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Abstract This paper describes a generic Taylor series based continuation method, the so-called Asymptotic
Numerical Method, to compute the bifurcation diagrams of nonlinear systems. The key point of this approach
is the quadratic recast of the equations as it allows to treat in the same way a wide range of dynamical systems
and their solutions. Implicit Differential-Algebraic Equations, forced or autonomous, possibly with time-delay
or fractional order derivatives are handled in the same framework. The static, periodic and quasi-periodic
solutions can be continued as well as transient solutions.
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Introduction

Numerical continuation methods are commonly used in different scientific communities. In this paper, one
Taylor series based continuation method, also called the Asymptotic Numerical Method (ANM), is applied to
various solutions of different types of dynamical systems. When the dynamical system of interest is an Ordinary
Differential Equations (ODE) system, there are a lot of methods available in the literature. The continuation
of equilibrium is a common possibility of [9,16,27]. The detection and the continuation of bifurcation points
has also been investigated in [13,14,28]. These tools often allow the continuation of periodic orbits of ODE and
of their bifurcations. More recently, some numerical tools were generalized to the continuation of equilibrium
and periodic orbits of Delay Differential Equations [17] and of neutral type DDE [1]. The methods developed
for the representation of periodic solutions can be time-domain methods e.g piecewise polynomial orthogonal
collocation [15] or shooting [38,40], mixed time and frequency methods e.g trigonometric collocation [25],
alternating frequency-time methods [5,18], and frequency domain method with the full harmonic balance
method [29,36]. In the last few years, progress has been achieved on the continuation of quasi-periodic solutions
of ODE, using different methods. In [39] the invariant tori are continued when in [19,43], a two dimensional
alternating frequency-time scheme is developed. In [24], the system of equations is recast quadratically and
a full quasi-periodic harmonic balance method is applied. Most of the methods presented above are designed
for steady states regimes. However, they generally include the possibility of continuing solutions of boundary
value problems and initial value problems if they are formulated as solutions of algebraic systems.

Commonly, the continuation tools use predictor-corrector methods for which the solutions on the branch
are computed from (a) previous solution(s) and a predictor method, generally of first order. Then, a corrector
is applied to the predicted solution to ensure that the corrected solution belongs to the solution branch. On
the contrary, in this paper the continuation method is the Asymptotic Numerical Method (ANM) which is
based on a high-order Taylor series expansion of the solution branch. It can be seen as a high-order predictor
method which most of the time does not require a correction step. In a way, this is similar to homotopy
techniques which are presented in [34]. The representation as a Taylor series gives a continuous representation
of the solution branch, as opposed to predictor-corrector methods. Three main approaches to compute the
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Taylor series coefficients of the solution branch can be considered. The first one is to do the calculation by
hand for a specific set of equations [4,8]. The second one uses automatic differentiation tools as in [6,7].
The third one relies on the quadratic recast of the equations. This latest approach is the one developed by
the authors for its genericity and its performance [22]. It has first been described in [9,10,11] in the case of
equilibrium branches of structures and then extended to periodic solutions of ODE using the Harmonic Balance
Method [12]. The generalization to the computation of quasi-periodic orbits has been done in [24]. The types
of dynamical systems that can be treated in this framework is limited only by the need of a quadratic recast
of the equations. This is far less restrictive than it could seem at first sight as will be shown throughout this
paper. Periodic solutions of fractional order systems can be continued in this framework [42]. Some very recent
work [22] has shown that the periodic solutions of delay differential equations (possibly of neutral type) could
also be investigated with this method.

This article generalizes the approach given in [12]. The first section briefly recalls the content of [12] and
gives the generalization to a large class of systems and to a large class of their solutions. The remaining sections
treat some examples of applications in detail. For clear brevity reasons, the examples treated do not cover all
the combinations of solution type and system type. In the second section, the solutions sought for are all time-
periodic. The periodic solutions of five types of dynamical systems, namely Ordinary Differential Equations
(ODE), Differential Algebraic Equations (DAE), Implicit Differential Equations (IDE), Delay Differential
Equations (DDE) and fractional order equations are investigated. It shows the versatility of our method
in terms of dynamical system type. In the third section, a system of ODE is fixed. Its equilibrium, its periodic
solutions, its quasi-periodic solutions and some of its transient regimes are continued. It shows the versatility
of our method in terms of solution type.

1 Elements of theory

1.1 The quadratic framework and the Asymptotic Numerical Method

This section consists on a brief recall of the quadratic framework that is used by the continuation method
developed by the authors. This is a key idea that allows a low time computation, an automatic and exact
Jacobian matrix of the nonlinear system considered and a generic implementation which minimizes problem
dependent implementation.

The so called Asymptotic Numerical Method (ANM) first described in [9,10,11] is based on the numerical
continuation of algebraic systems of the form

R(u, λ) = 0 (1)

where u ∈ R
n, λ ∈ R is the continuation parameter and R : Rn × R 7→ R

n is an analytic function of its
arguments. From now on, the vector of all the unknowns U = (u, λ) is introduced to simplify the notations.
Let U0 be a regular solution1 of the system (1). Let U1 be a tangent vector at U0. The classical arc-length
parameter [27] a = Ut

1(U0 −U) is introduced and the solution branch around U = U0 is written as a power
series2 with respect to a

U(a) = U0 + aU1 + a2U2 + a3U3 + · · ·+ aNUN . (2)

This writing of the solution branch as a high-order power series is the base of the ANM. Several methods
have been developed to compute the coefficients Up, p ≥ 1 of the series. The approach presented in this paper
consists on a quadratic recast of the equations (1) with the use of auxiliary variables Ua :

Rf(U,Ua) = Rf(Uf) = C+ L(Uf) +Q(Uf,Uf) = 0 (3)

where Uf ∈ R
nf+1, nf ≥ n and C, L and Q are respectively a constant, a linear and a quadratic operator

with values in R
nf . The subscript f stands for full and the subscript a stands for auxiliary. Once this recast

is given, the auxiliary variables Ua are expanded in Taylor series (2) in the same manner as for U. The
expansions are then introduced in the quadratic equations (3) and the terms of same order in a are collected.
It results in N linear systems of size nf to be solved (sharing the same matrix to be inverted). The systems
can be solved with the help of an efficient condensation algorithm which finally result in the Taylor series (2)
sought for. The interested reader is referred to [22] for all the details on the practical computation of the
series. It shall be emphasized here that once the quadratic recast is available, all the operations necessary

1 Regular means that the Jacobian matrix J at U0 is of full rank.
2 This is possible thanks to the analytic version of the implicit function theorem [20].
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to compute the Taylor series developments (2) can be automatized. Several examples of quadratic recasts are
given throughout the paper. The next two subsections 1.1.1 and 1.1.2 give a hint of how generic this framework
is through two examples. Firstly, it is shown how to recast polynomials and rational fractions quadratically.
Secondly, a general method for the quadratic recast of transcendental functions is given. In the appendix C,
the recurrence relations to compute the Taylor series development for these two examples are detailed.

1.1.1 Rational nonlinearity

The first step is to be able to recast rational fractions quadratically. To show the general idea of the method,
the variable y = 1

x
+ x3 is recast quadratically. For this purpose, two auxiliary variables u = 1

x
and v = x2

are introduced. The second is already quadratic while the first one can be written implicitly ux = 1. The case
x = 0 is not an issue here as this value is not a solution of the equation ux = 1. The final quadratic recast of
the variable y is finally







y − u− xv = 0
ux− 1 = 0
v − x2 = 0

(4)

This procedure can easily be generalized to any rational fraction. The appendix C details the computation of
the coefficients of the series (2) for this example.

1.1.2 Transcendental nonlinearity

The next fundamental step is to be able to recast functions like exp, cos, sin, arctan, . . . quadratically. The key
is to use a differentiated form of these variables. In the book [21], these recasts are discussed in more details
and a table of recasts of common functions is given in the article [22]. Hereafter, the example of sine function’s
recast is given as an highlight of the general approach.

Let us define the variable y = sin(x). Its differentiated form is dy = cos(x) dx. An auxiliary variable
z = cos(x), called companion variable, is introduced with its differentiated form dz = − sin(x) dx. The final
recast is

{

y − sin(x) = 0 and dy − zdx = 0
z − cos(x) = 0 and dz + ydx = 0

(5)

The original (not differentiated form) is used to compute the zero-th order coefficient of the series (2) and the
differentiated form is used to compute higher order coefficients. This works easily as the differentiated form
is quadratic with respect to the variables (x, y, z, dx, dy, dz). This form is very generic and can be computed
for all the elementary transcendental functions [21,22]. It gives the possibility to recast a very wide range of
nonlinearities quadratically. The appendix C details the computation of the coefficients of the series (2) for
this example.

1.2 The classical ODE framework for periodic solution by HBM and ANM

In [12], the case of periodic solutions of Ordinary Differential Equations (ODE) was treated. Let us consider
the following ODE system :

ẏ = f(t,y, λ) (6)

with y an unknown function of the time and λ the continuation parameter. f is an analytic function of its
arguments and is time-periodic. As in [12], the unknown function y is expanded in truncated Fourier series :

y(t) = Y0 +

H
∑

k=1

Yc,k cos(kωt) +

H
∑

k=1

Ys,k sin(kωt) (7)

The Harmonic Balance Method (HBM) consists in introducing this ansatz of y in the equations (6) and to
balance the 2H+1 harmonic terms corresponding to y’s Fourier development. This yields an algebraic system
of 2H + 1 vectorial equations for 2H + 1 vectorial unknowns Y0,Yc,k,Ys,k. The angular frequency ω is an
additional unknown which is determined either by the angular frequency of the forcing term if the system is
forced or by a phase condition [40] if the system is autonomous.
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A key point is that the algebraic system obtained after balancing the harmonics is automatically quadratic
if the original system (6) has been recast quadratically before applying the HBM. Therefore, in the same
manner as in the previous section and as explained in [12], auxiliary variables ya are introduced to obtain
from (6) a system of the form

d(ẏf) = c0(t) + λc1(t) + l0(yf) + λl1(yf) + q(yf,yf) (8)

where yf = (y,ya) is the full vector of unknowns and c0,c1,l0,l1,d,q are respectively two constant operators,
three linear operators and one bilinear operator. The form of equation (8) has been chosen to take into account
that the continuation parameter λ is not intended to be developed in Fourier series. In the reference [12] it
is shown how to recover the constant, linear and bilinear operators of the algebraic system obtained after the
harmonic balance from the operators of the system (8). It essentially gives the following algebraic system :

ωD(Yf) = C0 + λC1 + L0(Yf) + λL1(Yf) +Q(Yf,Yf) (9)

where the capital letters stand for frequency domain operators and vector of Fourier coefficients. It means
that, once the equations (6) has been recast in the form (8), its periodic solutions can be continued with the
ANM as explained in section 1.1.

1.3 Generalization of the quadratic recast of ODE to a large class of dynamical systems and the continuation
of their solution using ANM

Let us consider a differential system of the general form :

f(t,y, ẏ, ÿ,y(t − τ), Dα(y), λ) = 0 (10)

where y is an unknown function of the time, Dα is the Weyl fractional order α derivative [42] operator and
f is an analytic function of its arguments which is time-periodic. The main objective of this paper is to show
that a quadratic recast of this equation is possible and to show how this allows many types of solutions to be
continued (equilibrium, periodic or quasi-periodic, transients) within a unique framework.

The first step is to introduce two auxiliary vectors yτ
a (t) = y(t − τ) and yα

a = Dα(y) in order to isolate
the time delays and the fractional order derivatives. These two terms are rewritten quadratically following the
frequency-domain implementation developed in [42] and [23] respectively. The system (10) can now be written

f(t,y, ẏ, ÿ,yτ
a ,y

α
a , λ) = 0

yτ
a (t)− y(t− τ) = 0

yα
a −Dα(y) = 0

(11)

The two last equations are treated separately using appropriate methods (see [42] and [23]). The first equations
are a set of Implicit Differential Algebraic Equations (IDAE). They are treated in the same manner as the
ODE system of the previous section, following the idea of [12].

Hence, the second step is to recast the system in a quadratic format with the help of auxiliary variables
ya:

c0(t) + λc1(t) + λ2c2(t) + l0(yf) + λl1(yf) + q(yf,yf) + d(ẏf) + λd1(ẏf) + dd(ÿf) = 0 (12)

The form of these equations generalizes the form (8). c0,c1,c2,l0,l1,d,d1,dd,q are respectively three constant
operators, five linear operators and one bilinear operator. Again, this form as been chosen to take into account
that λ is constant in time.

Once this recast is available, the time-continuous system obtained (12) can be discretized automatically
with different methods. The next two subsections 1.3.1 and 1.3.2 show how to obtain a quadratic algebraic
system of the form (3) that can be continued with the ANM. Firstly, time domain discretization methods are
discussed and secondly frequency domain methods.
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1.3.1 Time-domain discretization methods

Without any requirement on the type of solution sought for, an integration scheme can be applied to the
quadratic system (12). Given a set of consistent initial conditions3 yf(0), ẏf(0), the solution can be approxi-
mated on the grid {0, h, 2h, . . . ,Mh} (h > 0 is the integration step and M a given integer) for instance by a
finite difference scheme with centered derivatives. For 0 ≤ k ≤ M − 1, the equations are then

0 = c0(kh) + λc1(kh) + λ2c2(kh) + l0(yf(kh)) + λl1(yf(kh)) + q(yf(kh),yf(kh))+

d(yf((k+1)h)−yf((k−1)h
2h ) + λd1(

yf((k+1)h)−yf((k−1)h
2h ) + dd(yf((k+1)h)−2yf(kh)+yf((k−1)h

h2 )

(13)

Like the system (12), this system is quadratic in the unknowns yf(mh), 0 ≤ m ≤ M and can be continued
with the Asymptotic Numerical Method. In this case, the transcendental functions can be treated exactly in
the same manner as briefly explained in section 3.4.

It is clear here that many other schemes could be used. The last example of this paper 3.4 describes an
implementation of a Newmark scheme. In appendix B, time-integrations of a pendulum are performed with a
class of Euler schemes that cover the explicit Euler, the implicit midpoint and the implicit Euler schemes. A
collocation method could also be used to solve the system of equations, as done in [26] for the continuation of
periodic solutions.

1.3.2 Frequency-domain discretization methods

Following the idea of [12] recalled in section 1.2, the method used to compute periodic solutions is here a purely
frequency-domain method. The solutions of the quadratic system (12) are expanded in Fourier series (7) and
after balancing the harmonics, in the same manner as for the equations (9), the system obtained is :

0 = C0 + λC1 + λ2C2 + L0(Yf) + λL1(Yf) +Q(Yf,Yf)+
ωD(Yf) + λωD1(Yf) + ω2DD(Yf)

(14)

The two last terms of this system are cubic in the unknowns (Yf, ω, λ) of the system. Hence, two additional
auxiliary variables are introduced Λ = λω and Ω = ω2 to obtain the final quadratic recast

0 = C0 + λC1 + λ2C2 + L0(Yf) + λL1(Yf) +Q(Yf,Yf)+
ωD(Yf) + ΛD1(Yf) +ΩDD(Yf)

0 = Ω − ω2

0 = Λ− λω

(15)

As opposed to the time-domain discretization method, the transcendental nonlinearities cannot be treated
directly with the formalism recalled in section 1.1.2 that is detailed in the book [21] and the article [22]. The
reference [21] states clearly that it is sufficient to treat the case of an auxiliary variable v(t) = g(u(t)) where
g is a transcendental function, which is defined with a differential system of the form :

v(0) = g(u(0))
v̇(t) = w(t)u̇(t)

(16)

where the variables u,v and w are periodic functions and ġ(u(t)) = w(t). The final quadratic recast with
U,V,W being the vectors of Fourier coefficients of u, v, w respectively is

v(0) = g(u(0)) and dv(0) = w(0)du(0)
dL(V) = dQ(W,U)

(17)

where dL and dQ are suitable linear and bilinear operators respectively. The details on this algebra are given
in appendix A.

The generalization of this approach to quasi-periodic solutions is explained in [24]. The solutions are
expressed as double truncated Fourier series of the form

y(t) = Y0 +

H1
∑

k1=1

H2
∑

k2=1

(Yc,k1,k2
cos(k1ω1t+ k2ω2t) +Ys,k1,k2

sin(k1ω1t+ k2ω2t)) . (18)

As there are two independent angular frequencies, an additional phase condition must be added to solve the
algebraic system obtained after balancing the harmonics. For brevity the algebra is not detailed in this paper.
The interested reader is referred to the article [24] or to the PhD thesis [41] for further details.

3 In the case of a system with delay or fractional order derivatives, it may be required to give the initial conditions over an
interval of the form [−T, 0].
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2 Periodic solutions of ODE, DAE, IDE, DDE and fractional order systems

In this section, periodic solutions of ODE, DAE, IDE, DDE and fractional order systems are continued.
Conservative and non-conservative systems are both treated. The functions appearing below are supposed
analytic on their domain of definition. As the solutions investigated in this section are all periodic, all the
functions of the time appearing are supposed periodic. The example of the pendulum is treated in three
different formulations : solving the polar coordinates equations of motion, solving the Cartesian coordinates
equations of motion and solving the equation of conservation of the energy. This illustrates the ability to cope
with ODE, DAE and IDE in the same framework and to check that the results are consistent. A Van der Pol
oscillator is then treated with different feedbacks, to show the application of the methods to fractional order
systems and to delay differential equations.

2.1 Ordinary Differential Equations : Usual polar coordinates pendulum

The ODE are a very widespread type of equations that can be given in the following form:

ẏ = f(y, t), where y and f(y, t) ∈ R
n (19)

The equations of the motions of the pendulum in polar coordinates are given by:

{

θ̇ = φ

φ̇ = − sin(θ)− λφ
(20)

where λφ is an unfolding term [35] added to compute the family of periodic solutions easily. Once the system
solved, λ is found to be zero since no periodic solution exists otherwise. These equations are recast quadratically,
in the form of equations (12) and (16) :















θ̇ = φ

φ̇ = −s− λφ

s(0) = sin(θ(0)) and ṡ = cθ̇

c(0) = cos(θ(0)) and ċ = −sθ̇

(21)

These equations are treated automatically with the method proposed in section 1.3.2. The results are shown
and discussed in section 2.4.

2.2 Differential Algebraic Equations : Cartesian coordinates pendulum

The DAE are a type of equations where there are both differential equations and algebraic equations between
the unknowns. It can be given in the following form:

{

ẏ1 = f(y1,y2, t), where y1, f(y1,y2, t) ∈ R
ndiff and y2, g(y1,y2, t) ∈ R

nalg

0 = g(y1,y2, t)
(22)

The equations of the motions of the pendulum in Cartesian coordinates are given by:







ẍ+ λẋ+ Tx = 0
ÿ + λẏ + Ty − 1 = 0

x2 + y2 − 1 = 0
(23)

where T is the tension of the string, x, y are respectively the horizontal and the vertical position of the pen-
dulum. Similarly to the previous case, λẋ and λẏ are unfolding terms [35] added to compute the family of
periodic solutions easily. Once the system solved, λ is found to be zero since no periodic solution exists oth-
erwise. These equations are already quadratic according to equations (12) and are then treated automatically
with the method proposed in section 1.3.2. The results are shown and discussed in section 2.4.
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2.3 Implicit Differential Equations : Conservation of the Energy

The IDE are a type of equations where the derivatives cannot be expressed explicitly (as for the ODE (19)).
It can be written

f(ẏ,y, t) = 0, where y, f(ẏ,y, t) ∈ R
n (24)

The potential energy of the pendulum is defined as −1 − cos(θ) so that its maximum value for periodic
orbits is 0. The equation of conservation of the total energy of the pendulum is given by:

θ̇2

2
− 1− cos(θ) = λ (25)

where λ is the energy of the pendulum. Its quadratic recast is given by:


















φ2

2 − 1− c = λ

φ = θ̇

s(0) = sin(θ(0)) and ṡ = cθ̇

c(0) = cos(θ(0)) and ċ = −sθ̇

(26)

These equations are compatible with equations (12) and (16) and are then treated automatically with the
method proposed in section 1.3.2. The results are shown and discussed in section 2.4.

2.4 Bifurcation diagram of the pendulum

The branch of periodic solutions of the pendulum is represented on the bifurcation diagrams in figure 1. The
relative error ǫ between the theoretical value Tth and the computed value T of the period of the oscillations is

given by ǫ =
∣

∣

∣

Tth−T
Tth

∣

∣

∣
. The theoretical value is given by Tth = 4K(sin(max(θ)

2 )2) where K is the complete elliptic

integral of the first kind (see [33] or [30] for what could be the first derivations of this formula). The relative
error gets bigger while the energy gets closer to its maximum value 0. It is probably because the computation
would need more than just a double precision setting and the solution more than H = 500 harmonics to be
well represented in this area. The periodic solution represented in figure 2 shows a solution with an energy
equal to −10−14, very close to its maximum value 0. We recall here that the reference of the potential energy
of the system has been taken so that the maximal value of the total energy of a periodic solution is 0.
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Fig. 1 A bifurcation diagram of the pendulum with H = 500. The top figure represents the amplitude of the oscillations with
respect to the energy. The bottom figure shows the relative error between the theoretical value (see text) and the computed value
of the period of the oscillations in logarithmic scales. In blue the ODE system (21) is solved, in dashed red the DAE system (23)
and in dotted yellow the IDE system (26).
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Fig. 2 A solution of the pendulum with the energy equals to −10−14 (that is very close to its maximum value 0) and H = 500
harmonics. It is almost a homoclinic orbit in the sense that it remains a very long time very close to the unstable equilibrium
θ = π (or −π).

The three bifurcation diagrams for the three different formulations are superimposed on the top figure 1. It
is not possible to distinguish the three bifurcation diagrams. On the bottom figure 1 the relative errors between
the analytic reference for the period and the one computed by our method are shown. This error remains very
small (under one percent) but shows that the three formulations do not give exactly the same results. This is
probably due on the one hand to the numerical accuracy and on the other hand to the system solved that are
not exactly the same.

The time computation for ten continuation steps is around 45 seconds for each system. The bifurcation
diagrams obtained with ODE and DAE formulations require 50 continuation steps and the one with IDE
formulation 75 continuation steps. The IDE formulation (25) has directly the energy as its continuation pa-
rameter. The DAE formulation (23) gives the tension of the string without post-processing as it is an unknown
of the equations. The ODE formulation (20) can be used to compute the stability of the solutions obtained.
Most of the time, this is the only way to have access to the stability informations of a system as a lot more
results are known for ODE than for other types of systems. It seems that the DAE formulation is more robust
when the solution gets closer to the homoclinic orbit, that is the limit where the period of the oscillations
tends to infinity (and the energy, as defined in (25), to zero). This can be seen through the relative error on the
period of the oscillations on the top of figure 1 that is everywhere smaller than for the other systems solved.
The reason behind this is not clear yet for the authors.

2.5 Delay Differential Equations and fractional order systems

Two other types of systems have been studied using ANM and HBM. The delay differential systems [23] and
the systems with fractional order derivatives [42]. To summarize these type of systems, a Van der Pol oscillator
with feedback is explored

ẍ− ε(1− x2)ẋ + x = −kεF (x) (27)

where F (x) = xτ or Dα(x) with Dα the operator of Weyl fractional order derivation of order α and xτ (t) =
x(t−τ). To recast these equations quadratically, three auxiliary variables y = ẋ, r = 1−x2 and Fnl = ry−kF (x)
are introduced. This gives :

ẏ + x+ εFnl = 0
y − ẋ = 0
r − 1 + x2 = 0
Fnl − kF (x) + ry = 0

(28)

Since equations (28) is quadratic according to the framework defined by equations (12), the results are
obtained automatically according to the process detailed in section 1.3.2. The figure 3 shows two bifurcation
diagrams computed with the system (28), where the amplitude of the solution x of (27) is represented with
respect to the continuation parameter which is τ or α depending on whether F (x) = xτ or F (x) = Dα(x)
respectively. The two bifurcation diagrams are completely different. There are two Hopf bifurcations4 for the
fractional order system and it seems that there are two vertical asymptotes at α = −1 and α = 3. It is

4 Following [42], we use here the name Hopf bifurcation. To our knowledge, this type of bifurcation has not been characterized
theoretically but is analogous to a Hopf bifurcation point from a numerical point of view.
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remarkable that the method still gives the results for α negative. The value α = −1 allows to solve integro-
differential equations with our method. The delay differential system shows only one Hopf bifurcation in the
area represented in figure 3. Even when τ is negative, the method gives some results which would not be
possible to obtain with standard solvers as this represents a feedback from the future : the system is not causal
anymore.

-2 -1 0 1 2 3 4
 or 
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2

3

4

5

6
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A
m

pl
itu

de
 o

f x

F(x) = x(t- ). Continuation with respect to .
F(x) = D (x). Continuation with respect to .
Equilibrium

Fig. 3 The solution branches of (27) with ε = 2 and k = 1.5 and for F (x) = x(t − τ) in blue and F (x) = Dα(x) in red. The
continuation parameter is respectively τ and α. The blue point and the red point with abscissa 0 coincide since both systems are
equal : x(t − 0) = x(t) = D0(x)(t).

3 Equilibrium, periodic, quasi-periodic and transients regimes of an ODE

This section shows the different types of solutions that can be obtained with our method. For the sake of
clarity, an academic example consisting in a system of coupled Van der Pol oscillators is studied in detail.
This example has been used to illustrate the quasi-periodic Harmonic Balance Method (QPHBM) in [24]. The
equations are

ẋ1 + a1ẋ1 +Ω2
1x1 = (b1λ− c1λ(x1 + x2)− d1λ(x1 + x2)

2)(ẋ1 + ẋ2) (29)

ẋ2 + a2ẋ2 +Ω2
2x2 = (b2λ− c2λ(x1 + x2)− d2λ(x1 + x2)

2)(ẋ1 + ẋ2) (30)

The value of the dimensionless parameters are Ω1 = 1, a1 = 0.01, b1 = 0.5, c1 = d1 = 2 ; Ω2 = 2.5, a2 = 0.025,
b2 = 1, c2 = d2 = 4. The first order quadratic recast is the one derived in [24] :

ẋ1 = y1
ẏ1 = −a1y1 −Ω2

1x1 + b1λ(y1 + y2)− c1λw − d1λv

ẋ2 = y2
ẏ2 = −a2y2 −Ω2

2x2 + b2λ(y1 + y2)− c2λw − d2λv

0 = r − (x1 + x2)
2

0 = w − (x1 + x2)(y1 + y2)
0 = v − (x1 + x2)× w

(31)

Now these quadratic equations (in the format (12) previously defined) will be used to continue equilibrium,
periodic solutions, quasi-periodic solutions and transient regimes of the system. For equilibrium or periodic
solutions, the stable solutions are represented in solid lines and the unstable solutions in dotted lines.
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Fig. 4 A bifurcation diagram of the equilibrium of system (30). The Hopf bifurcations are represented by red dots.

3.1 Equilibrium

In the quadratic recast (31), the derivatives are replaced by 0 to obtain the system to solve to find the
equilibrium. This system is obtained (easily) automatically from (31). It is clear here that the equilibrium is
just x1 = y1 = x2 = y2 = r = w = v = 0. The stability of this equilibrium requires the computation of the
eigenvalues of the Jacobian matrix of the first order system. This computation is automatized with the help
of the condensation operation, detailed in [22]), and gives two Hopf bifurcations for λ = 0.02 and λ ≃ 0.025
as shown in figure 4.

3.2 Periodic solutions

The quadratic recast (31) is used for periodic solutions as explained in section 1.3.2. From the Hopf bifurcations
computed in the previous section, two periodic orbits arise that can be continued. The starting point is
computed automatically using the eigenvectors and the eigenvalues of the Jacobian matrix at the bifurcation
point [3]. The stability of the periodic orbit is given by the Floquet exponents of the systems, computed with
Hill’s method as explained in [31] and [2]. With this system two Neimark-Sacker bifurcations are detected, one
on each branch, for λ ≃ 0.03 on the branch arising from the second Hopf bifurcation and for λ ≃ 0.35 on the
branch arising from the first Hopf bifurcation. The bifurcation diagram obtained is represented on figure 5.

3.3 Quasi-periodic solutions

The quadratic recast (31) is also used here for quasi-periodic solutions. They are represented by double Fourier
series (18), using the Quasi-Periodic Harmonic Balance Method (QPHBM) to write the equations (31) in the
frequency domain. The QPHBM has been explained in [24] using this same example. In this same reference,
the reader will find the explanation on how to obtain an algebraic system automatically to continue the
quasi-periodic solutions. The bifurcation diagram obtained is represented on figure 6.

Only one branch of quasi-periodic solutions that connects the two bifurcations (see figure 6) can be com-
puted from the Neimark-Sacker bifurcations. The starting point is computed automatically from the eigenvec-
tors of Hill’s matrix and the Floquet exponents at the bifurcation point (not detailed here). The question of
the stability of a quasi-periodic orbit is a tough problem that is not investigated here.

3.4 Transient regimes

In this section, the system of equations (31) is discretized on time samples : 0, h, 2h, . . . , T−h, T where T = 400
and the integration step is h = T

N−1 , N ∈ N. With this definition the number of time samples is N which is set
to 2000 in the applications. The algebraic system is obtained by writing a Newmark scheme [37] in the way
explained in section 1.3.1, that is, for all n ≥ 1 :
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Fig. 5 A bifurcation diagram of the periodic solutions of the system (30). The x-axis is in logscale to help to distinguish the two
branches arising from H1 and H2, which are the first and the second Hopf bifurcations shown on figure 4. NS1 and NS2 are the
two Neimark-Sacker bifurcations detected.
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Fig. 6 A bifurcation diagram showing the quasi-periodic branch of the system (30). NS1 and NS2 are the two Neimark-Sacker
bifurcations shown on figure 5.

x1(nh) = x1((n− 1)h) + hy1((n− 1)h) + h2
(

((12 − β)ẍ1((n− 1)h) + βẍ1(nh)
)

y1(nh) = y1((n− 1)h) + h(1− γ)ẍ1((n− 1)h) + hγẍ1(nh)
x2(nh) = x2((n− 1)h) + hy2((n− 1)h) + h2

(

((12 − β)ẍ2((n− 1)h) + βẍ2(nh)
)

y2(nh) = y2((n− 1)h) + h(1− γ)ẍ2((n− 1)h) + hγẍ2(nh)
r(nh) = (x1(nh) + x2(nh))

2

w(nh) = (x1(nh) + x2(nh))(y1(nh) + y2(nh))
v(nh) = (x1(nh) + x2(nh))× w(nh)

(32)

β and γ are the parameters of the scheme and will be set to 1
4 and 1

2 respectively for the computations.
The second order derivatives are given by :

ẍ1(nh) = −w2
1x1(nh)− a1y1(nh) + (b1λ)(y1(nh) + y2(nh))− (c1λ)w(nh) − (d1λ)v(nh)

ẍ2(nh) = −w2
2x2(nh)− a2y2(nh) + (b2λ)(y1(nh) + y2(nh))− (c2λ)w(nh) − (d2λ)v(nh)

(33)
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Initial conditions are added to the system (32). They are set to x1(0) = x2(0) = y2(0) = 0 and y1(0) = 0.01. It
should be noticed that the system (32) can be automatically obtained thanks to the quadratic recast (31). The
transient solutions are continued with respect to λ. Instead of a bifurcation diagram, the figure 7 represents
all the transient solutions along the solution branch in a waterfall plot.

Fig. 7 Two waterfalls of the transients of (30). The left figure represents the motion of the first oscillator (of resonance frequency
Ω1) and the right figure the motion of the second oscillator (of resonance frequency Ω2). For small values of λ, the transients
vanish towards the stable Equilibrium. For larger values of λ, the transients first converge towards a periodic orbit at pulsation
around Ω1, then there is a narrow transition zone where the transients become very long and finally, for large values of λ the
transients converge towards a periodic orbit at a pulsation around Ω2.

For small values of λ . 0.05, the oscillations are either evanescent λ < 0.02 or very slowly growing to a
limit cycle that would need a longer time of integration to be reached. Between λ ≃ 0.05 and λ ≃ 0.2144,
the solutions tend to the first limit cycle, which has a frequency similar to the resonance frequency of the
first oscillator, Ω1. For λ & 0.2144, the solutions tend to the second limit cycle, which has a frequency similar
to resonance frequency of the second oscillator, Ω2. When λ ≃ 0.2144, the transients become very long and
look very much like the quasi-periodic regimes found in the previous section. However, as this is only a time-
integration algorithm, one should not forget that these results depend on the time of integration and on the
integration step. When the number of time samples is increased to N = 4000, 6000, 8000, this quasi-periodic
transition occurs for λ ≃ 0.1780, 0.1720, 0.1700 respectively.

3.5 Phase space representation

The different types of solutions continued in the previous sections are represented altogether in 2-dimensional
and 3-dimensional projections of the 4-dimensional phase space (x1, y1, x2, y2) in figure 8. Two transient trajec-
tories are represented together with the two stable limit cycles and the quasi-periodic orbit. The two transients
were computed with slightly different initial conditions : for both, x2(0) = y1(0) = y2(0) = 0. The transient
that converges towards the limit cycle at Ω1 (in blue, in the center of the 3-D projection) has been computed
with x1(0) = 10−3 and the other one, in red, that converges towards the limit cycle at Ω2, with x1(0) = 10−2.
As the 3-D projection is in the space (x2, y2, y1), the two transients start from the same point, but this is of
course not the case in the full 4-D phase space.

All the solutions represented in figure 8 have been computed using a unique code developed by the authors.
The value of the continuation parameter is λ = 0.2144.
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Fig. 8 These figures show three different projections of the phase space for λ = 0.2144. The quasi-periodic orbit is in pink while
the two limit cycles associated with the pulsation Ω1 and Ω2 are in blue and in red respectively. The transients in dark blue and
dark red converge respectively to the blue and red limite cycles.

4 Conclusion and perspectives

This article shows how the quadratic recast of any smooth nonlinear system can be applied to continue its
equilibrium, periodic or quasi-periodic solutions as well as its transients with the Asymptotic Numerical Method
(ANM). The approach presented has been shown to be applicable to ordinary differential equations, delay
differential equations, implicit differential algebraic equations and fractional order equations. The solutions
of these systems are continued using the same implementation of the ANM. Therefore, further developments
of the ANM benefit directly to all the continuation problems handled, requiring very few modifications. The
academic examples proposed have illustrated the genericity of the framework described. An object-oriented
implementation of the method has been developed5 under the name Manlab. The code Manlab tries to unify
the treatment of the large variety of solutions and systems presented in this paper. From a user point of view
as well as from a developer point of view, there is a minimum of work to do to switch from a type of system
to another and from a type of solution to another. The crucial point is to provide a quadratic recast of the
dynamical systems, most of the other operations have been automatized or could be automatized.

The perspectives of this work are many. The global continuation of an integration scheme offers the pos-
sibility to study its properties from a numerical point of view as can be seen in appendix B. The attractors
of a system can be sought for by continuation with respect to the initial conditions. Chaotic areas could be
investigated using the sensibility of the continuation to the initial conditions. The high robustness of the con-

5 Manlab is available online on the dedicated website https://manlab.lma.cnrs-mrs.fr/ .
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tinuation with the ANM is clearly an advantage to treat in a unified framework a wide range of problems
coming from either purely algebraic equations or time domain and frequency domain discretizations of contin-
uous equations. The comparison of several standard methods of representation of the solutions of a system is
possible, allowing global comparison between direct time integration, harmonic balance, orthogonal polynomial
collocation, trigonometric collocation, alternating frequency time scheme, etc... in the same framework.

Acknowledgements This work has been carried out in the framework of the Labex MEC (ANR-10-LABX-0092) and of the
A*MIDEX project (ANR-11-IDEX-0001-02), funded by the Investissements d’Avenir French Government program managed by
the French National Research Agency (ANR). Conflict of Interest: The authors declare that they have no conflict of interest.

A Algebra of the HBM applied on transcendental functions

The case of an auxiliary variable v defined as v(t) = g(u(t)) is treated in detail. Let us suppose that the auxiliary variable
w(t) = ġ(u(t)) has been rewritten quadratically6, the variable v can be defined as the unique solution of the differential system

v(0) = g(u(0))
v̇(t) = w(t)u̇(t)

(34)

which is the same as (16). The auxiliary variables u0 = u(0), v0 = v(0) and w0 = w(0) are introduced to recast the first equation
quadratically with the system :

v0 = g(u0)
dv0 = w0du0

. (35)

This system is treated with the formalism explained in [22] briefly recalled in section 1.1.2. For the second equation, let us define
the complex truncated Fourier series of u,v and w by :

u(t) =
H
∑

h=−H

Uh exp(ihωt) , v(t) =
H
∑

h=−H

Vh exp(ihωt) and w(t) =
H
∑

h=−H

Wh exp(ihωt) (36)

The equation v̇(t) = w(t)u̇(t) becomes :

H
∑

h=−H

ihωVh exp(ihωt) =





H
∑

h=−H

Wh exp(ihωt)









H
∑

h=−H

ihωUh exp(ihωt)



 (37)

which can be written

H
∑

h=−H

ihωVh exp(ihωt) =
2H
∑

h=−2H









∑

k1+k2=h
−H≤k1,k2≤H

Wk1
ik2ωUk2









exp(ihωt). (38)

The right-hand-side series is truncated at order H and the harmonics are balanced :

∀h ∈ J−H,HK, ihωVh =
∑

k1+k2=h
−H≤k1,k2≤H

Wk1
ik2ωUk2

. (39)

ω is the angular frequency of the periodic solution and thus remains positive. It can be simplified to obtain

∀h ∈ J−H,HK, hVh =
∑

k1+k2=h
−H≤k1,k2≤H

Wk1
k2Uk2

. (40)

This expression is quadratic with respect to the Fourier coefficients. Hence the transcendental variable v can be written with a
quadratic formalism in the frequency domain in an automated way. The operators V 7→ dL(V) and (U,W) 7→ dQ(W,U) are
respectively the left hand side and the right hand side of the equations (40). U, V and W are the vectors of Fourier coefficients
of u, v and w respectively. It is easy to see that dL and dQ are respectively linear and bilinear in their argument(s).

B Time-integration of the pendulum with a class of Euler schemes

The ODE equations of the pendulum in polar coordinates (20)

{

θ̇ = φ

φ̇ = − sin(θ)
(41)

6 If this is not the case, an auxiliary variable z(t) = ẇ(t) is added and the procedure explained here is applied recursively.
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Fig. 9 The top figure shows a waterfall of the trajectories of (42). The bottom figure shows the evolution of the discrete energy
(in color) with respect to time (y-axis) for all the values of λ (x-axis). From λ = 0 to λ = 1, the scheme evolves from an explicit
Euler to an implicit Euler. The value λ = 0.5 is plotted in black to enhance the trajectory obtained with this scheme, which
is known to be symplectic [32]. It is clear in the bottom figure that the scheme either creates or dissipates energy when λ is
respectively smaller or greater than 0.5.

are solved using a generalized Euler scheme on the discretized grid {0, h, 2h, . . . , (N − 1)h}. The standard notation θn = θ(nh)
and φn = φ(nh) is used. The initial conditions are θ0 = π

2
and φ0 = 0. The discretized system is then

{

θn+1 = θn + h((1 − λ)φn + λφn+1)
φn+1 = φn − h sin((1 − λ)θn + λθn+1)

(42)

where the parameter λ is the continuation parameter and interpolates an explicit Euler scheme (for λ = 0) and an implicit Euler
scheme (for λ = 1). The centered Euler scheme (λ = 1

2
) is known to be a simple symplectic scheme [32]. It is then well suited to

solve these conservative equations. The auxiliary variables ϑn = (1−λ)θn+λθn+1 and Fn = sin(ϑn) are added to the system (42)
with the companion variables Gn = cos(ϑn). The final quadratic recast with the differentiated forms of the auxiliary variables is

∀n ∈ J0, N − 1K,



















θn+1 = θn + h((1− λ)φn + λφn+1)
φn+1 = φn − hFn

ϑn = (1 − λ)θn + λθn+1

Fn = sin(ϑn) and dFn = Gndϑn

Gn = cos(ϑn) and dGn = −Fndϑn

(43)

The top figure 9 shows the trajectories obtained for N = 500 and h = 2π
100

, that is over around 5 periods of the analytic

solution. The bottom figure 9 shows the discrete energy Hn =
φ2
n

2
− 1 − cos(θn) in color for 0 ≤ λ ≤ 1. It is clear that energy is

created when λ < 0.5 while energy is dissipated when λ > 0.5. The trajectory obtained for λ = 0.5 is represented in black showing
the stability of the energy over time, as expected for this symplectic scheme.

C Computation of Taylor series coefficients

Some examples (taken from the section 1.1) of practical computation of the Taylor series coefficients are shown. However, this
procedure is completely automatized from the quadratic formulation of the system of equations. It is detailed here for pedagogical
purposes. The following computations illustrates how easy and straightforward it is to derive Taylor series coefficients when a
quadratic recast is given.

C.1 Rational case

The system of equations is :







y − u− xv = 0
ux− 1 = 0
v − x2 = 0

(44)
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Assume that (x0, y0, u0, v0) is a solution of the equations. The n-th Taylor series coefficient of the unknown x is written xn,
such that :

x(a) =

+∞
∑

n=0

xna
n (45)

Replacing the variables by their Taylor series in the equations gives :



















∑

+∞

n=0
yna

n −
∑

+∞

n=0
una

n −
(

∑

+∞

n=0
xna

n
)(

∑

+∞

n=0
vna

n
)

= 0
(

∑+∞

n=0
una

n
)(

∑+∞

n=0
xna

n
)

− 1 = 0
∑+∞

n=0
vna

n −
(

∑+∞

n=0
xna

n
)(

∑+∞

n=0
xna

n
)

= 0

(46)

Developing the products and equating the terms of same order in a finally gives, for n ≥ 0:







yn − un −
∑n

i=0 xivn−i = 0
∑n

i=0
uixn−i − 1δn=0 = 0

vn −
∑n

i=0
xixn−i = 0

(47)

where δn=0 is the Kronecker symbol, its value is 1 if and only if n = 0.
This system for n = 0 gives







y0 − u0 − x0v0 = 0
u0x0 − 1 = 0
v0 − x2

0 = 0
(48)

which is verified from the assumption that (x0, y0, u0, v0) is a solution of the equations (44).
For n ≥ 1, the terms of higher order are put apart to make the recurrence relations appear :







yn − un − x0vn − xnv0 =
∑n−1

i=1
xivn−i

u0xn + unx0 = −
∑n−1

i=1
uixn−i

vn − 2x0xn =
∑n−1

i=1
xixn−i

(49)

which is equivalent to the linear system

J0 ×









xn

yn
un

vn









=





∑n−1

i=1
xivn−i

−
∑n−1

i=1
uixn−i

∑n−1

i=1
xixn−i



 (50)

where J0 =





−v0 1 −1 x0

u0 0 x0 0
−2x0 0 0 1



 is the Jacobian matrix of the system at the solution point (x0, y0, u0, v0). From the knowledge of

the initial solution point (x0, y0, u0, v0) it is then possible to deduce the whole Taylor series of the variables x, y, u and v.

C.2 Transcendental case

The system of equations and its differential form are given by :

{

y − sin(x) = 0 and dy − zdx = 0
z − cos(x) = 0 and dz + ydx = 0

(51)

Assume that (x0, y0, z0) is a solution of the equations. Thus y0 = sin(x0) and z0 = cos(x0). Contrarily to the previous section,
the differential form of the equations is used to compute the higher order coefficients of the Taylor series by writing

{

∂y
∂a

− z(a)∂x
∂a

= 0
∂z
∂a

+ y(a)∂x
∂a

= 0
(52)

The derivative ∂x
∂a

of the Taylor series of the unknown x with respect to a is :

∂x

∂a
(a) =

+∞
∑

n=0

(n+ 1)xn+1a
n (53)

Replacing the variables by the corresponding series in the equations (52) gives :







∑+∞

n=0
(n+ 1)yn+1a

n −
(

∑+∞

n=0
zna

n
)(

∑+∞

n=0
(n+ 1)xn+1a

n
)

= 0
∑+∞

n=0
(n+ 1)zn+1a

n +
(

∑+∞

n=0
yna

n
)(

∑+∞

n=0
(n+ 1)xn+1a

n
)

= 0
(54)

Developing the products and equating the terms of same order in a finally gives, for n ≥ 0:

{

(n+ 1)yn+1 −
∑n

i=0
zi(n+ 1− i)xn+1−i = 0

(n+ 1)zn+1 +
∑n

i=0
yi(n+ 1− i)xn+1−i = 0

(55)
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The terms of higher order are put apart and everything is divided by (n+ 1) to make the recurrence relations appear :

{

yn+1 − z0xn+1 =
∑n

i=1 zi
n+1−i
n+1

xn+1−i

zn+1 + y0xn+1 = −
∑n

i=1 yi
n+1−i
n+1

xn+1−i
(56)

which is equivalent to the linear systems

J0 ×





xn+1

yn+1

zn+1



 =

[ ∑n
i=1

zi(n+ 1− i)xn+1−i

−
∑n

i=1 yi(n+ 1− i)xn+1−i

]

(57)

where J0 =

[

−z0 1 0
y0 0 1

]

is the Jacobian matrix of the system at the solution point (x0, y0, z0). From the knowledge of the initial

solution point (x0, y0, z0) it is then possible to deduce the whole Taylor series of the variables x, y and z.
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30. marquis de Laplace, P.S.: Traité de mécanique céleste, vol. 1. Crapelet (1799)
31. Lazarus, A., Thomas, O.: A harmonic-based method for computing the stability of periodic solutions of dynamical systems.
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