
HAL Id: hal-02274782
https://hal.science/hal-02274782

Submitted on 29 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wise Objects for IoT (WIoT): Software Framework and
Experimentation

Ilham Alloui, Eric Benoit, Stephane Perrin, Flavien Vernier

To cite this version:
Ilham Alloui, Eric Benoit, Stephane Perrin, Flavien Vernier. Wise Objects for IoT (WIoT): Soft-
ware Framework and Experimentation. Communications in Computer and Information Science, 2019,
Software Technologies 13th International Joint Conference, ICSOFT 2018, Revised Selected Papers,
pp.349-371. �hal-02274782�

https://hal.science/hal-02274782
https://hal.archives-ouvertes.fr

Wise Objects for IoT (WIoT): Software
Framework and Experimentation

Ilham Alloui1, Eric Benoit1, Stéphane Perrin1, Flavien Vernier1
[0000−0001−7684−6502]

Université Savoie Mont Blanc - LISTIC, 5 chemin de bellevue, Annecy-le-Vieux,
74940 ANNECY, France

{ilham.alloui, eric.benoit, stephane.perrin, flavien.vernier}@univ-smb.fr

Abstract. Despite their expansion, Internet of Things (IoT) technolo-
gies remain young and require software technologies to ensure informa-
tion management in order to deliver sophisticated services to their users.
Users of IOT technologies particularly need systems that adapt to their
use and not the reverse. To meet those requirements, we enriched our ob-
ject oriented framework WOF (Wise Object Framework) with a commu-
nication structure to interconnect WOs (Wise Objects) and IoT. Things
from IoT are then able to learn, monitor and analyze data in order to be
able to adapt their behavior. In this paper, we recall the underlying con-
cepts of our framework and then focus on the interconnection between
WOs and IoT. This is enabled by a software bus-based architecture and
IoT related communication protocols. We designed a dedicated commu-
nication protocol for IoT objects. We show how IoT objects can benefit
from learning, monitoring and analysis mechanisms provided by WOF to
identify usual behavior of a system and to detect unusual behavior. We
illustrate our approach through two case studies in home automation.
The first shows how a wise smart presence sensor learns on a classroom
occupation. The second shows how a wise system helps us to see corre-
lation among several WOs.

Keywords: Wise Object, IoT, Software Architecture, Communication,
Knowledge Analysis.

1 INTRODUCTION

The Internet of Things (IoT) is known as the extension of current Inter-
net to provide connection and communication between devices or phys-
ical objects referred to as ”Things” [7]. Even growing substantially in
number and use, the Internet of Things (IoT) technologies remain young
and require software technologies to ensure data/information manage-
ment among things in order to deliver sophisticated services to their
users. Examples are home automation (HA) things which are getting
more and more involved within our daily life: HA things are either within
a ready-to-use systems (like boxes) or singles to be integrated to an ex-
isting system or platform. In both cases, when it is provided, support

2 I. Alloui et al.

for data monitoring and analysis is very limited [11].Users need to have
a remote access to things, for instance to switch off lights they forgot or
turn off the strove. Communication provided by existing IoT technolo-
gies should then involve basic data or information such as current state
of things. Moreover, users of a HA need the technology adapts to their
use and not the reverse: in our previous example, the system (instead of
users) would for instance detect that unusually the lights are switched on
at midnight. Then it would either adapt to this change (i.e. register this
new behavior as usual) or take initiative to raise an alert or to switch
the lights off depending on the knowledge it has (i.e. if no presence is
detected).

This implies that the system is able to: (a) identify usual behavior; (b)
detect the changes in the way it is being used and (c) either react by
taking initiative or change its behavior to comply with those new usages.
Our proposal is that intelligent software systems could enhance IoT with
useful capabilities such as learning, monitoring and adaptation to meet
users’ requirements.

Starting from works on IoT and on intelligent software systems [12] [6]
we aim to add value to IoT through WOF (Wise Object Framework) [3],
a software object framework that provides things (be them physical or
software), built-in mechanisms for learning, monitoring, analyzing and
managing data/information (see Figure 1). Those software mechanisms

:therm

WO

Wise Object
System

:shutter

WO

:heating

WO

:switch

WO

:mobile

WO

Fig. 1. Example of Home Automation Wise Object System [2]

allow IoT-based systems like in HA to: (a) identify common usage (i.e.
usual behavior of their users); (b) detect changes in usage (unusual be-
havior); (c) adapt to the new usage (system in automatic mode) or simply
give information to the users (manual mode).

Identifying a system common usage by software is not an easy work.
At the best of our knowledge, common usage is usually studied from a
psychological point of view for the human [1] or from the signal processing
point of view with change detection methods [5] for data, but never from
the software point of view. This research issue raises many questions such
as: what is considered as common usage? Is common usage necessarily
related to time? Is there an interval of acceptance of unusual behavior?

Wise Objects for IoT (WIoT): Software Framework and Experimentation 3

Which one? What methods/techniques better identify common usage?
In which context? etc.
As users’ behavior identification and system adaptation rely on data col-
lected from connected things that may be distributed as is the case in
IoT, we realized a software bridge linking IoT objects to our WOF soft-
ware objects. In this paper we focus mainly on this link between software
”wise” objects (WOs) and IoT through the WOF. WOs can be seen as
software avatars related to things. This paper extends [2] and introduces
a new experiment which for the first time highlights the behavior of sev-
eral WOs in the same environment and shows that correlated unusual
behavior among several WOs may result from a same cause. The first
case study presented in [2] illustrates the behavior of a single wise thing
(a smart presence device) and mainly shows how such thing is able to
manage and use presence events to result knowledge on a classroom oc-
cupation during a year. The new case study in this paper is based on a
system of three wise things. Our aim is twofold: (a) show that our ap-
proach works also with several wise things and (b) highlight its ability to
show correlated unusual behavior among several things. Such knowledge
indicates that behavior change may result from a same triggering event
which is very useful for diagnosing or explaining unusual behaviour of a
system. In Section 2 we recall the concept of WO and WOF, the behavior
of a WO, its interaction with other WOs as well as our first represen-
tation of common usage. Section 3 introduces the connection between a
WO and an IoT, from the software interaction point of view in Section 3.1
and from the communication medium and protocol point of view in Sec-
tion 3.2. In section 4, we present two cases studies in home automation
domain with the results we obtained using the framework. The first case
study focus is on the behavior of a single wise thing while the second
one focus is on a system of several wise things. Finally, we discuss our
approach and conclude with ongoing work and some perspectives.

2 WO AND WOF

2.1 WOF

WOF is founded on the concept of WO. Our design decisions behind
the WOF are guided by the following requirements: software support
should be the less intrusive possible, reusable and generic enough to
be maintainable and used in different application domains with different
strategies. Developers should be able to use the framework with the min-
imum of constraints and intrusion in the source code of the application.
We consequently separated, in the WOF, the ”wisdom” and intelligence
logic (we name abilities) of the objects from application services (we
name capabilities) they are intended to render. As shown by Figure 2,
we designed the WOF according to a layered architecture:

– the core layer, i.e. the framework building blocks, consists of a set of
interrelated packages and classes that embed basic mechanisms for
introspection, monitoring, analysis and communication among WO
instances. WO is the main class from which a system developer may

4 I. Alloui et al.

specialize application-level classes such as the Switch and Shutter
classes within the home automation system in the example;

– the software system layer: contains the package and classes related
to software systems developed for end-users. The home automation
cited so far is a representative of such systems. Classes representing
things can inherit the structure and behavior of the WO class in the
Framework layer;

– the instantiated software system: gathers the instantiated applica-
tion software systems from the previous layer. Instances of application-
related classes are avatars for physical or logical objects (things).

switch shutter

Framework
WO

Switch Shutter

inherit

instantiate

End user

Main system
developer

WO developer

Fig. 2. WOF concrete architecture [2]

To build a WO system, the WOF provides a communication bus (Gava)
for the interaction between WOs. Interactions are managed through a
manager object that establishes the configured pairing between events
and actions according to a publish-subscribe pattern. Figure 3 illustrates
this interaction.
When a method is invoked on a WO instance: (a) the wise part of the
instance raises an event at the end of the invocation; (b) the manager
catches the event and sends orders to all WO instances interested in
the initial event (paired WOs); (c) the paired WO instances execute the
corresponding method; (d) the manager checks that the order has been
correctly executed. The communication and pairing system are detailed
in [4] and were initially limited to communication and pairing between
WO instances.

2.2 Concept of WO

We define a Wise Object (WO) as a software object able to learn by
itself on itself and on its environment (external knowledge), to deliver
expected services according to the current state and using its own ex-
perience. Wisdom refers to the experience such object acquires by its
own during its life. We intentionally use terms dedicated to humans as a
metaphor. A Wise Object is intended to ”connect” to either a physical

Wise Objects for IoT (WIoT): Software Framework and Experimentation 5

:Switch :Shutter:Manager

:Actor

State
change LEvent: on !

Peering

LAction: up !
invoke(up,null)

State
change

LEvent: up !

Validation

:Wo Shutter:Wo Switch

on()

done

done

Fig. 3. UML Sequence diagram of the interaction between a WO switch and a WO
shutter [2]

entity/device (e.g. a vacuum cleaner) or a logical entity (e.g. a software
component). As wise object could be a cleaner able to learn on how to
clean a room depending on its shape and dimensions. In the course of
time, the cleaner could in addition improve its performance (less time,
less energy consumption, etc.). A WO is then characterized by:
– its autonomy: it is able to behave with no human intervention;
– its intelligence: it observes itself and its environment, analyzes them

and uses its knowledge to decide how to behave (introspection, mon-
itoring, analysis, planning);

– its adaptivity: it changes its behavior when its environment changes;
– its ability to communicate: with its environment that includes other

WOs and end-users in different locations.
A WO built-in behavior involves two states: The dream state and the
awake state, see Figure 4.
The dream state is dedicated to acquiring knowledge about its own ca-
pabilities and to analyzing usage-related knowledge. The awake state is
the state where the WO executes its methods invoked by other objects
(external service requests) or by itself (internal requests), and, monitors
such execution while recording usage-related knowledge.
A WO’s capability-related knowledge is itself stored as a state diagram.
The WO executes the methods of its sub-class (i.e. an application class
like Switch) to know the effect on the attributes of this sub-class in-
stances. Each set of attribute values produces a state in the diagram
and method invocation produces a transition (see Figure 5). The main
constraint in this step is that the method invocation must have no effect
on the application when the WO is dreaming. This is solved thanks to
a bus-based system architecture described in [3] with disconnection/re-
connection mechanisms.
Regarding knowledge on an application object usage, two kinds of situ-
ations are studied: emotions and adaptation of behavior. We define an
emotion of WO as a distance between its current usage and its common

6 I. Alloui et al.

WO detailed state diagram:

Dream

Behavior
graph

KO
OK

Awake

[IDLE] [Service request]

Collecting
usage data

Servicing

Learn on itself

Learn on usage

Behavior graph
validation

WO state diagram:

Dream

Awake

[IDLE]
[Service
request]

Fig. 4. UML state diagram of WO built-in behavior [4]

State 0 State 1

on()

switch()

switch()

off()

Fig. 5. UML state diagram of a switch built by its WO

Wise Objects for IoT (WIoT): Software Framework and Experimentation 7

usage (i.e. unusual usage). WO can be stressed if one of its methods
(services) is more frequently used or conversely, a WO can be bored.
WO can be surprised if one of its method is used and this was never
happened before. Emotions of a WO are a projection of its current be-
havior with regard to its usual behavior. In Subsection 2.3, we present a
Data Analyzer based on a statistical method we implemented in WOF to
identify usual/unusual behavior. When a WO expresses an emotion, this
information is caught by the WO system that may consequently lead to
behavior adaptation. At the object level, two instances of the same class
that are used differently – different frequencies, different methods... –
may have different emotions, thus, different behavior and interaction in
the WO system.
A WO uses its capability-related knowledge to compute a path from a
current state to a known state [8]. According to the frequency of the
paths used, a WO can adapt its behavior. For instance, if a path is
often used between non-adjacent states, the WO can build a shortcut
transition between the initial and destination states and then build the
corresponding method within its subclass instance (application object).
This consequently modifies the capability-related graph of this instance.

2.3 WOF and Data Analyzers

The WOF provides a connector to an evolving set of analyzers whose
role is to identify a WO common behavior (usage) and to detect emo-
tions when they occur. Each analyzer connected to a WO is waked-up
during the WO’s dream state to analyze the last events and to update
its knowledge.
Let us recall our preliminary model of common usage introduced in [4]. It
is based on a statistic approach and defines the common usage as weaker
forms of stationarity (WSS) from the statistic point of view.
Let x(i) be a continuous and stationary time random process. A process
is a WSS process if and only if:

E [x(i)] = µ ∀i,
V ar [x(i)] = σ2 6=∞ ∀i,
Cov [x(i), x(i− k)] = f(k) = ρk ∀i∀k.

As the common usage can change along the time, we compute the sta-
tionarity – the common usage – on a sliding window of size w:

E [x(i)] = µ(t) ∀i ∈ [t− w, t],
V ar [x(i)] = σ2(t) 6=∞ ∀i ∈ [t− w, t],
Cov [x(i), x(i− k)] = f(k, t) = ρk(t)∀i ∈ [t− w, t]∀k,

where the time series x(i) are the occurrences
[
et−wτ . . . eiτ . . . e

t
τ

]
of a

given event – i.e. transition – τ between t-w and t.
As our system cannot be perfectly stationary, we relax the definition of
WSS and consider that the system is in common use if and only if:

µ(t+ 1) ∈ [µ(t− w), µ(t)]
σ2(t+ 1) ∈ [σ2(t− w), σ2(t)]
ρk(t+ 1) ∈ [ρk(t− w), ρk(t)].

8 I. Alloui et al.

In other words, if the new mean, variance or autocovariance at time t+1
are in their corresponding ranges, the new event occurrence at time t+1
is considered as a common usage, otherwise it is unusual.
According to this definition, we define an emotion as the distance be-
tween the current usage at t + 1 and the common usage between t − w
and t.This distance d(x(i)) is defined by the following centered normal-
ized scale between −1 and 1, where:

d(x(i)) =

{
d(E [x(i)]),
d(V ar [x(i)]),
d(Cov [x(i), x(i− k)]),

where

d(E [x(i)]) = E[x(i)]−E[x(j)]
(max(E[x(j)])−min(E[x(j)]))/2

,

d(V ar [x(i)]) = V ar[x(i)]−V ar[x(j)]
(max(V ar[x(j)])−min(V ar[x(j)]))/2

,

d(Cov [x(i), x(i− k)]) =
Cov[x(i),x(i−k)]−Cov[x(j),x(j−k)]

(max(Cov[x(j),x(j−k)])−min(Cov[x(j),x(j−k)]))/2 ,

j ∈ [t− w, t] and E [x(j)], V ar [x(j)] and Cov [x(j), x(j − k)] are respec-
tively the means of means, variances and autocovariances on the range
[t− w, t].
Thus, when a new event occurs at t+1, we compute the distance d(x(i))
with the common usage between t−w and t. If all values of the distance
– d(E [x(i)]), d(V ar [x(i)]) and d(Cov [x(i), x(i− k)]) – are between −1
and 1, the behavior is considered as common, otherwise it is identified
as unusual relatively to the knowledge on the common usage.

3 FROM WOF TO IOT

To meet IoT related requirements cited in Section 1, we extended our
framework WOF [4] with mechanisms to relate ”things” to WOs. We
thus define an object in WIoT as a peer composed of a physical object
(thing) and a logical (software) object (WO). A WO can be viewed as
an avatar of a thing. From now on, the term object will be used to refer
to the thing-avatar peer.

3.1 WO model for IoT

When a thing (e.g. a physical switch) joins the application system (e.g.
HA system), its corresponding avatar (a Switch class instance) is auto-
matically instantiated and this pair forms then a new object. This means
that the avatar’s class of the thing exists. As it is not desirable and even
not relevant to provide everything in the system with the ability of learn-
ing and analysis, we introduced a class named Generic WO without the
introspection ability.
Like WO class instances, instances of Generic WO are able to construct
their capability-related graph, but they cannot use introspection to ana-
lyze their behavior. A Generic WO instance learns its behavior from state

Wise Objects for IoT (WIoT): Software Framework and Experimentation 9

Internet

Avatars

Things

Fig. 6. WIoT architecture [2]

change messages it receives from the thing it is related to. This way, a
generic WO can be related to any ”thing” able to communicate its state
and state changes. This is not a strong constraint as recent physical con-
nected objects are generally able to communicate changes in their state.
In the case of home automation, devices using ZigBee [15], Z-Wave [14]
or other modern systems, communicate their capabilities through profiles
or other kinds of descriptions. Figure 7 presents the UML Class diagram
of WOs including the Generic WOs. As shown in the figure, a generic
WO is a WO where the ”invoke” method is redefined. While through the
”invoke” method, a WO can invoke methods of its sub-classes (i.e. appli-
cation classes whose instances are avatars for things), the class Generic
WO has no subclass. Then when the ”invoke” method is called, it just
updates its usage-related diagram (knowledge on the way the thing is
being used).

Figure 8 illustrates the communication flow between a physical switch
and its associated physical shutter. The ”PEvent/PAction” and ”LEv-
ent/LAction” are respectively sent through the physical (P) and logical
(L) communication media.

When the switch is activated, it sends the message ”PEvent:on!” to its
avatar. When receiving this message, the wise part of the avatar learns
that the state of its associated object has changed, thus it executes the
method on itself, ”on()” in the example, to be in a consistent state with
its thing. When this is done, the switch object sends ”LEvent:on!” mes-
sage to inform the system that its state has changed.

10 I. Alloui et al.

wo

WO
-lastRealityState: Vector<Object>

-dream()
-wakeUp()
-resetState(state:Vector<Object>)
+methodinvocate()
+methodInvocated()
-invoke(methodName:String,attributs:Object[])

GenericWo
-envents: Vector<Event>

-invoke(methodName:String,attributes:Object[])
+onPhysicalStateEvent(e:PhysicalStateEvent)
+onPhysicalStateChangeEvent(e:PhysicalStateChangeEvent)

<<Interface>>

Runnable

graph

Graph
-edgeNames: Vector<String>
-adjacentNodes: Vector<Vector<Node>>
-incidenceEdges: Vector<Vector<String>>
-transitionsUsed: Vector<Vector<Vector<UsageInformation>>>

+addNode(fieldValues:Vector<Object>)
+addEdge(source:Integer,destination:Integer,
 actionName:String)
+getNextState(state:Integer,action:String): Integer
+isComplete(): Boolean

Node
-stateNumber: Integer
-fieldValues: Vector<Object>

+Node(fieldValues:Vector<Object>)

n

Fig. 7. UML Class diagram of generic WO [2]

:Switch :Shutter:Manager

switch
:Actor

State
change

LEvent: on !
Peering

LAction: up !

up()
State
changeLEvent: up !

Validation

:Wo Shutter:Wo Switch

PEvent: on !

PAction: up !

PEvent: up !

done

done

shutter
:Actor

on()
invoke(on,null)

invoke(up,null)

Fig. 8. UML Sequence diagram of the interaction between a physical switch and a
physical shutter [2]

Wise Objects for IoT (WIoT): Software Framework and Experimentation 11

Let us note the system can manage pure logical objects namely objects
that are not linked to physical objects. Figures 9 and 10 illustrate 2 cases.
The former, Figure 9, presents the sequence diagram of a logical switch
activated respectively through software and through a physical shutter.
Physical devices and end-users are represented as external actors (fellow
symbol) to a WOS whereas logical things (software) are represented as
internal actors (blue boxes).

:Switch :Shutter:Manager

:Actor

State
change

LEvent: on !
Peering

LAction: up !

invoke(up,null)
State
changeLEvent: up !

Validation

:Wo Shutter:Wo Switch

on()

PAction: up !

PEvent: up !

done

done

shutter
:Actor

Fig. 9. UML Sequence diagram of the interaction between a logical switch and a phys-
ical shutter [2]

Figure 10, presents the sequence diagram of a physical bell push that
launches on the system a video application to check who is ringing. In
this case, the video application is considered as part of the WOS.
In the cases where a thing has no avatar in the system, it is associated
with a generic WO. Figure 11 illustrates this configuration where a phys-
ical switch has an action on an object that is not explicitly defined in
the system. Although it is named ”unknown:Actor”, it must respect the
communication protocol defined in Section 3.2. Let us notice that there is
no constraint about the fact that the ”unknown:Actor” must be a logical
or a physical object, it can be of both kinds.
As shown in the different sequence diagrams, the WOF offers the required
support for all combinations between two objects, be them physical (e.g.
devices) or logical (i.e. software). Let us however note that, if a physical
object is used – a thing – a logical object – its avatar – is necessarily
associated with it. Moreover, a physical object does not necessarily have a
known avatar in the system. In this case, it must respect communication
constraints detailed in the next section.

3.2 Communication Protocol

The WOF provides a communication system for WOs to interact and
exchange information. It corresponds to communications between ob-

12 I. Alloui et al.

:BellPush :VideoDoorApp:Manager

bellPush
:Actor

State
change

LEvent: pushed !
Peering

LAction: launch !
invoke(run,null)

State
change

LEvent: launched !

Validation

:Wo VideoDoorApp:Wo BellPush

 invoke(push,null)
PEvent: pushed !

done

done

Fig. 10. UML Sequence diagram of the interaction between a physical bell push and
a logical video application [2]

:Switch :GenericWo:Manager

switch
:Actor

State
change LEvent: on !

Peering

LAction: up !

State
changeLEvent: up !

Validation

:Wo:Wo Switch

PEvent: on !

PAction: up !

PEvent: up !

done

unknown
:Actor

on()
invoke(on,null)

done

invoke(up,null)

Fig. 11. UML Sequence diagram of the interaction between a physical switch and a
physical object not implemented as WO (no avatar) and managed as a generic WO [2]

Wise Objects for IoT (WIoT): Software Framework and Experimentation 13

jects in the logical world (the software application that manages those
objects). The physical objects/things are from IoT and communicate
in our case through an MQTT communication system [13]. Thus we
implemented a bridge between both those systems in WOF to enable
communication between WOs and things.
As the communications between WOs and between a WO and its associ-
ated physical object are not of the same nature, we defined two kinds of
communications we named respectively ”logical” (WO-WO) and ”phys-
ical” communications (WO-thing). From the conceptual point of view,
this approach can be considered as a dedicated communication medium.
Figure 12 shows this communication flow among physical things (but-
ton and light), their logical avatars (software WOs) and the manager
software object.

Fig. 12. Communication flow between manager, logical and physical objects [2]

From the implementation point of view, WOF uses the publish/subscribe-
based Guava bus and IoT communication is based on MQTT with JSON
format for messages. As both are publish/subscribe-based systems, a
simple bridge is used to exchange messages from one to the other. To
separate ”logical” and ”physical” communications, we use different types
of messages that we defined as follows:
– Physical messages:
• ”PhysicNewDevice”: message sent by a physical object when it

connects to MQTT server.
• ”PhysicStateChange”: message sent by a physical object when

its state changes; it contains the event that generates the state
change.

14 I. Alloui et al.

• ”PhysicAction”: message sent to a physical object so that it
performs an action.

• ”PhysicGetState”: message sent to a physical object so that it
sends its state; this message type is mainly dedicated to generic
WOs so that they ask the things their state.

• ”PhysicState”: message sent by a physical object to indicate its
state; this message is the answer to ”PhysicGetState” message.

– Logical messages:
• ”LogicNewDevice” message sent by a WO when it is created in

the WOF.
• ”LogicalStateChange” message sent by a WO when its state

changes.
• ”LogicalAction” message sent to a WO so that it performs an

action.
The bridge only translates Java object messages to JSON objects and
vice-versa according to the following rules:
– the MQTT topic is defined by [basetopic]/[Class] where:
• basetopic is free, ”Wo” in our example,
• Class is the name of class message including the package name,

for example a ”PhysicAction” message of package ”bus” is sent
on topic ”WO/bus.PhysicAction”,

– any attribute of the Java object is an attribute of JSON.
Figures 13(a) and 13(b) illustrate respectively the ”PhysicAction” class
and an object that is translated as the following JSON message:

PhysicAction

- senderId:String
- sendTime:Long
- receiverId:String
- action2do:String

+ PhysicAction(senderId:String,
receiverId:String,
action2do:String)

+ getAction2do():String
+ getReceiverId():String

(a) PhysicAction class used to send
”PhysicAction” message from a WO
to its thing

m :PhysicAction

senderId = « home_automation.Switch:1"
sendTime = 1512984990902
receiverId = "Switch:1"
action2do = "on"

(b) Example of PhysicAction object

Fig. 13. PhysicAction class used to receive ”PhysicAction” message by a WO [2]

MqttConnector from MQTT: Wo/bus.PhysicAction->

{"senderId":"home_automation.Switch:1",

"sendTime":1512984990902,

"receiverId":"Switch:1",

"action":"on"}

Wise Objects for IoT (WIoT): Software Framework and Experimentation 15

The WO identified by id ”home automation.Switch:1” sends, at time
1512984990902, the order ”on” to its thing identified by ”Switch:1”.
Finally, the communication system we built between WOF and IoT al-
lows us to connect:
– A thing defined in the WOF.
– A thing not defined in the WOF, but that can communicate using

our protocol.
– A thing not defined in the WOF, that communicates with another

medium (ZigBee, ZWave, WiFi...)
The constraint is that the thing must be able to give information on
its state change. Figure 14 illustrates on a switch example the three
communication cases.

IOT
Physical switch

Soft switch
:Wo

Soft switch
Eg : zigBee box

:GenericWo :GenericWo

WOF Bridge

WOF Bridge

WOF Bridge

Java object message on Gava Bus

JSON object message on MQTT Bus

Other communication system

Fig. 14. An IoT object, like a switch can be connected to WOF according to 3 ways:
a) the thing can communicate using our MQTT protocol and its avatar exists in the
WOF; b) the thing can communicate using our MQTT protocol but its avatar does
not exist in the WOF; c) the thing cannot communicate using our MQTT protocol [2]

4 EXPERIMENTAL IMPLEMENTATION

We experimented our framework and its underlying approach on several
examples. We present in this section two of them: the first one consists
of a wise smart presence sensor in a real situation while the second one
consists of a set of home automation related objects, namely a light, a
shutter, a switch and a heating device. For each case we give a description
of the objects, the goal of the experiment, data used/generated as well
as the results and observations we did.

4.1 Use case 1 description and experimental results

To illustrate the use of WOF including the interconnection of WOs and
IoT, we took the case of a presence smart sensor within a classroom with

16 I. Alloui et al.

the objective to identify the usual usage of the room and detect habit
change (unusual behavior). This allows us to experimentally validate our
approach of habit change measurement.
One objective of the case study is to know if our system is able to de-
tect habit change in relation to a common usage, especially regarding
student vacation periods. The smart presence sensor provides the ”pres-
ence” state when persons are in a room and the ”no presence” state when
not. It is worth noting that the smart capacity of the sensor offers the
possibility to filter the output state: ”no presence” state is delivered if
no detection occurs for one minute.
Attempting to identify a common usage (habit) requires a significant
volume of data that depends on the temporal observing window or the
number of observations taken into account. To cover different volumes of
data, it is obviously relevant to consider a long duration of observation.
However to avoid a long experiment, one year in our case, we simulate
the smart presence sensor outputs by using real data coming from the
real-time scheduling system of our university. Thus, real data injected
in the system corresponds to the outputs of the smart presence sensor
placed into a classroom. At each ”state change” event from the sensor,
a physical timestamped message, including the sensor id, is sent using
MQTT protocol. The next section presents some results of our experi-
mentation.
Figures 15 and 16 illustrate the experiment results according to the def-
inition of common usage given in Section 2.3, with only one k value for
covariance. Our purpose is to highlight the strengths and weaknesses of
our first modeling of common usage. As the focus of this paper is on
interconnection between wise objects and IOT, we do not provide an
in-depth analysis of common usage modeling. This issue will be studied
in the future.
In this experiment, we observe for the sensor, the delay between events
as well as the time spent by it in different states. The events are the
detection of ”new presence”, when the sensor switches from ”no pres-
ence state to ”presence” state and conversely, the detection of ”no more
presence”, when the sensor switches from ”presence state to ”no pres-
ence” state. Figures 15(a) and 15(b) give the common usage respectively
computed from the ”new presence” events and from the ”no more pres-
ence” events. In other word, Figure 15(a), gives the common variation of
delay between two successive ”new presence” events. Figures 16(a) and
16(b) give the common usage respectively computed from the duration
of presence and the duration of no presence in the room. The results are
computed with 15 days as window size w, any data older than 15 days are
forgotten. Thus, in the range [−1, 1], between green lines in the figures,
the behavior is considered as common usage regarding the last 15 days.
Outside the range [−1, 1], behavior is considered as unusual, we qualify
it as ”emotion”. The emotional force is represented by the distance of
the behavior to the common usage.
These preliminary results are encouraging. They highlight, from different
points of view – state changes and time spent in a state – the change
in the classroom usage. Each part with an important distance from the
common usage corresponds to holidays (in France):

Wise Objects for IoT (WIoT): Software Framework and Experimentation 17

(a) Classroom usage representation computed from ”new pres-
ence” events

(b) Classroom usage representation computed from ”no more
presence” events

Fig. 15. Common usage and Emotion representation based on events [2]

18 I. Alloui et al.

(a) Classroom usage representation computed from ”presence”
duration

(b) Classroom usage representation computed from ”no pres-
ence” duration

Fig. 16. Common usage and Emotion representation based on time spent in state [2]

Wise Objects for IoT (WIoT): Software Framework and Experimentation 19

– 1 week for the Halloween holidays in October,
– 2 weeks for the Christmas holidays in December,
– 1 week for the winter holidays in February,
– 1 week for the Easter holidays in April and
– the end of the school year in June.

Each part with a small distance from the common usage corresponds to
weekends. Let us note that each part detected as unusual depends on the
usage done during the 15 days before. Thus weekends are strongly de-
tected when the room is frequently used in the week for example between
September and December. The holidays are strongly detected before Jan-
uary but, weakly detected after December. As the observed room is an
amphitheater, it is more used at the beginning of the school year than
at the end.
We consider those results as preliminary because there is a combinatorial
problem in using the underlying analysis method. Sensor modeling with
2 states and 2 transitions leads to 12 graphics, with only one k value
for the covariance, to identify common usage and emotions. For a given
object, the maximum number of ”common usage” related graphics is
n∗a∗(2+nk), where n is the number of states, a is the number of methods
and nk is the possible number of values of k. Thus, an information fusion
step is required to reduce the combinatorial problem. Another point is
that our system does not react if nothing happens during an unusual
period; It detects changes only when an event occurs. The management
of ”no event” must also be performed by the system. Both those points
will be addressed in future work.

4.2 Use case 2 description and experimental results

The second case study focus is on considering a set of objects instead of a
single one as in the first case. The objective behind the experimentation
is to be as close as possible to a real situation. Thus we used the WOF
simulator to simulate a home automation system, within a classroom,
composed of four physical objects: a switch, a light, a rolling shutter and
a heating device. As in the previous case, we would like to know if our
system is able to detect habit change in relation to a usual usage. As
several objects are involved in the system, we also would like to study
the behavior correlation among those objects. The usual behavior is the
following:
– each day the heating system is automatically started at 6:00 am and

it functions until 6:00 pm;
– each day at 8 am (+-5mn), the shutter is manually opened by a

teacher or a student of the first course. Eleven hours later (+-30mn),
the shutter is closed by the caretaker;

– the light is manually switched on at 8 am (+-5mn), at the arrival of
the teacher and students to the course. It is manually switched off
at the end of the first course, 1 hour later (+-5mn) and remains off
until the following day.

We observe for each object, the delay between events. The events are:
– for the light: the detection of ”light on” events, when the sensor

switches from ”no light” state to ”lighting” state; the reverse holds
for the detection of ”light off” events;

20 I. Alloui et al.

– for the shutter: the detection of ”shutter open” events, when the
actuator switches from ”shutter closed” state to ”shutter opened”
state; the reverse holds for the detection of ”shutter close” events;

– for the heating: the detection of ”heating on” events, when the actu-
ator switches from ”no heating” state to ”heating” state; the reverse
holds for the detection of ”heating off” events;

Figures 17 depicts the common usage computed respectively for the light,
shutter and heating. Each sub-figure gives the common variation of delay
between two successive events on an object (red) as well as the standard
deviation (blue).
The results are computed within a memory window size w of 100 events
corresponding to a duration of 3 months in our simulator. Data older
than 3 months are forgotten (no longer considered in the computation).
Thus, in the range [−1, 1], between green lines in the figures, the behavior
is considered as usual (common usage) during the last 3 months. Outside
the range [−1, 1], behavior is considered as unusual and the emotional
force is represented by the distance of the behavior to the common usage.
As shown by figures 17:
– the heating system behaves as usual: no emotion detected; this is

consistent with the fact that the heating is automatically started and
stopped everyday exactly at the same instants (no random effect);

– we can notice that for both ”light on” and ”light off” events, at the
beginning of the time window, there is a chaotic variation result-
ing an emotion (a surprise): as the events outside the time window
are forgotten, events occurring in the new window are considered
unusual by the object that progressively integrate them as a usual
behavior ;

– generally there is no significant change in the behavior of the shutter.
We can however note sometimes a slight chaotic perturbation as in
the sub-figure of ”light off” events: this is due to the cumulative
random effect.

While in the previous situation nothing special happened relatively to
the common behavior, in Figures 18, we can clearly see different shapes
for the behavior of the light and the heating device. Something happened
that disturbed the system without affecting the shutter: a power cut at 10
AM the 150th day of the experiment (May 21st). In this case we clearly
see a variation value outside the normality boundaries. This translates an
emotion that has an impact on the means computation. As the power cut
lasted 2 hours, the delay between successive events have been disturbed
(around 2 hours instead of 24). This highlights the ability of a wise system
to show correlated unusual behavior among several things. Its knowledge
monitoring and analysis capabilities are therefore useful for diagnosing
or explaining unusual behaviour of IoT-based systems.

5 CONCLUDING REMARKS AND FUTURE
WORK

To meet the growing user requirements for IoT technology-based sys-
tems that adapt to their needs, we propose WOF (Wise Object Frame-

Wise Objects for IoT (WIoT): Software Framework and Experimentation 21

01
/0

1-
08

:0
1

01
/2

1-
08

:0
1

02
/1

0-
08

:0
2

03
/0

2-
07

:0
3

03
/2

2-
07

:0
3

04
/1

1-
07

:0
4

05
/0

1-
07

:0
5

05
/2

1-
07

:0
5

06
/1

0-
07

:0
6

06
/3

0-
07

:0
6

07
/2

0-
07

:0
7

08
/0

9-
07

:0
8

08
/2

9-
08

:0
8

09
/1

8-
08

:0
9

10
/0

8-
08

:1
0

10
/2

8-
08

:1
0

11
/1

7-
08

:1
1

Time (month/day-hh:mm)

4

3

2

1

0

1

2

3

4

E
m

o
ti

o
n
 l
e
v
e
l

means
stdevs

(a) Classroom usage representation com-
puted from ”light on” events

01
/0

1-
19

:0
1

01
/2

1-
19

:0
1

02
/1

0-
19

:0
2

03
/0

2-
19

:0
3

03
/2

2-
19

:0
3

04
/1

1-
19

:0
4

05
/0

1-
18

:0
5

05
/2

1-
18

:0
5

06
/1

0-
18

:0
6

06
/3

0-
18

:0
6

07
/2

0-
18

:0
7

08
/0

9-
18

:0
8

08
/2

9-
19

:0
8

09
/1

8-
19

:0
9

10
/0

8-
19

:1
0

10
/2

8-
20

:1
0

11
/1

7-
19

:1
1

Time (month/day-hh:mm)

4

3

2

1

0

1

2

3

4

E
m

o
ti

o
n
 l
e
v
e
l

means
stdevs

(b) Classroom usage representation
computed from ”light off” events

01
/0

1-
08

:0
1

01
/2

1-
08

:0
1

02
/1

0-
08

:0
2

03
/0

2-
07

:0
3

03
/2

2-
07

:0
3

04
/1

1-
07

:0
4

05
/0

1-
08

:0
5

05
/2

1-
08

:0
5

06
/1

0-
08

:0
6

06
/3

0-
08

:0
6

07
/2

0-
07

:0
7

08
/0

9-
07

:0
8

08
/2

9-
08

:0
8

09
/1

8-
08

:0
9

10
/0

8-
08

:1
0

10
/2

8-
08

:1
0

11
/1

7-
08

:1
1

Time (month/day-hh:mm)

4

3

2

1

0

1

2

3

4

E
m

o
ti

o
n
 l
e
v
e
l

means
stdevs

(c) Classroom usage representation com-
puted from ”shutter open” events

01
/0

1-
09

:0
1

01
/2

1-
09

:0
1

02
/1

0-
09

:0
2

03
/0

2-
08

:0
3

03
/2

2-
09

:0
3

04
/1

1-
08

:0
4

05
/0

1-
09

:0
5

05
/2

1-
09

:0
5

06
/1

0-
09

:0
6

06
/3

0-
09

:0
6

07
/2

0-
08

:0
7

08
/0

9-
08

:0
8

08
/2

9-
09

:0
8

09
/1

8-
09

:0
9

10
/0

8-
09

:1
0

10
/2

8-
09

:1
0

11
/1

7-
09

:1
1

Time (month/day-hh:mm)

4

3

2

1

0

1

2

3

4

E
m

o
ti

o
n
 l
e
v
e
l

means
stdevs

(d) Classroom usage representation
computed from ”shutter close” events

01
/0

1-
06

:0
1

01
/2

1-
06

:0
1

02
/1

0-
06

:0
2

03
/0

2-
06

:0
3

03
/2

2-
06

:0
3

04
/1

1-
06

:0
4

05
/0

1-
06

:0
5

05
/2

1-
06

:0
5

06
/1

0-
06

:0
6

06
/3

0-
06

:0
6

07
/2

0-
06

:0
7

08
/0

9-
06

:0
8

08
/2

9-
06

:0
8

09
/1

8-
06

:0
9

10
/0

8-
06

:1
0

10
/2

8-
06

:1
0

11
/1

7-
06

:1
1

Time (month/day-hh:mm)

4

3

2

1

0

1

2

3

4

E
m

o
ti

o
n
 l
e
v
e
l

means
stdevs

(e) Classroom usage representation com-
puted from ”heating on” events

01
/0

1-
18

:0
1

01
/2

1-
18

:0
1

02
/1

0-
18

:0
2

03
/0

2-
18

:0
3

03
/2

2-
18

:0
3

04
/1

1-
18

:0
4

05
/0

1-
18

:0
5

05
/2

1-
18

:0
5

06
/1

0-
18

:0
6

06
/3

0-
18

:0
6

07
/2

0-
18

:0
7

08
/0

9-
18

:0
8

08
/2

9-
18

:0
8

09
/1

8-
18

:0
9

10
/0

8-
18

:1
0

10
/2

8-
18

:1
0

11
/1

7-
18

:1
1

Time (month/day-hh:mm)

4

3

2

1

0

1

2

3

4

E
m

o
ti

o
n
 l
e
v
e
l

means
stdevs

(f) Classroom usage representation com-
puted from ”heating off” events

Fig. 17. Common usage and Emotion representation based on events

22 I. Alloui et al.

01
/0

1-
08

:0
1

01
/2

1-
08

:0
1

02
/1

0-
07

:0
2

03
/0

2-
07

:0
3

03
/2

2-
07

:0
3

04
/1

1-
07

:0
4

05
/0

1-
07

:0
5

05
/2

1-
07

:0
5

06
/0

9-
07

:0
6

06
/2

9-
07

:0
6

07
/1

9-
07

:0
7

08
/0

8-
07

:0
8

08
/2

8-
06

:0
8

09
/1

7-
06

:0
9

10
/0

7-
06

:1
0

10
/2

7-
07

:1
0

11
/1

6-
07

:1
1

Time (month/day-hh:mm)

4

3

2

1

0

1

2

3

4

E
m

o
ti

o
n
 l
e
v
e
l

means
stdevs

(a) Classroom usage representation com-
puted from ”light on” events

01
/0

1-
08

:0
1

01
/2

1-
09

:0
1

02
/1

0-
08

:0
2

03
/0

2-
08

:0
3

03
/2

2-
08

:0
3

04
/1

1-
08

:0
4

05
/0

1-
08

:0
5

05
/2

1-
08

:0
5

06
/0

9-
08

:0
6

06
/2

9-
08

:0
6

07
/1

9-
08

:0
7

08
/0

8-
08

:0
8

08
/2

8-
07

:0
8

09
/1

7-
07

:0
9

10
/0

7-
07

:1
0

10
/2

7-
08

:1
0

11
/1

6-
07

:1
1

Time (month/day-hh:mm)

4

3

2

1

0

1

2

3

4

E
m

o
ti

o
n
 l
e
v
e
l

means
stdevs

(b) Classroom usage representation
computed from ”light off” events

01
/0

1-
08

:0
1

01
/2

1-
08

:0
1

02
/1

0-
07

:0
2

03
/0

2-
07

:0
3

03
/2

2-
07

:0
3

04
/1

1-
07

:0
4

05
/0

1-
07

:0
5

05
/2

1-
07

:0
5

06
/1

0-
07

:0
6

06
/3

0-
07

:0
6

07
/2

0-
07

:0
7

08
/0

9-
07

:0
8

08
/2

9-
07

:0
8

09
/1

8-
07

:0
9

10
/0

8-
07

:1
0

10
/2

8-
07

:1
0

11
/1

7-
07

:1
1

Time (month/day-hh:mm)

4

3

2

1

0

1

2

3

4

E
m

o
ti

o
n
 l
e
v
e
l

means
stdevs

(c) Classroom usage representation com-
puted from ”shutter open” events

01
/0

1-
19

:0
1

01
/2

1-
19

:0
1

02
/1

0-
19

:0
2

03
/0

2-
18

:0
3

03
/2

2-
18

:0
3

04
/1

1-
18

:0
4

05
/0

1-
18

:0
5

05
/2

1-
18

:0
5

06
/1

0-
18

:0
6

06
/3

0-
18

:0
6

07
/2

0-
18

:0
7

08
/0

9-
18

:0
8

08
/2

9-
19

:0
8

09
/1

8-
18

:0
9

10
/0

8-
18

:1
0

10
/2

8-
18

:1
0

11
/1

7-
18

:1
1

Time (month/day-hh:mm)

4

3

2

1

0

1

2

3

4

E
m

o
ti

o
n
 l
e
v
e
l

means
stdevs

(d) Classroom usage representation
computed from ”shutter close” events

01
/0

1-
06

:0
1

01
/2

1-
06

:0
1

02
/1

0-
06

:0
2

03
/0

2-
06

:0
3

03
/2

2-
06

:0
3

04
/1

1-
06

:0
4

05
/0

1-
06

:0
5

05
/2

1-
06

:0
5

06
/0

9-
06

:0
6

06
/2

9-
06

:0
6

07
/1

9-
06

:0
7

08
/0

8-
06

:0
8

08
/2

8-
06

:0
8

09
/1

7-
06

:0
9

10
/0

7-
06

:1
0

10
/2

7-
06

:1
0

11
/1

6-
06

:1
1

Time (month/day-hh:mm)

4

3

2

1

0

1

2

3

4

E
m

o
ti

o
n
 l
e
v
e
l

means
stdevs

(e) Classroom usage representation com-
puted from ”heating on” events

01
/0

1-
18

:0
1

01
/2

1-
18

:0
1

02
/1

0-
18

:0
2

03
/0

2-
18

:0
3

03
/2

2-
18

:0
3

04
/1

1-
18

:0
4

05
/0

1-
18

:0
5

05
/2

1-
18

:0
5

06
/0

9-
18

:0
6

06
/2

9-
18

:0
6

07
/1

9-
18

:0
7

08
/0

8-
18

:0
8

08
/2

8-
18

:0
8

09
/1

7-
18

:0
9

10
/0

7-
18

:1
0

10
/2

7-
18

:1
0

11
/1

6-
18

:1
1

Time (month/day-hh:mm)

4

3

2

1

0

1

2

3

4

E
m

o
ti

o
n
 l
e
v
e
l

means
stdevs

(f) Classroom usage representation com-
puted from ”heating off” events

Fig. 18. Usage and Emotion representation based on events, integrating an unusual
event: a power cut at 10am the 150th day of the experiment.

Wise Objects for IoT (WIoT): Software Framework and Experimentation 23

work) [4], an object oriented framework to develop software-intensive sys-
tems (”wise systems”) able to learn, monitor and analyze data/informa-
tion among distributed things. We recalled in this paper the underly-
ing concepts of WO (Wise Object) and WOF and focused in particular
on how to interconnect IoT to WOF to benefit from its useful built-in
mechanisms (namely learning, monitoring, adaptation) and meet users’
requirements. The communication protocol we propose allows things to
communicate themselves. It is designed as part of WOF. For each thing,
we propose to use a software avatar, a WO in our case so that it become
possible to manipulate and manage this representation of the thing. In
this paper, we focus on the description of the communication structure
and especially the corresponding software as well as the proposed proto-
col which makes possible interaction between a wise object and a physical
thing.

We show that using the proposed structure, any thing from IoT is man-
ageable. The only constraint is that the considered thing uses the pro-
posed communication protocol. Thus, the system is able to communicate
with any thing, whether known or unknown. If a thing is unknown – there
is no WO implementation dedicated to this thing – a generic WO imple-
mentation can be used as an avatar for this thing.

We illustrated our approach on two case studies within home automation
domain and showed how wise things (smart presence sensor, light, etc.)
are able to identify common usage and unusual behavior. This is enabled
by analyzers connectable to WOF: in this paper we presented one of them
we built using a statistic method based on ”stationarity” theory.

We show the interest for the system by performing a first experiment
based on real data with a single thing then a second experiment based
on simulated behavior of a classroom using home automation things (a
smart presence sensor, shutter, etc.). One interesting finding comes from
the fact that the results show the changes due to the usage context:
vacation or weekends in the first case study or a power cut in the sec-
ond case. In the broader context of home automation, we are convinced
that our approach can be useful, for instance to assist old people in
their home (individual or nursing). Authors in [9] and [10], adopt a user
driven approach and present an interesting study on nursing home users’
expectations from AAL (Ambient Assistant Living) technologies. One
important outcome is that there is a need for systems able to detect
users’ activity level and to notify the care staff and/or family members
about unusual behavior.

In future work, we plan to focus our research mainly on the modeling
and the management of common usage and emotions. As highlighted in
the experimental results, issues of information fusion and of management
of situations like ”nothing happens during an unusual time” must be ad-
dressed to obtain results that are more accurate, usable and up-to-date
upon request. Another important issue is studying the correlation of be-
havior among a set of WOs composing a system, in particular measuring
the impact of a WO emotion on the other WOs. The next step for us is to
be able to express emotions with a higher semantic level than the present
one (i.e. the statistical method) in order to communicate lighter amounts

24 I. Alloui et al.

of information to the system. The system can then react according to an
aggregated information rather than multiple pieces of information.

References

1. Aarts, H., Verplanken, B., Knippenberg, A.: Predicting behavior
from actions in the past: Repeated decision making or a matter
of habit? Journal of Applied Social Psychology 28(15), 1355–
1374 (2006). https://doi.org/10.1111/j.1559-1816.1998.tb01681.x,
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1559-
1816.1998.tb01681.x

2. Alloui, I., Benoit, E., Perrin, S., Vernier, F.: Wiot: Intercon-
nection between wise objects and iot. In: Proceedings of the
13th International Conference on Software Technologies - Vol-
ume 1: ICSOFT,. pp. 494–505. INSTICC, SciTePress (2018).
https://doi.org/10.5220/0006870205280539

3. Alloui, I., Esale, D., Vernier, F.: Wise Objects for Calm Tech-
nology. In: 10th International Conference on Software Engi-
neering and Applications (ICSOFT-EA 2015). pp. 468–471.
ICSOFT-EA 2015, SciTePress 2015, Colmar, France (July 2015).
https://doi.org/10.5220/0005560104680471, https://hal.archives-
ouvertes.fr/hal-01226219

4. Alloui, I., Vernier, F.: Wof: Towards behavior analysis and represen-
tation of emotions in adaptive systems. Software Technologies, 12th
International Joint Conference, ICSOFT 2017, Madrid, Spain, July
24-26, 2017, Revised Selected Papers (CCIS) 868, 244–267 (2017)

5. Aminikhanghahi, S., Cook, D.J.: A survey of methods for
time series change point detection. Knowl. Inf. Syst. 51(2),
339–367 (May 2017). https://doi.org/10.1007/s10115-016-0987-z,
https://doi.org/10.1007/s10115-016-0987-z

6. Brun, Y., Desmarais, R., Geihs, K., Litoiu, M., Lopes, A.,
Shaw, M., Smit, M.: A design space for self-adaptive sys-
tems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M.
(eds.) Software Engineering for Self-Adaptive Systems II. Lec-
ture Notes in Computer Science, vol. 7475, pp. 33–50. Springer,
Dagstuhl Castle, Germany (2013), http://literature.vs.eecs.uni-
kassel.de/publications/2013/BDGLLSS13

7. IEC: IoT 2020: Smart and Secure IoT Platform : White
Paper. International Electrotechnical Commission (2016),
https://books.google.fr/books?id=aItwAQAACAAJ

8. Moreaux, P., Sartor, F., Vernier, F.: An effective approach
for home services management. In: 20th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based
Processing (PDP). pp. 47–51. IEEE, Garching (February 2012).
https://doi.org/10.1109/PDP.2012.45

9. Röcker, C., Ziefle, M., Holzinger, A.: Social inclusion in ambient as-
sisted living environments: Home automation and convenience ser-
vices for elderly users. In: International Conference on Artificial In-
telligence (ICAI 2011). New York CSERA Press. pp. 55–59 (2011).
https://doi.org/10.1007/978-3-319-66808-6 17

Wise Objects for IoT (WIoT): Software Framework and Experimentation 25

10. Singh, D., Kropf, J., Hanke, S., Holzinger, A.: Ambient assisted liv-
ing technologies from the perspectives of older people and profes-
sionals. In: Machine Learning and Knowledge Extraction. Springer
Lecture Notes in Computer Science LNCS 10410. pp. 255–266 (2017).
https://doi.org/10.1007/978-3-319-66808-6 17

11. Vishwajeet, H.B., Sanjeev, W.: i-learning iot: An intelligent self
learning system for home automation using iot. International Con-
ference on Communications and Signal Processing (ICCSP) (April
2015). https://doi.org/10.1109/ICCSP.2015.7322825

12. Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Pre-
hofer, C., Wuttke, J., Andersson, J., Giese, H., Goeschka, K.: On
Patterns for Decentralized Control in Self-Adaptive Systems. In:
de Lemos, R., Giese, H., Müller, H., Shaw, M. (eds.) Software En-
gineering for Self-Adaptive Systems II, Lecture Notes in Computer
Science (LNCS), vol. 7475, pp. 76–107. Springer (January 2013),
http://dx.doi.org/10.1007/978-3-642-35813-5 4

13. Yassein, M.B., Shatnawi, M.Q., Aljwarneh, S., Al-Hatmi, R.: Inter-
net of things: Survey and open issues of mqtt protocol. In: 2017 In-
ternational Conference on Engineering MIS (ICEMIS). pp. 1–6 (May
2017). https://doi.org/10.1109/ICEMIS.2017.8273112

14. Z-Vawe: Z-vawe aliance. https://z-wavealliance.org/ (2018), ac-
cessed: 2018-04-01

15. Zigbee: Zigbee aliance. http://www.zigbee.org/ (2018), accessed:
2018-04-01

