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Learning to combine primitive skills:
A step towards versatile robotic manipulation§

Robin Strudel∗†, Alexander Pashevich∗‡, Igor Kalevatykh†,
Ivan Laptev†, Josef Sivic†, Cordelia Schmid‡

Abstract— Manipulation tasks such as preparing a meal or
assembling furniture remain highly challenging for robotics
and vision. Traditional task and motion planning (TAMP)
methods can solve complex tasks but require full state ob-
servability and are not adapted to dynamic scene changes.
Recent learning methods can operate directly on visual inputs
but typically require many demonstrations and/or task-specific
reward engineering. In this work we aim to overcome previous
limitations and propose a reinforcement learning (RL) approach
to task planning that learns to combine primitive skills. First,
compared to previous learning methods, our approach requires
neither intermediate rewards nor complete task demonstrations
during training. Second, we demonstrate the versatility of
our vision-based task planning in challenging settings with
temporary occlusions and dynamic scene changes. Third, we
propose an efficient training of basic skills from few synthetic
demonstrations by exploring recent CNN architectures and data
augmentation. Notably, while all of our policies are learned on
visual inputs in simulated environments, we demonstrate the
successful transfer and high success rates when applying such
policies to manipulation tasks on a real UR5 robotic arm.

I. INTRODUCTION

In this work we consider visually guided robotics manipu-
lations and aim to learn robust visuomotor control policies
for particular tasks. Autonomous manipulations such as
assembling IKEA furniture [1] remain highly challenging
given the complexity of real environments as well as partial
and uncertain observations provided by the sensors. Successful
methods for task and motion planning (TAMP) [2]–[4] achieve
impressive results for complex tasks but often rely on limiting
assumptions such as the full state observability and known
3D shape models for manipulated objects. Moreover, TAMP
methods usually complete planning before execution and are
not robust to dynamic scene changes.

Recent learning methods aim to learn visuomotor control
policies directly from image inputs. Imitation learning (IL)
[5]–[8] is a supervised approach that can be used to learn
simple skills from expert demonstrations. One drawback
of IL is its difficulty to handle new states that have not
been observed during demonstrations. While increasing the
number of demonstrations helps to alleviate this issue,
an exhaustive sampling of action sequences and scenarios
becomes impractical for long and complex tasks.

*Equal contribution.
†Inria, École normale supérieure, CNRS, PSL Research University, 75005

Paris, France.
‡University Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000

Grenoble, France.
§This work was funded in part by the French government under manage-

ment of Agence Nationale de la Recherche as part of the "Investissements
d’avenir" program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

In contrast, reinforcement learning (RL) requires little su-
pervision and achieves excellent results for some challenging
tasks [9], [10]. RL explores previously unseen scenarios and,
hence, can generalize beyond expert demonstrations. As full
exploration is exponentially hard and becomes impractical
for problems with long horizons, RL often relies on careful
engineering of rewards designed for specific tasks.

Common tasks such as preparing food or assembling
furniture require long sequences of steps composed of many
different actions. Such tasks have long horizons and, hence,
are difficult to solve by either RL or IL methods alone. To
address this issue, we propose a RL-based method that learns
to combine simple imitation-based policies. Our approach
simplifies RL by reducing its exploration to sequences with
a limited number of primitive actions, that we call skills.

Given a set of pre-trained skills such as "grasp a cube"
or "pour from a cup", we train RL with sparse binary
rewards corresponding to the correct/incorrect execution
of the full task. While hierarchical policies have been
proposed in the past [11], [12], our approach can learn
composite manipulations using no intermediate rewards and
no demonstrations of full tasks. Hence, the proposed method
can be directly applied to learn new tasks. See Figure 1 for
an overview of our approach.

Our skills are low-level visuomotor controllers learned
from synthetic demonstrated trajectories with behavioral
cloning (BC) [5]. Examples of skills include go to the bowl,
grasp the object, pour from the held object, release the
held object, etc. We automatically generate expert synthetic
demonstrations and learn corresponding skills in simulated
environments. We also minimize the number of required
demonstrations by choosing appropriate CNN architectures
and data augmentation methods. Our approach is shown
to compare favorably to the state of the art [7] on the
FetchPickPlace test environment [13]. Moreover, using recent
techniques for domain adaptation [14] we demonstrate the
successful transfer and high accuracy of our simulator-trained
policies when tested on a real robot

We compare our approach with two classical methods:
(a) an open-loop controller estimating object positions and
applying a standard motion planner (b) a closed-loop con-
troller adapting the control to re-estimated object positions.
We show the robustness of our approach to a variety of
perturbations. The perturbations include dynamic change of
object positions, new object instances and temporary object
occlusions. The versatility of learned policies comes from
both the reactivity of the BC learned skills and the ability
of the RL master policy to re-plan in case of failure. Our



approach allows to compute adaptive control and planning in
real-time.

In summary, this work makes the following contributions.
(i) We propose to learn robust RL policies that combine BC
skills to solve composite tasks. (ii) We present sample efficient
training of BC skills and demonstrate an improvement
compared to the state of the art. (iii) We demonstrate
successful learning of relatively complex manipulation tasks
with neither intermediate rewards nor full demonstrations.
(iv) We successfully transfer and execute policies learned in
simulation to real robot setups. (v) We show successful task
completion in the presence of perturbations.

Our simulation environments and the code used in this
work is publicly available on our website [15].

II. RELATED WORK

Our work is related to robotics manipulation such as
grasping [16], opening doors [17], screwing the cap of a
bottle [18] and cube stacking [19]. Such tasks have been
addressed by various methods including imitation learning
(IL) [20] and reinforcement learning (RL) [21].
Imitation learning (IL). A neural network is trained to
solve a task by observing demonstrations. Approaches in-
clude behavioral cloning (BC) [5] and inverse reinforcement
learning [8]. BC learns a function that maps states to expert
actions [6], [7], whereas inverse reinforcement learning learns
a reward function from demonstrations in order to solve
the task with RL [19], [22], [23]. BC typically requires a
large number of demonstrations and has issues with not
observed trajectories. While these problems might be solved
with additional expert supervision [6] or noise injection in
expert demonstrations [24], we address them by improving the
standard BC framework. We use recent state-of-the-art CNN
architectures and data augmentation for expert trajectories.
This permits to significantly reduce the number of required
demonstrations and to improve performance.
Reinforcement learning (RL). RL learns to solve a tasks
without demonstrations using exploration. Despite impressive
results in several domains [9], [10], [17], [25], RL methods
show limited capabilities when operating in complex and
sparse-reward environments common in robotics. Moreover,
RL methods typically require prohibitively large amounts of
interactions with the environment during training. Hierarchical
RL (HRL) methods alleviate some of these problems by
learning a high-level policy modulating low-level workers.
HRL approaches are generally based either on options [26] or
a feudal framework [27]. The option methods learn a master
policy that switches between separate skill policies [28]–[31].
The feudal approaches learn a master policy that modulates a
low-level policy by a control signal [32]–[36]. Our approach
is based on options but in contrast to the cited methods, we
pretrain the skills with IL. This allows us to solve complex and
sparse reward problems using significantly less interactions
with the environment during training.
Combining RL and IL. A number of approaches combining
RL and IL have been introduced recently. Gao et al. [37]
use demonstrations to initialize the RL agent. In [38], [39]
RL is used to improve expert demonstrations, but does
not learn hierarchical policies. Demonstrations have also

been used to define RL objective functions [40], [41] and
rewards [42]. Das et al. [11] combine IL and RL to learn
a hierarchical policy. Unlike our method, however, [11]
requires full task demonstrations and task-specific reward
engineering. Moreover, the addressed navigation problem
in [11] has a much lower time horizon compared to our tasks.
[11] also relies on pre-trained CNN representations which
limits its application domain. Le at al. [12] train low-level
skills with RL, while using demonstrations to switch between
skills. In a reverse manner, we use IL to learn low-level
control and then deploy RL to find appropriate sequences
of pre-trained skills. The advantage is that our method can
learn a variety of complex manipulations without full task
demonstrations. Moreover, [11], [12] learn discrete actions
and cannot be directly applied to robotics manipulations that
require continous control.

In summary, none of the methods [11], [12], [38], [39] is
directly suitable for learning complex robotic manipulations
due to requirements of dense rewards [11], [39] and state
inputs [38], [39], limitations to short horizons and discrete
actions [11], [12], the requirement of full task demonstra-
tions [11], [12], [38], [39] and the lack of learning of visual
representations [11], [38], [39]. Moreover, our skills learned
from synthetic demonstrated trajectories outperform RL based
methods, see Section V-D.

III. APPROACH

Our RLBC approach aims to learn multi-step policies by
combining reinforcement learning (RL) and pre-trained skills
obtained with behavioral cloning (BC). We present BC and
RLBC in Sections III-A and III-B. Implementation details
are given in Section III-C.
A. Skill learning with behavioral cloning

Our first goal is to learn basic skills that can be com-
posed into more complex policies. Given observation-action
pairs D = {(ot, at)} along expert trajectories, we follow
the behavioral cloning approach [5] and learn a function
approximating the conditional distribution of the expert
policy πE(at|ot) controlling a robot arm. Our observations
ot ∈ O = RH×W×M are sequences of the last M depth
frames. Actions at = (vt,ωt, gt), at ∈ ABC are defined by
the end-effector linear velocity vt ∈ R3 and angular velocity
ωt ∈ R3 as well as the gripper openness state gt ∈ {0, 1}.

We learn the deterministic skill policies πs : O →
ABC approximating the expert policy πE. Given observa-
tions ot with corresponding expert (ground truth) actions
at = (vt,ωt, gt), we represent πs with a convolutional
neural network (CNN) and learn network parameters (θ, η)
such that predicted actions πs(ot) = (v̂t, ω̂t, ĝt) minimize
the loss LBC(πs(ot), at) = λ

∥∥[v̂t, ω̂t]− [vt,ωt]
∥∥2
2
+ (1 −

λ)
(
gt log ĝt + (1− gt) log (1− ĝt)

)
, where λ ∈ [0, 1] is a

scaling factor which we empirically set to 0.9.
Our network architecture is presented in Figure 1(right).

When training a skill policy πis, such as reaching, grasping
or pouring, we condition the network on the skill using the
recent FiLM architecture [43]. Given the one-hot encoding si

of a skill i, we use si as input to the FiLM generator which
performs affine transformations of the network feature maps.
FiLM conditions the network on performing a given skill,
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Fig. 1: Illustration of our approach. (Left): Temporal hierarchy of master and skill policies. The master policy πm is executed at a coarse
interval of n time-steps to select among K skill policies π1

s . . . π
K
s . Each skill policy generates control for a primitive action such as

grasping or pouring. (Right): CNN architecture used for the skill and master policies.

which permits learning a shared representation for all skills.
Given an observation ot, the network CNN(θ|si) generates a
feature map xit conditioned on skill i. The spatially-averaged
xi is linearly mapped with FC(η) to the action of πis.
B. RLBC approach

We wish to solve composite manipulations without full
expert demonstrations and with a single sparse reward. For this
purpose we rely on a high-level master policy πm controlling
the pre-trained skill policies πs at a coarse timescale. To learn
πm, we follow the standard formulation of reinforcement
learning and maximize the expected return Eπ

∑∞
k=0 γ

krt+k
given rewards rt. Our reward function is sparse and returns
1 upon successful termination of the task and 0 otherwise.
The RL master policy πm : O × ARL → [0, 1] chooses
one of the K skill policies to execute the low-level control,
i.e., the action space of πm is discrete: ARL = {1, . . . ,K}.
Note, that our sparse reward function makes the learning
of deep visual representations challenging. We, therefore,
train πm using visual features xit obtained from the BC pre-
trained CNN(θ|si). Given an observation ot, we use the
concatenation of skill-conditioned features {x1t , . . . , xKt } as
input for the master CNN(µ), see Figure 1(right).

To solve composite tasks with sparse rewards, we use a
coarse timescale for the master policy. The selected skill
policy controls the robot for n consecutive time-steps before
the master policy is activated again to choose a new skill.
This allows the master to focus on high-level task planning
rather than low-level motion planning achieved by the skills.
We expect the master policy to recover from unexpected
events, for example, if an object slips out of a gripper, by
re-activating an appropriate skill policy. Our combination of
the master and skill policies is illustrated in Figure 1(left).

RLBC algorithm. The pseudo-code for the proposed ap-
proach is shown in Algorithm 1. The algorithm can be divided
into three main steps. First, we collect a dataset of expert
trajectories Dk for each skill policy πks . For each policy,
we use an expert script that has an access to the full state
of the environment. Next, we train a set of skill policies
{π1

s , . . . , π
K
s }. We sample a batch of state-action pairs and

update parameters of convolutional layers θ and the skills
linear layer parameters η. Finally, we learn the master πm
using the pretrained skill policies and the frozen parameters
θ. We collect episode rollouts by first choosing a skill policy
with the master and then applying the selected skill to the
environment for n time-steps. We update the master policy
weights µ to maximize the expected sum of rewards.

Algorithm 1 RLBC
1: *** Collect expert data ***
2: for k ∈ {1, . . . ,K} do
3: Collect an expert dataset Dk for the skill policy πks
4: *** Train {π1

s , . . . , π
K
s } by solving: ***

5: θ, η = argminθ,η
∑K
k=1

∑
(ot,at)∈Dk

LBC(π
k
s (ot), at)

6: while task is not solved do
7: *** Collect data for the master policy ***
8: E = {} . Empty storage for rollouts
9: for episode_id ∈ {1, . . . , ppo_num_episodes} do

10: o0 = new_episode_observation()
11: t = 0
12: while episode is not terminated do
13: kt ∼ πm(ot) . Choose the skill policy
14: ot+n, rt+n = perform_skill(πkts , ot)
15: t = t+ n
16: E = E ∪ {(o0, k0, rn, on, kn, r2n, o2n, . . .)}
17: *** Make a PPO step for the master policy on E ***
18: µ = ppo_update(πm, E)

C. Approach details
Skill learning with BC. We use ResNet-18 for the

CNN(θ|si), which we compare to VGG16 and ResNet-
101 in Section V-A. We augment input depth frames with
random translations, rotations and crops. We also perform
viewpoint augmentation and sample the camera positions on a
section of a sphere centered on the robot and with a radius of
1.40m. We uniformly sample the yaw angle in [−15°, 15°],
the pitch angle in [15°, 30°], and the distance to the robot
base in [1.35m, 1.50m]. The impact of both augmentations is
evaluated in Section V-B. We normalize the ground truth of
the expert actions to have zero mean and a unit variance and
normalize the depth values of input frames to [−1, 1]. We
learn BC skills using Adam [44] with the learning rate 10−3

and a batch size 64. We also use Batch Normalization [45].
Task learning with RL. We learn the master policies with

the PPO [46] algorithm using the open-source implementa-
tion [47] where we set the entropy coefficient to 0.05, the
value loss coefficient to 1, and use 8 episode rollouts for the
PPO update. For the RLBC method, the concatenated skill
features {x1t , . . . , xKt } are processed with the master network
CNN(µ) having 2 convolutional layers with 64 filters of
size 3 × 3. During pre-training of skill policies we update
the parameters (θ, η). When training the master policy, we
only update µ while keeping (θ, η) parameters fixed. We
train RLBC using 8 different random seeds in parallel and
evaluate the best one.

Real robot transfer. To deploy our method on the real



robot, we use a state-of-the-art technique of learning sim2real
transfer based on data augmentation with domain randomiza-
tion [14]. This method uses a proxy task of cube position
prediction and a set of basic image transformations to learn
a sim2real data augmentation function for depth images. We
augment the depth frames from synthetic expert demonstra-
tions with this method and, then, train skill policies. Once the
skill policy is trained on these augmented simulation images,
it is directly used on the real robot.

IV. EXPERIMENTAL SETUP

This section describes the setup used to evaluate our
approach. First, we present the robot environment and the
different tasks in Sections IV-A and IV-B. Next, we describe
the synthetic dataset generation and skill definition for each
task in Sections IV-C and IV-D.

A. Robot and agent environment
For our experiments we use a 6-DoF UR5 robotic arm with

a 3 finger Robotiq gripper, see Figure 2. In simulation, we
model the robot with the pybullet physics simulator [48].
For observation, we record depth images with the Microsoft
Kinect 2 placed in front of the arm. The agent takes as input
the three last depth frames ot ∈ R224×224×3 and commands
the robot with an action at ∈ R7. The control is performed
at 10 Hz frequency.

B. UR5 tasks
For evaluation, we consider 3 tasks: UR5-Pick, UR5-Bowl

and UR5-Breakfast. The UR5-Pick task picks up a cube of a
size between 3.5 cm and 8.0 cm and lifts it up, see Figure 2a.
In UR5-Bowl the robot has to grasp the cube and place it in
the bowl, see Figure 2b. The UR5-Breakfast task contains
a cup, a bottle and a bowl as shown in Figure 2c. We use
distinct ShapeNet [49] object instances for the training and
test sets (27 bottles, 17 cups, 32 bowls in each set). The
robot needs to pour ingredients from the cup and the bottle
in the bowl. In all tasks, the reward is positive if and only
if the task goal is reached. The maximum episode lengths
are 200, 600, and 2000 time-steps for UR5-Pick, UR5-Bowl,
and UR5-Breakfast correspondingly.

C. Synthetic datasets
We use the simulated environments to create a synthetic

training and test set. For all our experiments, we collect
trajectories with random initial configurations where the
objects and the end-effector are allocated within a workspace
of 80 × 40 × 20 cm3. The synthetic demonstrations are
collected using an expert script designed for each skill. The
script has access to the full state of the system including
the states of the robot and the objects. To generate synthetic
demonstrations, we program end-effector trajectories and use
inverse kinematics (IK) to generate corresponding trajectories
in the robot joints space. Each demonstration consists of
multiple pairs of the three last camera observations and
the robot control command performed by the expert script.
For UR5-Pick, we collect 1000 synthetic demonstrated
trajectories for training. For UR5-Bowl and UR5-Breakfast,
we collect a training dataset of 250 synthetic demonstrations.
For evaluation of each task, we use 100 different initial
configurations in simulation and 20 trials on the real robot.

Demos VGG16-BN ResNet-18 ResNet-101

20 1% 1% 0%
50 9% 5% 5%
100 37% 65% 86%

1000 95% 100% 100%

TABLE I: Evaluation of BC skills trained with different CNN
architectures and number of demonstrations on the UR5-Pick task
in simulation.

Demos None Standard Viewpoint Standard &
Viewpoint

20 1% 49% 39% 75%
50 5% 81% 79% 93%

100 65% 97% 100% 100%

TABLE II: Evaluation of ResNet-18 BC skills trained with different
data augmentations on UR5-Pick task in simulation.

D. Skill definition
UR5-Pick task is defined as a single skill. For UR5-Bowl

and UR5-Breakfast, we consider a set of skills defined by
expert scripts. For UR5-Bowl, we define four skills: (a) go
to the cube, (b) go down and grasp, (c) go up, and (d) go to
the bowl and open the gripper. For UR5-Breakfast, we define
four skills: (a) go to the bottle, (b) go to the cup, (c) grasp
an object and pour it to the bowl, and (d) release the held
object. We emphasize that the expert dataset does not contain
full task demonstrations and that all our training is done in
simulation. When training the RL master, we execute selected
skills for 60 consecutive time-steps for the UR5-Bowl task
and 220 time-steps for the UR5-Breakfast task.

V. EVALUATION OF BC SKILL LEARNING

This section evaluates the different parameters of the BC
skill training for the UR5-Pick task and a comparison with
the state of the art. First, we evaluate the impact of the CNN
architecture and data augmentation on the skill performance
in Sections V-A and V-B. Then, we show that the learned
policies transfer to a real-robot in Section V-C. Finally, we
compare the BC skills with the state of the art in Section V-D.
A. CNN architecture for BC skill learning

Given the simulated UR5-Pick task illustrated in Fig-
ure 2a(left), we compare BC skill networks trained with
different CNN architectures and varying number of expert
demonstrations. Table I compares the success rates of policies
with VGG and ResNet architectures. Policies based on
the VGG architecture [50] obtain success rate below 40%
with 100 training demonstrations and reach 95% with 1000
demonstrations. ResNet [51] based policies have a success rate
above 60% when trained on a dataset of 100 demonstrations
and reach 100% with 1000 demonstrations. Overall ResNet-
101 has the best performance closely followed by ResNet-18
and outperforms VGG significantly. To conclude, we find that
the network architecture has a fundamental impact on the BC
performance. In the following experiments we use ResNet-
18 as it presents a good trade-off between performance and
training time.

When examining why VGG-based BC has a lower success
rate, we observe that it has higher validation errors compared
to ResNet. This indicates that VGG performs worse on the



(a) UR5-Pick (b) UR5-Bowl (c) UR5-Breakfast
Fig. 2: UR5 tasks used for evaluation: (a) task of picking up the cube, (b) task of bringing the cube to the bowl, (c) task of pouring the
cup and the bottle into the bowl. (Left) simulation, (right) real robot.

(a) FetchPickPlace (b) Comparison with [7]
Fig. 3: Comparison of BC ResNet-18 with state of the art [7] on
the FetchPickPlace task. BC ResNet-18 results are reported for 200
different initial configurations.

level of individual steps and is hence expected to result in
higher compounding errors.

B. Evaluation of data augmentation
We evaluate the impact of different types of data aug-

mentations in Table II. We compare training without data
augmentation with 3 variants: (1) random translations, ro-
tations and crops, as is standard for object detection, (2)
record each expert synthetic demonstration from 10 varying
viewpoints and (3) the combination of (1) and (2).

Success rates for UR5-Pick on datasets with 20, 50 and
100 demonstrations are reported in Table II. We observe
that data augmentation is particularly important when only
a few demonstrations are available. For 20 demonstrations,
the policy trained with no augmentation performs at 1%
while the policy trained with standard and viewpoint aug-
mentations together performs at 75%. The policy trained
with a combination of both augmentation types performs
the best and achieves 93% and 100% success rate for
50 and 100 demonstrations respectively. In summary, data
augmentation allows a significant reduction in the number of
expert trajectories required to solve the task.

C. Real robot experiments
We evaluate our method on the real-world UR5-Pick

illustrated in Figure 2a(right). We collect demonstrated
trajectories in simulation and train the BC skills network
applying standard, viewpoint and sim2real augmentations.
We show that our approach transfers well to the real robot
using no real images. The learned policy manages to pick up
cubes of 3 different sizes correctly in 20 out of 20 trials.

D. Comparison with state-of-the-art methods
One of the few test-beds for robotic manipulation is

FetchPickPlace from OpenAI Gym [13] implemented in
mujoco [52], see Figure 3a. The goal for the agent is to pick
up the cube and to move it to the red target (see Figure 3a).
The agent observes the three last RGB-D images from a
camera placed in front of the robot ot ∈ R100×100×4×3. The
positions of the cube and the target are set at random for

each trial. The reward of the task is a single sparse reward of
success. The maximum length of the task is 50 time-steps.

For a fair comparison with [7], we do not use any data
augmentation. We report the success rate of ResNet-18 policy
in Figure 3b. We follow [7] and plot the success rate of both
RL and IL methods with respect to the number of episodes
used (either trial episodes or demonstrations). Our approach
outperforms the policies trained with an imitation learning
method DAgger [6] in terms of performance and RL methods
such as HER [53] and DDPG [54] in terms of data-efficiency.
According to [7], DAgger does not reach 100% even after
8∗104 demonstrations despite the fact that it requires an expert
during training. HER reaches the success rate of 100% but
requires about 4 ∗ 104 trial episodes. Our approach achieves
the 96% success rate using 104 demonstrations.

Our policies differ from [7] mainly in the CNN architecture.
Pinto et al. [7] use a simple CNN with 4 convolutional layers
while we use ResNet-18. Results of this section confirm the
large impact of the CNN architecture on the performance of
visual BC policies, as was already observed in Table I.

VI. EVALUATION OF RLBC

This section evaluates the proposed RLBC approach and
compares it to baselines introduced in Section VI-A. First,
we evaluate our method on UR5-Bowl in Section IV-B.
We then test the robustness of our approach to various
perturbations such as dynamic changes of object positions,
dynamic occlusions, unseen object instances and the increased
probability of collisions due to small distances between
objects. We show that RLBC outperforms the baselines on
those scenarios both in simulation and on a real robot. Note,
that our real robot experiments are performed with skills
and master policies that have been trained exclusively in
simulation using sim2real augmentation [14]. We use the
same policies for all perturbation scenarios. Qualitative results
of our method are available in the supplementary video.

A. Baseline methods
We compare RLBC with 3 baselines: (a) a fixed sequence

of BC skills following the manually pre-defined correct order
(BC-ordered); (b) an open-loop controller estimating positions
of objects and executing an expert script (Detect & Plan);
(c) a closed-loop controller performing the same estimation-
based control and replanning in case if object positions change
substantially (Detect & Replan). We use the same set of skills
for RLBC and BC-ordered. We train the position estimation
network using a dataset of 20.000 synthetic depth images
with randomized object positions. All networks use ResNet-
18 architecture and are trained with the standard, viewpoint
and sim2real augmentations described in Section V-B.



UR5-Bowl
perturbations

Detect &
Plan

Detect &
Replan BC-ordered RLBC

No perturbations 17/20 16/20 17/20 20/20
Moving objects 0/20 12/20 13/20 20/20

Occlusions 17/20 10/20 2/20 18/20
New objects 16/20 14/20 15/20 18/20

TABLE III: Comparison of RLBC with 3 baselines on the real-world
UR5-Bowl task with dynamic changes of the cube position, dynamic
occlusions and new object instances.

(a) UR5-Bowl (b) UR5-Bowl

(c) UR5-Bowl (d) UR5-Breakfast

Fig. 4: Performance of RLBC and baseline methods in simulated
environments under perturbations: (a) Dynamic changes of cube
position; (b) Dynamic occlusions; (c) Replacing the cube by unseen
objects; (d) Decreasing the distance between objects.

B. Results on UR5-Bowl with no perturbations
We first evaluate RLBC and the three baselines on the

UR5-Bowl task (see Figure 2b). When tested in simulation,
all the baselines and RLBC manage to perfectly solve the task.
On the real-world UR5-Bowl task, BC-ordered and Detect &
Plan baselines sometimes fail to grasp the object which leads
to task failures (see Table III, first row). On the contrary,
RLBC solves the task in all 20 episodes given its ability to
re-plan the task in the cases of failed skills.

We have also attempted to solve the simulated UR5-Bowl
task without skills by learning an RL policy performing low-
level control. We have used ImageNet pre-trained ResNet-18
to generate visual features. The features were then used to
train low-level RL control policy with PPO. Whereas such a
low-level RL policy did not solve the task a single time after
104 episodes, RLBC reaches 100% after 400 episodes.

C. Robustness to perturbations
Robustness to dynamic changes in object position. We evaluate
RLBC against the baselines in the UR5-Bowl scenario where
the cube is moved several times during the episode. We
plot success rates evaluated in simulation with respect to the
number of position changes in Figure 4a. We observe the
stability of RLBC and the fast degradation of all baselines.
As both RLBC and BC-ordered use the same set of skills, the
stability of RLBC comes from the learned skill combination.
The "Moving objects" row in Table III reports results for 3
moves of the cube evaluated on the real robot. Similarly to

the simulated results, we observe excellent results of RLBC
and the degraded performance for all the baselines.
Robustness to occlusions. We evaluate the success of UR5-
Bowl task under occlusions. Each occlusion lasts 3 seconds
and covers a large random part of the workspace by a
cardboard. Figure 4b shows success rates with respect
to the number of occlusions in the simulated UR5-Bowl
environment. Similarly to the perturbation results in Figure 4a,
RLBC demonstrates high robustness to occlusions while
the performance of other methods quickly degrades. The
"Occlusions" row in Table III reports results for a single
occlusion performed during the real-robot evaluation. Baseline
methods are strongly influenced by occlusions except Detect
& Plan which performs well unless occlusion happens during
the first frames. Our RLBC policy performs best compared
to other methods.
Robustness to new object instances. We evaluate the robust-
ness of methods to the substitution of a cube by other objects
not seen during the training of UR5-Bowl task. Figure 4c
shows the success rate of RLBC and other methods with
respect to the number of new objects in simulation. The
novel objects are ordered by their dissimilarity with the
cube. The difficulty of grasping unseen objects degrades the
performance of grasping skills. In contrast to other methods
RLBC is able to automatically recover from errors by making
several grasping attempts. Table III reports corresponding
results on a real robot where the cube has been replaced by
10 unseen objects. Similarly to the other perturbations we
observe superior performance of RLBC.
Impact of the distance between objects. We vary the distance
between a bottle and a cup in the UR5-Breakfast task. The
smaller distance between objects A and B implies higher
probability of collision between a robot and A when grasping
B behind A. The choice of the grasping order becomes
important in such situations. While our method is able to learn
the appropriate grasping order to maximize the chance of
completing the task, the BC-ordered and other baselines use
pre-defined order. Figure 4d demonstrates the performance
of RLBC and BC-ordered for different object distances in
the simulated UR5-Breakfast task. As expected, RLBC learns
the correct grasping order and avoids most of collisions.
The performance of BC-ordered strongly degrades with the
decreasing distance. In the real-world evaluation, both RLBC
and ordered skills succeed in 16 out of 20 episodes when
the distance between objects is larger than 10 cm. However,
the performance of BC-ordered drops to 8/20 when the cup
and the bottle are at 4cm from each other. In contrast, RLBC
chooses the appropriate object to avoid collisions and succeeds
in 16 out of 20 trials.

VII. CONCLUSION

This paper presents a method to learn combinations of
primitive skills. Our method requires no full-task demonstra-
tions nor intermediate rewards and shows excellent results in
simulation and on a real robot. We demonstrate the versatility
of our approach in challenging settings with dynamic scene
changes. Future work will include learning multiple tasks
with shared skills and addressing contact-rich tasks.
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