4]] in black and each
polynomial piece of the curve in a different color.

Figure 1: Example of B-spline curve

In order to facilitate the comprehension of this paper, this
section gives a quick overview about B-spline curves and intro-
duces notations and preliminary results that will be used in the
other sections. It starts with notions on B-spline functions, used
as weights on the control points. For more details, De Boor
(1978) and Piegl and Tiller (2012) provide in-depth presenta-
tions of these objects.

3.1. B-spline functions

Given a polynomial degree k > 0 and a vector of (m + 1) >
k + 1 increasing knots, represented by the matrix

τ = (τ0 τ1 . . . τm) ∈ R1×(m+1) (1)

a set of (n + 1) = m − k B-spline functions
{
Bi,k

}
i∈[[0,n]] can be

defined, using the following recurrence (De Boor (1978), Piegl
and Tiller (2012))

∀i ∈ [[0, n]] ∀t ∈ R

If k = 0

Bi,k(t) =

 1 if τi 6 t < τi+1

0 otherwise
(2a)

Else

Bi,k(t) = ωi,k(t) Bi,k−1(t) +
(
1 − ωi+1,k(t)

)
Bi+1,k−1(t) (2b)

with

ωi,k(t) =


t − τi

τi+k − τi
if τi+k > τi

0 otherwise
(3)

Each B-spline function is then a piecewise polynomial that
switches of polynomial representation at each knot. Notice that,
following the definition, the support of Bi,k is [τi, τi+k+1). Out-
side of this domain, Bi,k is null.
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These B-spline functions define a partition of unity over the
interval [τk, τn+1) (De Boor (1978), Piegl and Tiller (2012))

∀i ∈ [[0, n]] Bi,k > 0

∀t ∈ [τk, τn+1)
n∑

i=0

Bi,k(t) = 1
(4)

Figure 2 illustrates an example of B-spline functions of degree
2 with 8 knots. The thick line represents the sum of the ba-
sis functions and the light blue rectangle represents the domain
over which the B-spline functions form a partition of unity.

Figure 2: Example of B-spline functions

The B-spline functions can be used to build curves, as ex-
plained in the following paragraph.

3.2. B-spline curves
By introducing a set of (n + 1) control points {pi}i∈[[0,n]] rep-

resented by

∀i ∈ [[0, n]] pi =
(
px

i py
i pz

i

)>
∈ R3×1

P =
(
p0 p1 . . . pn

)
∈ R3×(n+1)

(5)

a B-spline curve B can be defined as follows

B =

n∑
i=0

Bi,k pi (6)

Remark 1. Though 3 dimensional control points are used in
the following, as they will be used to parameterize the position
of a quadrotor, their definition is not restricted to R3 in the gen-
eral case.

The evaluation of the curve at t ∈ R is then the combination
of the control points weighted by the evaluation of the B-spline
functions at t. Since these functions are piecewise polynomials,
the B-spline curve B is a piecewise polynomial curve, switch-
ing between two polynomial representations at each knot.

Due to (4), in the interval [τk, τn+1), a B-spline curve verifies
the so-called convex hull property (De Boor (1978), Piegl and
Tiller (2012)):

Property 1. For i ∈ [[k, n]] and t ∈ [τi, τi+1)

B(t) ∈ Conv
( {

p j | j ∈ [[i − k, i]]
} )

(7)

As a consequence, the curve lies within the convex hull of the
entire set of control points in [τk, τn+1). Though this is a weaker
property than (7), it will be used in Section 5 to constrain B-
spline curves into convex regions. It can then be convenient to
separate the knot vector into:

• k external knots at the beginning of the knot vector and k
external knots at the end;

• A starting knot τk and an ending knot τn+1, which define
the domain over which the convex hull property holds;

• n − k internal knots, which are the instants for which the
B-spline curve switches between two polynomial repre-
sentations, inside the interval [τk, τn+1)

(τ0 . . . τk−1︸      ︷︷      ︸
k knots

τk
↓

starting
knot

τk+1 . . . τn︸       ︷︷       ︸
n−k

internal knots

τn+1
↓

ending
knot

τn+2 . . . τm︸       ︷︷       ︸
k knots

) (8)

Figure 3 illustrates an example of a B-spline curve of degree
2, with the same knot vector as Figure 2. The thick black dots
are the control points and the light blue polygon is the inte-
rior of their convex hull. The green line is the B-spline curve,
evaluated inside (continuous) and outside (dashed) the domain
[τk, τn+1).

Figure 3: Convex hull of a B-spline of degree 2

The following paragraph details a specific case of B-spline
curves, that is later used to parameterize trajectories.

3.3. Clamped B-spline
In this work the trajectory is parameterized as a clamped B-

spline, i.e. a B-spline whose first k knots are equal to the start-
ing knot τk, and last k knots are equal to the ending knot τn+1.
The knot vector thus has the following form

( τk . . . τk︸    ︷︷    ︸
k+1 equal knots

τk+1 . . . τn︸        ︷︷        ︸
n−k knots

τn+1 . . . τn+1︸           ︷︷           ︸
k+1 equal knots

) (9)

The impact of this specificity is illustrated on Figure 4, with
an example of B-spline functions of degree 2, with a knot vector
of the same form as (9) and containing 2 internal knots (τ3 and
τ4).

Figure 4: Example of clamped B-spline functions
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The consequence of the particular form of the knot vector (9)
is that, when evaluated over [τk, τn+1), the B-spline curve starts
on the first control point and ends on the last one

B(τk) = p0, lim
t→τ−n+1

B(t) = pn (10)

Remark 2. To be more accurate, the curve tends to pn when ap-
proaching τn+1 by the left. The value of each B-spline function
at τn+1 being zero for a clamped B-spline curve, given (2), the
evaluation of the curve then jumps to the origin when reaching
τn+1.

An example of a clamped B-spline curve of degree 2 is given
on Figure 5. The knot vector is the same as the one on Figure 4
and the control points are the same as on Figure 3.

Figure 5: Example of clamped B-spline curve

Furthermore, given the form of this knot vector, it can be
written differently. In this paper, a vector of knot steps is thus
introduced, represented by the vector

∆τ =
(
∆τ0 ∆τ1 . . . ∆τn−k

)
∈ R1×(n−k+1) (11)

Given an initial knot τ0, the knot vector can be reconstructed
from the knot step vector as follows

∀ j ∈ [[0,m]] τ j =



τ0 if j 6 k

τ0 +

j−k−1∑
i=0

∆τi if k < j 6 n

τ0 +

n−k∑
i=0

∆τi otherwise

(12)

In this work, the knot steps are imposed to be strictly posi-
tive, which imply that a B-spline curve of degree k is at least
Ck−1 continuous on [τk, τn+1). However these knot steps can
differ from each other, unlike for uniform clamped B-splines,
for which they are all equal.

3.4. Clamped B-spline derivatives

The derivatives of a clamped B-spline curve are also clamped
B-spline curves, which share the same knot steps as the original
curve. The control points of the B-spline curve derivatives are
given by linear combination of the original ones. For the l-th
derivative, l ∈ [[0, k]], each of these control points p(l)

i can be
obtained as follows (De Boor (1978), Piegl and Tiller (2012))

p(l)
i =


pi if l = 0

k − l + 1
τi+k+1 − τi+l

(
p(l−1)

i+1 − p(l−1)
i

)
otherwise

(13)

In this work, this expression is reformulated using the knot
step vector introduced above. Define, for l ∈ [[1, k]] the matrix
Dl(∆τ) ∈ R(n+2−l)×(n+1−l) such that ∀(i, j) ∈ [[0, n + 1 − l]] ×
[[0, n − l]]

Dli, j (∆τ) =


− ρ j if i = j

ρ j if i = j + 1
0 otherwise

(14)

with
ρ j =

k − l + 1
min (n−k, j)∑

q=max (0, j+l−k)
∆τq

(15)

given by injecting (12) into (13). Then (13) can be re-written

P(l) =

P if l = 0

P(l−1) Dl(∆τ) otherwise
(16)

Defining, for l ∈ [[1, k]]

D0→l(∆τ) =

l∏
q=1

Dq(∆τ) (17)

where Dq is given by (14), it comes that

P(l) = P D0→l(∆τ) (18)

This derivative has a polynomial degree k− l and thus possesses
n + 1 − l control points. Since it is also a clamped B-spline, it
verifies (10)

lim
t→τ+

k

dl

dtlB
(t) = p(l)

0 , lim
x→τ−n+1

dl

dtlB
(t) = p(l)

n−l (19)

In order to improve the paper readability, the rigorous limits
symbols are dropped in the following. It should nonetheless be
remembered that, due to their piecewise nature, some deriva-
tives of a B-spline curve are only one-sided, or not defined at
all.

3.5. Clamped B-spline integrals

In the same manner, for l ∈ N∗, the matrix D−l(∆τ) ∈
R(n+l)×(n+1+l) can be defined such that ∀(i, j) ∈ [[0, n + l]] ×
[[0, n + 1 + l]]

D−li, j (∆τ) =

σi if j > i > 0
0 otherwise

(20)

with

σi =

min (n−k,i−1)∑
q=max (0,i−k−l)

∆τq

k + l
(21)
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The control points of the l-th integral (l > 0) can then be ob-
tained as follows

P(−l) =

P if l = 0

P(1−l) D−l(∆τ) + p(−l)
0 11×(n+1+l) otherwise

(22)

with p(−l)
0 the initial value of the l-th integral, at the starting

knot, and 1a×b a a-by-b matrix filled with ones. This integral
has a polynomial degree k + l.

As a consequence, it is easy to constrain a B-spline curve and
its derivatives (or integrals) into convex polytopes, thanks to the
convex hull property.

In this section, clamped B-spline curves were presented
along with some of their properties. In the following, they are
used to parameterize trajectories, composed of several clamped
B-spline curves laid end to end. Considering the specifications
to be met by these trajectories (detailed in Section 2), a novel,
compact way to represent them is further proposed.

4. Compact representation of the trajectory

4.1. Piecewise clamped B-spline trajectory

For a flight plan containing N + 1 waypoints, the trajectory
is divided into N pieces, each one joining a pair of consecutive
waypoints. For i ∈ [[1,N]], the i-th piece joins the waypoint
wi−1 to the waypoint wi. Each i-th piece of the trajectory is
parameterized by a clamped B-spline curve Bi, defined by the
knot steps ∆τi ∈ R1×(n−k+1)

∆τi =
(
∆τi,0 ∆τi,1 . . . ∆τi,n−k

)
(23)

and the control points Pi ∈ R3×(n+1)

Pi =
(
pi,0 pi,1 . . . pi,n

)
,

P
x
i

Py
i

Pz
i

 (24)

This choice to parameterize each piece of trajectory by a
clamped B-spline is motivated by the two following reasons

• The extremities of each piece of trajectory correspond to
the validation of a waypoint. The properties of clamped
B-splines (19) and (10) are especially convenient to ad-
just the position and its time derivatives at the extremities
of the pieces of trajectory, in order to meet the validation
requirements of each waypoint.

• Each piece of trajectory should lie within its flight corri-
dors and the magnitude of the time derivatives of the po-
sition should verify given upper bounds. The fact that the
derivatives of a clamped B-spline are clamped B-spline too
and the property (7) of these curves allows to efficiently
formulate these constraints.

These trajectory pieces are connected so that the L + 1 first
time derivatives (0-th derivative, i.e. the position, to the L-th
time derivative) coincide at the connections, with L < k. The

overall trajectory is then CL continuous. Given an initial time
t0, these connections occur at the time instants {ti}i∈[[1,N]] such as

∀i ∈ [[1,N]] ti = ti−1 +

n−k∑
j=0

∆τi, j (25)

and correspond to the time instants where a waypoint is vali-
dated.

The evaluation of the overall trajectory ζ at time t is given by

ζ(t) =


w0 if t < t0
Bi(t) if ti−1 6 t < ti, i ∈ [[1,N]]
wN if t > tN

(26)

with w0,wN ∈ R3×1.
In order to validate the waypoints while remaining smooth,

this trajectory has to satisfy several constraints at the connec-
tions between its different pieces, that are now detailed.

4.2. Trajectory derivatives at the connections
In order to get an overall trajectory that is CL, L < k, and

to respect the criteria of validation of each waypoint, boundary
conditions on the time derivatives must be met at the beginning
and at the end of each piece of trajectory. Depending on the
type of waypoints, these derivatives can be imposed or set free,
in which case they must coincide with the ones of the previous
and the following pieces of trajectory. Considering that the first
waypoint is either a stop or a constrained waypoint and that the
last one is always a stop waypoint, these constraints on the time
derivatives can be formulated as follows

∀i ∈ [[1,N]]

If wi−1 is a stop waypoint
Bi(ti−1) = wi−1

∀l ∈ [[1, L]]
dl

dtlBi(ti−1) = 0
(27a)

Else, if wi−1 is a constrained waypoint

∀l ∈ [[0, L]]
dl

dtlBi(ti−1) = w(l)
i−1 (27b)

Else, if wi−1 is a lock waypoint
Bi(ti−1) = wi−1

∀l ∈ [[1, L]]
dl

dtlBi(ti−1) =
dl

dtlBi−1(ti−1)
(27c)

Else, if wi−1 is a sphere waypoint

∀l ∈ [[0, L]]
dl

dtlBi(ti−1) =
dl

dtlBi−1(ti−1) (27d)

If wi is a stop waypoint

∀l ∈ [[0, L]]
dl

dtlBi(ti) = 0 (27e)
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Else, if wi is a lock waypoint

Bi(ti) = wi (27f)

Else, if wi is a sphere waypoint

‖Bi(ti) − wi‖2 6 rwi (27g)

where rwi is the validation radius of the waypoint wi and w(l)
i−1 is

value of the l-th derivative of the trajectory imposed at the val-
idation of the waypoint wi. Since clamped B-splines are con-
sidered, these constraints can directly be written as constraints
on the first and the last control points of each piece of trajectory
and their derivatives.

dl

dtlBi(ti−1) = p(l)
i,0

dl

dtlBi(ti) = p(l)
i,n−l

Whatever the type of waypoint, the L+1 first time derivatives
(including the position) of a piece of trajectory are then con-
strained at its beginning. Some derivatives can also be imposed
at the end of this piece, depending on the type of waypoint.

In the following, the time derivatives of the overall trajectory
ζ at the time instant ti, with i ∈ [[0,N]], are represented by the
matrix Γwi ∈ R3×(L+1)

Γwi =
(
ζ(ti) d1

dt1 ζ(ti) . . . dL

dtL ζ(ti)
)

(28)

These constraints allow reducing the number of parameters
necessary for the trajectory generation, as explained in the next
paragraph.

4.3. Reduced set of control points
As a consequence, the L + 1 first control points of each piece

of trajectory are imposed and can thus be removed from the
trajectory generation problem. Furthermore, depending on the
type of waypoint at the end of the trajectory piece, the L +1 last
control points (stop waypoint) or the last control point (lock
waypoint) can also be removed.

For each i-th piece of trajectory, a reduced set of control
points is thus introduced, equal to the set of control points of
the i-th piece minus the control points imposed by the continu-
ity constraints. For i ∈ [[1,N]], the number of reduced control
points of the i-th piece of trajectory is denoted by ñi 6 n − L
such that

ñi =


n − 2 L − 1 if wi is stop
n − L − 1 if wi is lock
n − L if wi is sphere

(29)

and the reduced set of control points is represented by the ma-
trix P̃i ∈ R3×ñi

P̃i =
(
pL+1 pL+2 . . . pñi+L

)
,


P̃x

i
P̃y

i
P̃z

i

 (30)

The rest of this section details the reconstruction of the full
set of control points from the reduced one, starting with the L+1
first control points.

4.4. Reconstruction of the L + 1 first control points

For the i-th piece of trajectory, i ∈ [[1,N]], the L + 1 first time
derivatives at the beginning of the piece of trajectory, Γwi−1 , are
either

• Explicitly given by the waypoint wi−1 (stop or constrained
waypoint);

• Imposed equal to the L + 1 first time derivatives at the end
of the previous piece of trajectory (piece i − 1, if i > 1)
by the continuity constraints (sphere waypoint). These
derivatives are given by the last L + 1 control points of
the (i − 1)-th piece of trajectory;

• Given both by the waypoint wi−1 and the time derivatives
at the end of the (i − 1)-th piece of trajectory (lock way-
point).

The reconstruction of the L + 1 first control points of the i-th
piece of trajectory can then be performed in two steps, illus-
trated on Figure 6, for L = 2

• First, the time derivatives Γwi−1 (green arrow on Figure 6)
are determined from wi−1 and the last L + 1 control points
of the previous piece (piece i−1, if i > 1), using the deriva-
tive properties (16). The latter are represented by the ma-
trix Pi−1,end, equal to the last L+1 columns of Pi−1 (control
points in solid red on Figure 6);

• Then, the first L + 1 control points of the piece i are re-
constructed from Γwi−1 , using the integral properties (22).
These control points are represented by the matrix Pi,start
equal to the first L + 1 columns of Pi (control points in
solid blue on Figure 6).

Figure 6: Reconstruction of the first L + 1 control points

These two steps are now detailed, starting with the determi-
nation of Γwi−1 .

4.4.1. Derivatives at the end of the previous piece of trajectory
Since clamped B-splines are used to parameterize each piece

of trajectory, the L + 1 first time derivatives at the end of a piece
are given by the last control point of each of its derivatives (19).
These can be obtained from the knot steps and the last L + 1
control points as follows.
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For a given knot step vector ∆τ, using (16), the matrix
Ol(∆τ) ∈ R(L+1)×(L+1) can be defined such that, for l ∈ [[1, L]]
and ∀(i, j) ∈ [[0, L]]2

Oli, j (∆τ) =


1 if j < l and i = j
−γ j if j > l and i = j
γ j if j > l and i = j − 1
0 otherwise

(31)

where
γ j =

k − l + 1
n−k∑

q=n−k− j+l
∆τq

(32)

For i ∈ [[2,N]] the control points to derivatives matrix
Mp→d(∆τ) ∈ R(L+1)×(L+1) giving the first L + 1 derivatives at
the end of the (i − 1)-th piece of trajectory from its last L + 1
control points can be defined

Mp→d(∆τ) = JL+1

L∏
l=1

Ol(∆τ) (33)

where Ja is the a-by-a anti-diagonal matrix with every anti-
diagonal term equal to 1. The derivatives are then obtained as
follows(

pi−1,n p(1)
i−1,n−1 . . . p(L)

i−1,n−L

)
=

(
pi−1,n−L pi−1,n−L+1 . . . pi−1,n

)
Mp→d(∆τi−1)

(34)

4.4.2. Derivatives of the trajectory on a waypoint
As explained before, some derivatives of the trajectory can

be imposed on a waypoint, depending on its type. A generic
expression of the first L + 1 derivatives at the validation of a
waypoint wi, i ∈ [[0,N]] is then

If i = 0

Γwi =


(
wi 03×L

)
if wi is stop(

wi w(1)
i . . . w(L)

i

)
if wi is constrained

(35a)

Else if i = N

Γwi =
(
wi 03×L

)
(35b)

Else

Γwi

(
∆τi,Pi,end

)
= Pi,end Mp→d(∆τi) (35c)

where

Pi,end =


(
pi,n−L pi,n−L+1 . . . pi,n−1 wi

)
if wi is lock(

pi,n−L pi,n−L+1 . . . pi,n

)
if wi is sphere

(36)
with the control points pi, j in (36) being part of the reduced set
P̃i (see (30)).

Based on Γwi−1 , the reconstruction of the first L + 1 control
points of the piece i ∈ [[1,N]] can now be performed, as detailed
in the next paragraph.

4.4.3. Starting derivatives to control points
The L + 1 first control points of a piece of trajectory can be

obtained from the first L + 1 time derivatives at its beginning.
For a given knot step vector ∆τ, using (22), the matrix Ql(∆τ) ∈
R(L+1)×(L+1) can be defined such that, for l ∈ [[1, L]] and ∀(i, j) ∈
[[0, L]]2

Qli, j (∆τ) =


1 if j < l and i = j
ν j if j > l and i = j
1 if j > l and i = j − 1
0 otherwise

(37)

where

ν j =

l−1∑
q=0

∆τq

k + l − j
(38)

For i ∈ [[1,N]] the derivative to control points matrix
Md→p(∆τ) ∈ R(L+1)×(L+1) giving the first L + 1 control points
of the i-th piece of trajectory from the first L + 1 derivatives at
the beginning of this piece of trajectory can be defined

Md→p(∆τ) =

L−1∏
l=0

QL−l(∆τ) (39)

which gives the first L + 1 control points

Pi,start =
(
pi,0 pi,1 . . . pi,L

)
(40)

from the starting derivatives. Indeed, for i ∈ [[1,N]], the follow-
ing expressions hold

If i = 1

Pi,start(∆τi) = Γwi−1 Md→p(∆τi) (41a)

Else

Pi,start
(
∆τi−1,∆τi,Pi−1,end

)
= Γwi−1

(
∆τi−1,Pi−1,end

)
Md→p(∆τi)

(41b)

The reconstruction of the remaining control points is now
detailed.

4.5. Reconstruction of the full set of control points

In some cases, the last control points are also imposed. In the
case where the next waypoint is a stop waypoint, the last L + 1
control points are imposed equal to wi. Similarly, if wi is a lock
waypoint, the last control point is constrained on the waypoint.
In the case of a sphere waypoint, there is no constraint on the
last control points.

Finally, the remaining control points (i.e. other than the first
and the last ones) do not require reconstruction, as they are di-
rectly equal to the reduced control points.

As a consequence, the overall reconstruction operation can
be formulated as follows, for i ∈ [[1,N]]
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If i = 1

Pi

(
∆τi, P̃i

)
= wi Tendi + P̃i Tmidi + Pi,start(∆τi) Tstarti (42a)

Else

Pi

(
∆τi−1,∆τi,Pi−1,end, P̃i

)
= wi Tendi + P̃i Tmidi

+ Pi,start
(
∆τi−1,∆τi,Pi−1,end

)
Tstarti

(42b)

with

Tstarti =
(
IL+1 0(L+1)×(n−L)

)
Tmidi =

(
0ñi×(L+1) Iñ 0ñi×(n−ñi−L)

)
Tendi =


(
01×(n−L) 11×(L+1)

)
if wi is stop(

01×n 1
)

if wi is lock

01×(n+1) otherwise

(43)

Therefore, in the general case, the full set of control points
of a given piece of trajectory

• Linearly depends on the reduced control points of this
piece of trajectory;

• Nonlinearly depends on both the knot steps of this piece of
trajectory and the knot steps and the reduced control points
of the previous piece of trajectory.

The knot steps and the reduced control points thus constitute
the degrees of freedom for adjusting the trajectory.

In this section, a novel, compact way to parameterize the en-
tire trajectory ζ as a piecewise clamped B-spline curve, by the
mean of knot step vectors and reduced sets of control points was
proposed. In the next section, this convenient compact repre-
sentation is used to formulate the trajectory generation process
as an optimization problem.

5. Minimum-time trajectory

One way to obtain a smooth trajectory meeting the require-
ments of Section 2 is to generate a minimum-time trajectory
with constraints on the magnitude of the velocity and its deriva-
tives. One contribution of this work is thus to formalize the
minimum-time trajectory generation as an optimization prob-
lem on the duration of the trajectory, using the formalism of
B-splines. The first paragraph details one general way to for-
mulate this problem, using the trajectory parameterization in-
troduced in Section 4. Then, the expression of the constraints is
detailed in the following paragraphs. Notice that the formula-
tion of the problem is specified for 3D trajectories, however it is
easily adaptable to other dimensions and to other applications
than quadrotor cinematography.

5.1. Optimization problem

The trajectory is parameterized as a piecewise clamped B-
spline curve, with the compact representation presented in Sec-
tion 4. It is then parameterized by

• N knot step vectors ∆τi, each vector containing n − k ele-
ments;

• N reduced sets of control points P̃i, with the i-th set con-
taining ñi control points, themselves given by 3 coordi-
nates.

This gives a total of nx parameters which are stored in the vector
x ∈ Rnx , such that

x =
(
∆τ1 ∆τ2 . . . ∆τN P̃x

1 P̃y
1 P̃z

1

P̃x
2 P̃y

2 P̃z
2 . . . P̃x

N P̃y
N P̃z

N

)>
(44)

containing all the information required to reconstruct the trajec-
tory over its entire domain.

In order to complete the flight plan described in Section 2, a
vector x minimizing the duration T ∈ R∗+ of the flight plan is
chosen, under the following constraints

• The knot steps are strictly positive;

• The trajectory does not exit the corridors;

• The trajectory validates the sphere waypoints by passing
within a neighborhood of specified radius around them;

• The magnitude of the trajectory derivatives does not ex-
ceed specified bounds.

The trajectory generation can then be formulated as the fol-
lowing nonlinear optimization problem

x∗ = arg min
x∈Rnx

T (x)

s.t.



xi > ∆τmin, i ∈ [[0, (n − k + 1) N − 1]]
Acorridor x − bcorridor 6 0
gcorridor(x) 6 0
gsphere(x) 6 0
gderivatives(x) 6 0

(45)

with the linear cost function

T (x) =

N∑
i=1

n−k∑
j=0

∆τi, j (46)

The expressions of the constraints are detailed in Section 5.2,
Section 5.3 and Section 5.4.

Problem (45) constitutes a nonlinear programming problem
(NLP) that can be solved using classical algorithms, such as
a Sequential Quadratic Programming algorithm (SQP, Fletcher
(2013)) for instance. This requires some care in the choice of
the starting point of the algorithm. A series of rest-to-rest tra-
jectories joining each pair of waypoints can be a candidate as
initial guess for solving the problem. Though it can be quite
suboptimal, there always exists a rest-to-rest trajectory joining
two waypoints which satisfies the constraints of (45) and it is
reasonably simple to compute one. An example of such an ini-
tial guess is proposed in Section 6.2.
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The tuning parameters of the algorithm are the polynomial
degree k > 0 and the number of control points (n + 1) > k of
the clamped B-splines (thus setting their number of knot steps
n−k+1). As mentioned in Section 3.3, a clamped B-spline with
strictly positive knot steps is Ck−1 continuous. In order to obtain
a trajectory that is CL, the polynomial degree must then verify
k > L. The lowest value k = L + 1 constitutes a good candi-
date as it keeps the polynomial degree as low as possible. Only
the parameter n then remains to be set and constitutes a tuning
parameter. However, the choice of n is not entirely free. As ex-
plained in Section 4, for a given vector of knot steps, each con-
straint on the time derivatives of the trajectory in (27) imposes
the value of one control points (and this is used to reduce the
number of optimized control points). For a CL trajectory, there
are at most L + 1 constraints on the derivatives at one extremity
of a piece of trajectory, when validating a waypoint. Since each
piece of trajectory has 2 extremities, choosing n > 2 (L + 1)
guarantees that there are always enough control points to sat-
isfy these constraints, whatever the type of waypoints.

5.2. Corridor constraints
The flight corridors are approximated by ncorr-prisms (ncorr >

3), leading to ncorr + 2 constraints for each control point

• 2 longitudinal constraints ensuring that the control point
lies between the two waypoints of the corresponding piece
of trajectory;

• ncorr lateral constraints ensuring that the control point re-
spects the cross section of the prism (and thus of the cylin-
der), as illustrated in Figure 7.

Corridor longitudinal constraints. Define the unit vector ui,
for i ∈ [[1,N]]

ui =
wi − wi−1

‖wi − wi−1‖2
(47)

where ‖wi − wi−1‖2 is always strictly positive, see Section 2.2.
Then, the longitudinal constraints are given by

ui
>
(
pi, j − wi−1

)
> −ε

ui
>
(
pi, j − wi−1

)
6 ‖wi − wi−1‖2 + ε

(48)

with ε > 0 a given tolerance that can be set to 0. These con-
straints can be rewritten as

−ui
>pi, j + ui

>wi−1 − ε 6 0
ui
>pi, j − ui

>wi−1 − ‖wi − wi−1‖2 − ε 6 0
(49)

Corridor lateral constraints. Regarding the lateral constraints,
they can be formulated by considering the 2D vector which cor-
responds to the projection of

(
pi, j − wi−1

)
onto the cross section

of the prism. To this aim, a 2D orthonormal basis
{
ẽxi , ẽyi

}
of

this cross section is constructed, in which the equation of the
boundaries of the prism can be easily expressed. The vector
among

{
u×i ex , u×i ey , u×i ez

}
, with the highest norm is normal-

ized and chosen as the first vector of this basis, ẽxi . The second
vector is then ẽyi = u×i ẽxi . On Figure 7, the corridor between the

waypoints wi−1 and wi is represented in light blue and the unit
vector ui is represented in red. The cross section of a 5-prism
is represented in dark blue, with its basis

{
ẽxi , ẽyi

}
in green. The

control point pi, j (in orange) lies within the section of the prism
and it is between the two waypoints, which guarantees its satis-
faction of the corridor constraint.

Figure 7: Approximation of the cylindrical flight corridor by a prism

The ncorr lateral constraints on each control point can be ex-
pressed as follows, ∀i ∈ [[1,N]], ∀ j ∈ [[0, n]], ∀q ∈ [[1, ncorr]]

ai,q ẽ>xi

(
u×i

(
pi, j − wi−1

))
+ bi,q ẽ>yi

(
u×i

(
pi, j − wi−1

))
+ ci,q 6 0 (50)

where the following coefficients are defined

ai,q = cos (qδ) − cos
(
(q + 1)δ

)
bi,q = sin

(
(q + 1)δ

)
− sin (qδ)

ci,q = −rcorri sin (δ)
(51)

with δ = 2π
ncorr

. Regrouping the terms related to the control points
and to the waypoints, the expression (50) can be rewritten as
follows, ∀i ∈ [[1,N]], ∀ j ∈ [[0, n]], ∀q ∈ [[1, ncorr]](

ai,q ẽ>xi
+ bi,q ẽ>yi

)
u×i pi, j

−
(
ai,q ẽ>xi

+ bi,q ẽ>yi

)
u×i wi−1 + ci,q 6 0 (52)

Corridor inequality constraints. The corridor constraints (49)
and (52) for a given control point can be written as follows

Λi pi, j − λi 6 0 (53)

with pi, j given by (42) and

Λi =



−ui
>

ui
>(

ai,1 ẽ>xi
+ bi,1 ẽ>yi

)
u×i(

ai,2 ẽ>xi
+ bi,2 ẽ>yi

)
u×i

...(
ai,ncorr ẽ>xi

+ bi,ncorr ẽ>yi

)
u×i



λi =



−ui
>wi−1 + ε

ui
>wi−1 + ‖wi − wi−1‖2 + ε(

ai,1 ẽ>xi
+ bi,1 ẽ>yi

)
u×i wi−1 − ci,1(

ai,2 ẽ>xi
+ bi,2 ẽ>yi

)
u×i wi−1 − ci,2

...(
ai,ncorr ẽ>xi

+ bi,ncorr ẽ>yi

)
u×i wi−1 − ci,ncorr



(54)
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Since the reduced control points are part of the optimization
vector x defined in (44), this constraint is linear relatively to x
if pi, j belongs to the reduced set of control points. However,
the other control points of the full set must be reconstructed,
using (42), which is a nonlinear operation on the optimization
vector. As a consequence, this constraint is nonlinear for the
control points needing reconstruction.

The corridor constraints which are linear in x can be gathered
and expressed as follows

Acorridor x − bcorridor 6 0

while the nonlinear ones can be written as a nonlinear function
of x

gcorridor(x) 6 0
Since they are independent of the decision variables, the Λi

and λi are computed only once for each piece of trajectory (dur-
ing the initialization phase of the optimization). Furthermore,
these constraints can be removed for the control points that are
imposed equal to a waypoint, i.e. on stop or lock waypoints,
since the waypoints always lie in their corridors.

This formulation of the corridors constraints, by maintaining
the control points inside the flight corridors, provides a suffi-
cient condition for guaranteeing that the trajectory lies inside
the corridors. As explained in Mercy et al. (2017), a certain
conservatism can be expected from such a formulation. How-
ever, this conservatism can be reduced by increasing the number
of control points, which allows the curve to stick closer to the
control polygon. The counterpart is that, trough a finite, rea-
sonable amount of constraints, the entire piece of trajectory is
guaranteed to satisfy the constraints. This is a significant ad-
vantage over methods such as gridding for instance, for which
the satisfaction of the constraints is only guaranteed on some
points of the trajectory.

5.3. Sphere waypoints validation
When a waypoint wi (i ∈ [[1,N − 1]]) is a sphere waypoint,

the i-th piece of trajectory must end within a sphere of radius
rwi , centered on wi. This can be ensured by constraining its last
control point inside this sphere, since clamped B-spline curves
are used. Then, due to the continuity of the trajectory, the next
piece starts inside the sphere and validates wi as well.

Each sphere waypoint validation can be formulated by one
nonlinear constraint ∥∥∥pi,n − wi

∥∥∥2
2 − r2

wi
6 0 (55)

which can be rewritten

pi,n
>pi,n − 2 wi

>pi,n + wi
>wi − r2

wi
6 0 (56)

All theses quadratic constraints can be regrouped as a non-
linear function of x

gsphere(x) 6 0 (57)

These constraints can also be approximated by a set of linear
constraints on pi,n, by replacing the sphere by a convex polyhe-
dron (e.g. a platonic or archimedean solid). Since pi,n is part
of the reduced control points for a sphere waypoint and does
not need reconstruction, these linear constraints in pi,n are also
linear in x.

5.4. Time derivatives bounds

For each piece of trajectory, bounds on the magnitude of the
time derivatives can be imposed. The convex hull property can
be used to this aim, as for the corridor constraints. For l ∈
[[1, L + 1]], the l-th time derivative of the trajectory is also a
clamped B-spline, of control points given by (18). Therefore,
constraining these control points into a sphere ensures that the
magnitude of this derivative will never exceed the value of the
radius of this sphere

∀(i, j) ∈ [[1,N]] × [[0, n − l]]
∥∥∥∥p(l)

i, j

∥∥∥∥2

2
− di,l

2
max 6 0 (58)

with di,lmax the bound on the l-th time derivative for the i-th
piece of trajectory and the control points p(l)

i, j given by (18)
and (42). Since equation (18) is nonlinear relatively to the knot
steps, the constraint (58) is a nonlinear constraint in x

gderivatives(x) 6 0 (59)

5.5. Receding waypoint horizon

The size of the optimization problem (45) is mostly deter-
mined by the amount of pieces of trajectory to generate, directly
given by the number of waypoints in the flight plan. As this
number can be arbitrarily large (the user should be free to use
as many waypoints in a flight plan as desired), there is no limit
on the size of the optimization problem to solve, which can be
an issue in terms of memory usage and computation load. In
order to bound the size of the optimization problem (45) with-
out introducing an upper limit on the size of the flight plan, the
same receding waypoint horizon as in Rousseau et al. (2018)
can be adapted to the trajectory generation algorithm presented
in this work. If the flight plan contains more waypoints than a
given limit, the trajectory is not computed over the entire flight
plan at once but in several steps, over truncated pieces of the
overall flight plan.

For a horizon NH and a flight plan containing at least NH + 2
waypoints, the trajectory is first computed between the first and
the (NH + 1)-th waypoints (i.e. w0 to wNH ). This results in a
piecewise trajectory ζ̃1 containing NH pieces. The first piece of
this trajectory corresponds to the trajectory joining w0 to w1. As
the trajectory does not necessarily pass on the waypoint w1 (for
sphere waypoints), the end point of this first piece of trajectory
is denoted by κ1 (see Figure 8) and the l-th derivatives of the tra-
jectory on this point (l ∈ [[1, L]]) are denoted by κ(l)

1 . Only this
first piece of trajectory is kept and will constitute the first piece
of the overall, final trajectory ζ. According to the receding hori-
zon strategy, the horizon is then shifted by one waypoint and a
new trajectory ζ̃2 is computed, having κ1 as starting waypoint
w1. This new starting waypoint is of special type constrained,
meaning that the first L + 1 derivatives (including the position)
are imposed, in this case equal to κ1, κ(1)

1 , ..., κ(L)
1 . Again, only

the first piece of this new trajectory ζ̃2 is kept and it consti-
tutes the second piece of the final trajectory ζ. The continuity
at the connection between the two trajectory pieces is ensured
by the constraints on the position and its derivatives on κ1. The
process is repeated until the last waypoint of the flight plan is
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reached. In order to ensure the feasibility of the problem, the
last waypoint of the horizon is always imposed to be of type
stop, even though it was not in the initial flight plan. The next
step is then initialized with the previous solution, plus a feasi-
ble rest-to-rest trajectory for the new piece of trajectory (there
always exists one).

Example 1. A flight plan containing 5 waypoints {w0, . . . ,w4}

and a horizon NH = 3 is illustrated in Figure 8. The trajectory
is computed in 2 steps: between the waypoints w0 and w3 first,
and between w1 and w4 next.

Step 1: A trajectory is generated between w0 and w3, with
w3 replaced by a stop waypoint at the same position.

Step 2: A trajectory is generated between the waypoints w1
and w4, with the waypoint w3 of type sphere, as it was origi-
nally, and the waypoint w1 replaced by a constrained waypoint
at the position κ1, ensuring the continuity with the trajectory
computed at Step 1.

Since the new trajectory reaches the final waypoint w4, there
is no need to repeat the process.

Figure 8: Receding waypoint horizon strategy used for trajectory generation

In order to illustrate the behaviour of the overall trajectory
generation strategy, it is applied to the case of aerial cinematog-
raphy with a quadrotor, both in simulation and on an outdoor
flight experiment.

6. Application to a quadrotor

In this section, the strategy described above is applied to
perform a cinematographic flight plan (cf. Section 2) with a
quadrotor. The goal of this work is to generate a smooth and
natural trajectory respecting the speed limitation requested by
the user. To this aim, a minimum-time trajectory with speed,
acceleration and jerk constraints is generated. The reason for
limiting the magnitude of the jerk and the acceleration of the
trajectory is twofold. Firstly, they are both a way to quantify
the smoothness of the trajectory. Secondly, this allows increas-
ing the feasibility of the trajectory as the acceleration (respec-
tively the jerk) of the drone is strongly linked to its angle rel-
atively to the ground (respectively its rotation speed). Candi-
dates for the admissible bounds on these quantities can be found
in Hehn and D’Andrea (2015). From a slow but feasible sub-
optimal trajectory, the knot steps of each piece of trajectory are
reduced and their control points optimized until the constraints

on the derivatives are active. It can be noticed that ensuring
feasibility through bounds on the derivative can introduce some
conservatism in the trajectory as a quadrotor dynamics is more
complex than a multiple integrator. However, in the context of
video making, smoothness and video quality can be considered
more important than having the most time-optimal trajectory.
For a more generic solution, not specific to video making, this
strategy could be improved by including the dynamics of the
quadrotor, in a similar fashion as in Nguyen et al. (2018) (where
flatness properties are used jointly with uniform B-splines).

6.1. Tuning parameters for trajectory generation
In order to ensure a continuous angular velocity of the

quadrotor as in Boeuf et al. (2014) or Mueller et al. (2015),
a C3 trajectory, continuous up to the jerk is chosen. The de-
gree of the trajectory is chosen as the lowest one allowing a C3

trajectory, i.e. since the clamped B-splines are Ck−1 continuous
(see Section 3.3), k = 4. Finally, in order to use the initializa-
tion strategy described below, each piece of trajectory contains
n + 1 = 11 control points and thus 7 knot steps.

For each piece of trajectory, the speed must not exceed the
reference and the norm of the acceleration and of the jerk are
respectively limited to amax and jmax. The snap is also limited
in order to prevent the optimal trajectory to present short peri-
ods of time with an excessively high snap, leading to an almost
discontinuous behaviour of the jerk.

6.2. Initial feasible trajectory
As an initial feasible guess for the optimization process, a

rest-to-rest trajectory with a bang-off-bang snap profile is used,
divided into three phases: acceleration, cruising and braking.
Two cases are distinguished: first, the case in which the speed
ṽi is reached and there is a cruising phase (60a), and, second,
the case where the distance is too short for this (60b). For i ∈
[[1,N]]

If 4 ṽi
3
√

ṽi
2s < ‖wi − wi−1‖2

∆τacc =
3

√
ṽi

2s
, ∆τcruise =

‖wi − wi−1‖2

ṽi
− 4∆τacc

∆τinit = (∆τacc 2∆τacc ∆τacc ∆τcruise ∆τacc 2∆τacc ∆τacc)

P(4)
init =

(
s ui −s ui s ui 0 −s ui s ui −s ui

)
(60a)

Else

∆τacc =
4

√
‖wi − wi−1‖2

8s

∆τinit =

(
∆τacc 2∆τacc

1
2

∆τacc
1
2

∆τacc ∆τacc 2∆τacc ∆τacc

)
P(4)

init =
(
s ui −s ui s ui s ui −s ui s ui −s ui

)
(60b)

with

ṽi = min
(
vi,

8 a2
max

9 jmax

)
, s =

3 j2max

2 amax
(61)
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and vi the speed reference of the i-th piece of trajectory. The
initial control points for this piece of trajectory can then be
deduced using (22). A proof of feasibility of this trajectory,
regarding the constraints of the problem (45), is given in the
Appendix.

An example of such a trajectory is represented on Figure 9,
for which vi =

8 a2
max

9 jmax
. The blue lines represent the evaluation of

the velocity, acceleration, jerk and snap of a rest-to-rest trajec-
tory, projected along the vector ui (the trajectory is a straight
line of direction ui), while the red lines represent the bounds.

Figure 9: Initial rest-to-rest trajectory profile

6.3. Simulation

The above strategy is applied to a flight plan containing
N = 4 pieces of trajectory. The first and last waypoints, w0
and w4, are stop waypoints. The second waypoint w1 is a
lock waypoint while the third and fourth ones, w2 and w3, are
sphere waypoints with a radius of 3 m. Each piece of trajec-
tory is contained in a flight corridor with a radius of 3 m. The
speed references from the first to the last pieces of trajectory
are respectively 2 m.s−1, 10 m.s−1, 3 m.s−1 and 7 m.s−1. Finally,
the maximum acceleration and jerk are respectively 2 m.s−2 and
0.5 m.s−3, and the maximum snap is chosen to be the one used
for the initial guess (60). The waypoint horizon is NH = 3, so
that the overall trajectory is computed in 2 steps. The time-
optimal trajectory and its control points are visible on Fig-
ure 10, while the norm of its derivatives on Figure 11.

All the constraints are verified, the trajectory is smooth and
natural, while getting as close as possible to the speed refer-
ences, without exceeding them.

6.4. Comparison with uniform clamped B-splines

Often, uniform clamped B-splines are used, which means
that the knot steps are all equal. This is not the case in this
work, where they are optimized to fully exploit the piecewise
polynomial nature of B-splines.

Using uniform B-spline makes the formulation easier and
the computation faster, as most of the calculations can be per-
formed once, during the initialization phase of the resolution of

Figure 10: Example of optimal trajectory

Figure 11: Norm of the derivatives of the trajectory on Figure 10 (blue) vs. their
maximum admissible value on each piece of trajectory (red)

the optimization problem, or even be done off-line. This is es-
pecially convenient for onboard computation. However, there
are only two ways to act on the derivatives of such a spline.
They can either be scaled in magnitude by scaling the knot
steps (which does not change the shape of the overall curve),
or be changed locally by moving the control points (13), which
changes the shape of the trajectory. The latter solution is limited
in presence of flight corridors.

The limitations of this kind of splines are illustrated on Fig-
ure 12. In this example, a trajectory is generated for a simple
flight plan of only 2 waypoints separated by 100 m, to join with
a reference speed of 1 m.s−1, using the strategy described in this
paper with the same parameters as in Section 6.1. In the first
case, a clamped B-spline is used (top), while in a second case,
an uniform B-spline is used (middle). The speed profile of each
trajectory is presented on Figure 12, with each knot marked by
a vertical grey line. Notice that since the two considered way-
points are stop, only 3 control points are optimized, the other 8
being imposed on the waypoints.
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Figure 12: Comparison of a minimum-time clamped B-spline (top), a
minimum-time uniform clamped B-spline (middle) and a minimum-snap poly-
nomial (bottom) for the same flight plan; internal knots marked by vertical grey
lines

Both solutions verify all the constraints: speed, acceleration,
jerk, snap and corridor constraints, though the satisfaction of
the corridor constraints is trivial as the trajectory is a straight
line in this example. The uniform B-spline trajectory is much
slower however, due to long acceleration and braking phases.
Indeed, for a B-spline curve of degree k, the k-th derivative is
constant between 2 knots, i.e. for a duration equal to a knot
step (see Figure 9). For a uniform clamped B-spline, the knot
steps being all equal, these durations are directly given by the
length of the interval [τk, τn+1) and by the number of knot steps,
n − k + 1, fixed by the number of control points and the poly-
nomial degree. The constant knot steps of a uniform B-spline
hence prevents the possibility to have arbitrarily long (or short)
acceleration, deceleration and cruising phases.

In order to deal with this issue, one could introduce more
control points, but considering the wide variety of possible
flight plans, it can be delicate to choose an adequate number
of control points. In Stoican et al. (2017), control points are
added or removed on-the-flight, during the optimization pro-
cess, which results in a Mixed Integer Problem (MIP) that can
significantly impact the computation time.

Freeing the knot steps by using non-uniform clamped B-
splines, as it is proposed in this paper, allows the derivatives
to be more independent relatively to the control points and the
shape of the curve. This is an elegant and robust way to solve
the issue, but, as for the MIP, it comes at a certain cost on the
computation time.

Finally, Figure 12 also presents the speed profile obtained

with a minimum-snap polynomial trajectory, as proposed by
Mellinger and Kumar (2011), Richter et al. (2013), for com-
parison with the algorithm presented in this paper. The over-
all duration of this minimum-snap trajectory is chosen as the
smallest duration guaranteeing the bounds on the speed, accel-
eration, jerk and snap given above , with a similar algorithm
as in Rousseau et al. (2018). Without the convex hull prop-
erty of B-splines, these bounds on the derivatives are enforced
through a gridding method, i.e. enforced on a finite set of eval-
uation points (in red on Figure 12). This does not guarantee
the respect of the bounds between these evaluation points and
it can be seen on Figure 12 that the speed reference is actu-
ally exceeded in this example. The polynomial degree of the
minimum-snap trajectory is 11 (more than twice the polyno-
mial degree of the clamped B-spline used in this example) and
the result is still quite suboptimal (duration 74% longer than the
non-uniform clamped B-spline).

6.5. Experiment on a Parrot ANAFI quadrotor
In order to evaluate the cinematographic quality and the fea-

sibility of the trajectories obtained with the method proposed
above, a trajectory was generated off-line and then performed
by a real quadrotor. This test consists in the performance
of a cinematographic flight plan containing 6 waypoints. A
minimum-time B-spline trajectory is generated to join the way-
points while respecting corridors and bounds on the derivatives.
The trajectory is generated off-line, using a waypoint horizon
NH = 3, which means that the trajectory is computed in 3 steps.
An undersampled linear predictive controller such as described
in Rousseau et al. (2018) is used to track the camera angles
references smoothly, without introducing too much framing er-
ror thanks to the anticipative aspect of the controller and the
knowledge of the overall reference trajectory. The flight plan
is performed by a Parrot ANAFI quadrotor (see Figure 13, Par-
rot Drones (2018)), under an average wind of approximately
5.3 m.s−1 (19 km/h), with gusts up to 9.0 m.s−1 (32 km/h).

Figure 13: Parrot ANAFI quadrotor

A video of the outdoor flight is available at https://

youtu.be/A0oYx268sis. Figure 14 presents the flight plan
performed by the quadcopter and the corresponding optimal tra-
jectory, as well as the position tracking error during the flight.
The latter is computed using satellite navigation and the internal
sensors of the drone.

The trajectory satisfies the specifications of Section 2. Again,
the trajectory is smooth and it is difficult to guess the position
of the waypoints only by looking at the trajectory or the video,
which comforts the idea that the trajectory is natural. The po-
sition tracking error remains low for an outdoor flight (< 0.4 m
despite the wind gusts), which gives confidence in the feasibil-
ity of the trajectory.
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Figure 14: Trajectory for the flight experiment (top) and position tracking error
during its performance (bottom)

7. Conclusion

This paper presented a trajectory generation algorithm suited
for a wide variety of flight plans, guaranteeing the corridors
and the bounds on the derivatives. To this aim, the piecewise
nature of clamped B-splines is exploited, by optimizing their
knots and control points, in order to obtain a time-optimal tra-
jectory. Confronted to a simulation and an outdoor flight, the
method responded to the cinematographic requirements, return-
ing smooth and feasible trajectories, with a suitable speed pro-
file.

A next step will be to implement the trajectory generation al-
gorithm onboard to evaluate its potential use in real-time. To
this aim, the implementation of the algorithm used for this pa-
per will be optimized, which will also allow comparing the
computation load with other methods. Finally, obstacle avoid-
ance seems like a necessity for autonomous flight. Such a fea-
ture could be added to the presented work through the use of
local replanning methods such as Usenko et al. (2017).
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10. Appendix

This section provides one way to initialize the NLP (45) with
a C3, feasible, clamped B-spline trajectory, for the case studied
in Section 6. This initial guess is a rest-to-rest trajectory with

a bang-off-bang snap profile and is divided into three phases:
accelerating, cruising, braking. A feasibility proof of this initial
guess is given.

For a piece of trajectory i, joining two waypoints wi−1 and
wi such that ‖wi − wi−1‖2 > 0, with a speed reference vi > 0,
a maximum admissible acceleration amax > 0 and a maximum
admissible jerk jmax > 0, the two following quantities are first
defined

ṽi = min
(
vi,

8 a2
max

9 jmax

)
(62a)

s =
3 j2max

2 amax
(62b)

Case with a cruising phase
It is first considered the case

4 ṽi
3

√
ṽi

2s
< ‖wi − wi−1‖2 (63)

for which it can be defined

∆τacc =
3

√
ṽi

2s
, ∆τcruise =

‖wi − wi−1‖2

ṽi
− 4∆τacc (64)

The clamped B-spline defined by the following knot steps and
control points is chosen as initial guess

∆τinit = (∆τacc 2∆τacc ∆τacc ∆τcruise ∆τacc 2∆τacc ∆τacc)
(65a)

P(4)
init = ui

> (s − s s 0 − s s − s) (65b)

First, since vi > 0, amax > 0 and jmax > 0, it comes that
∆τacc > 0. Furthermore, using the assumption (63) and given
that ‖wi − wi−1‖2 > 0, it follows that ∆τcruise > 0.

Using (22), the control points of the jerk are deduced
from (65b), with a null jerk as initial condition

P(3)
init = ui

> (0 s∆τacc − s∆τacc 0 0 − s∆τacc s∆τacc 0)
(66)

From (62a) it can be deduced that ṽi 6
8 a2

max
9 jmax

, which, injected
into (64), leads to

∆τacc 6
2 amax

3 jmax
(67)

Equations (62b) and (67) lead to s∆τacc 6 jmax. The norm
of each control point of P(3)

init is bounded by s∆τacc and thus
bounded by jmax.

Similarly, the control points of the acceleration are

P(2)
init = ui

>

(
0 0

3
2

s ∆τ2
acc 0 0 0 −

3
2

s ∆τ2
acc 0 0

)
(68)

Using (62b) and (67), it follows that 3
2 s ∆τ2

acc 6 amax. The norm
of each control point of P(2)

init is thus bounded by amax.
The control points of the velocity are

P(1)
init = ui

>
(
0 0 0 2s∆τ3

acc 2s∆τ3
acc 2s∆τ3

acc 2s∆τ3
acc 0 0 0

)
(69)
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Equation (64) directly gives ∆τ3
acc = ṽi

2s . The bound on the norm
of the control points of P(1)

init is then ṽi 6 vi.
Finally, one last integration step with the initial condition

pinit0 = wi−1 gives the control points of the position

Pinit = ui
> (0 0 0 0 2α 4α 6α 8α 8α 8α 8α) + wi−1

(70)
with α = s∆τ3

acc

(
∆τacc + 1

4 ∆τcruise

)
. Using (64) and ∆τ3

acc =
ṽi
2s leads to α = 1

8 ‖wi − wi−1‖2. The last control point of the
position is thus wi.

Case without a cruising phase
If (63) is not satisfied, i.e.

4 ṽi
3

√
ṽi

2s
> ‖wi − wi−1‖2 (71)

it can be defined

∆τacc =
4

√
‖wi − wi−1‖2

8s
(72)

Injecting (71) into (72) gives the same bound on ∆τacc as in the
case with a cruising phase

∆τacc 6
3

√
ṽi

2s
6

2 amax

3 jmax
(73)

The clamped B-spline defined by the following knot steps
and control points is chosen as initial guess

∆τinit =

(
∆τacc 2∆τacc

1
2

∆τacc
1
2

∆τacc ∆τacc 2∆τacc ∆τacc

)
(74a)

P(4)
init = ui

> (s − s s s − s s − s) (74b)

The control points of the jerk are

P(3)
init = ui

>

(
0 s∆τacc − s∆τacc −

1
2

s∆τacc 0 − s∆τacc s∆τacc 0
)

(75)
Therefore, given (62b) and (73), their norm is bounded by jmax.

The control points of the acceleration are

P(2)
init = ui

>

(
0 0

3
2

s ∆τ2
acc

1
4

s ∆τ2
acc 0 0 −

3
2

s ∆τ2
acc 0 0

)
(76)

Thus, given (62b) and (73), their norm is bounded by amax.
The control points of the velocity are

P(1)
init = ui

>

(
0 0 0

7
4

s∆τ3
acc 2s∆τ3

acc 2s∆τ3
acc 2s∆τ3

acc 0 0 0
)

(77)
Equation (73) gives ∆τ3

acc 6
ṽi
2s , hence, the norm of each control

points of the velocity is bounded by ṽi 6 vi.
Finally, the control points of the position are

Pinit = ui
>

(
0 0 0 0

7
4
β

15
4
β

23
4
β 8β 8β 8β 8β

)
+ wi−1

(78)
with β = s∆τ4

acc. Given (72), the last control point of the posi-
tion is thus wi.

Feasibility
In both cases the position trajectory contains n + 1 = 11 con-

trol points and n − k + 1 = 7 knot steps. Its polynomial degree
is thus k = 4, which imply that the position trajectory is C3.

The fist control point of the position is wi−1 and the last one is
wi. Since clamped B-splines are used, the trajectory then starts
on wi−1 and ends on wi. The trajectory is a straight line, thus
the lateral corridor constraints are satisfied. The position con-
trol points are contained between wi−1 and wi thus the convex
hull property ensures that the longitudinal corridor constraints
are satisfied too. The bounds on the control points of the time
derivatives of the position are respected. Finally, the first and
last control point of the velocity, the acceleration and the jerk
are 0. Laying end to end several of these feasible rest-to-rest
trajectories thus leads to an overall trajectory that is C3.

All the constraints are satisfied, the initial guess is feasible.
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