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INTRODUCTION 

Nitrous oxide (N2O) is an aggressive pollutant due to its major greenhouse effect and global 

warming potential (GWP, 300 times that of CO2).1 Besides natural emissions, anthropogenic N2O 

sources mainly rely on agricultural activities, nitric / adipic acids factories and transportations. 

Independently, Health issues have been connected with long-term N2O exposures.2 Among the 

identified effects or consequences, one can cite the inactivation on methionine synthase3, as well 

as genetic4 or cerebrocortical damages.5 Consequently, mitigation of the N2O levels using efficient 

remediation catalysts or elaboration of selective sensors constitute important scientific 

breakthroughs.  

Despite its chemical inertness, N2O reduction is a thermodynamically favorable process (N2O + 

2H+ + 2e� → N2 + H2O, E° = 1.35 V @ pH 7.0 vs NHE) that Nature masters with the so-called 

copper-containing enzyme nitrous oxide reductase (N2Or) during the denitrification pathway.6 This 

reactivity is remarkable since the 59 kcal/mol (gas phase) energy barrier for the N-O cleavage are 

overcome under physiological conditions. N2Or is a homodimer containing two different copper 

motifs: a dinuclear CuA site acting as electron mediator and a tetranuclear Cu4S cluster for N2O 



reduction. To date, two different structures are known for the Cu4S active site, depending on 

purification methods. The first, CuZ
*, is isolated under aerobic conditions while the second, CuZ, is 

obtained in reductive medium (Chart 1).7 The main difference lies in the open CuI-CuIV edge with 

coordinated hydroxide/water or sulfide ions. Deep experimental investigations combined with 

computational methods provided a major knowledge to clarify the reaction mechanism.8 Indeed, a 

better understanding of how N2Or activates and reduces N2O would contribute to the perspectives 

described above. The involvement of a Cuz° intermediate with a µ,1-3 coordination mode for N2O 

at the CuI-(µ,S)-CuIV edge, together with the participation of a hydrogen bond with a neighboring 

lysine residue to favor the N-O bond cleavage, has been proposed.9 

In our group, we aim at developing bio-inspired Cu2S-containing complexes representative 

of the truncated active Cu4S native cluster to propose structure/activity correlations for N2O 

activation/reduction. In the literature, few examples of Cux-Sy (x = 2-4 and y = 1, 2) architectures 

have been reported for stoichiometric N2O reduction at low temperature (-80°C).10 We already 

demonstrated that mixed-valent (MV) dicopper (I,II) cores embedded in a thiophenolate-containing 

ligand can reduce N2O under single turnover conditions depending on the metal ions environments 

at room temperature and under N2O atmospheric pressure. Indeed, while [1],11c [3]11a and [4]11a are 

inactive, [2]11b exhibits a unique N2Or activity (Chart 1). These results point out (i) the need of 

exchangeable position(s) for the reactivity and (ii)  the importance of one of the exogenous 

coordinated ligand since one position has to be occupied by a water molecule (Cu-OH2 motif).  

Here, we demonstrate that the coordination sphere of the Cu-X part adjacent to Cu-OH2 

within a given dinuclear complex significantly affects the kinetic at a single turnover level. Indeed, 

the introduction of an acetonitrile ligand for [5] (generated by dissolving [3] in acetone and fully 

characterized in this study) in place of a triflate ion in [2] results in a 10 times faster reduction 



process. A nitrogen-rich environment, as present in native N2Or, thus appears more prone to 

facilitate the reaction.  

Chart 1. Representation of the N2Or active sites and chemical structures of MV [1], [2], [3], [4] and [5]. The main 
differences within Cu2S cores are highlighted in red; OTf- stands for trifluoromethanesulfonate anion.   

 

RESULTS AND DISCUSSION 

The UV-vis/NIR spectrum recorded upon dissolution of crystalline [3] in acetone lead to 

an intense purple solution with features at 1205 nm (ε = 760 M-1.cm-1), 775 nm (ε = 855 M-1.cm-

1), 570 nm (ε = 450 M-1.cm-1) and 430nm (ε = 1095 M-1.cm-1) that are significantly different 

compared to the spectrum recorded in acetonitrile used for its preparation (Figure 1). In particular, 

the presence of transitions in the NIR region was already observed for fully delocalized [1] and [2] 

(1115 nm (ε = 1190 M-1.cm-1) and 1255 nm (ε = 690 M-1.cm-1), respectively, Figure S1). This result 

indicates clear structure changes upon dissolution in that case, with the formation of a new species 

denoted [5] that needs to be investigated. 



 

Figure 1. UV-vis/NIR spectra of [3] recorded in acetone (black solid, corresponding to [5]) and acetonitrile (black 
dashed, corresponding to [4]) at 298 K. 

 

Spectral analogies between [5] and [2] strongly suggested, as working hypothesis, the presence of 

coordinated water molecule(s). [2] was indeed isolated upon reaction of the same LMe(MAM)S-S 

ligand and [Cu(CH3CN)4](OTf) in acetone, the latter being more than likely the water source. 

Indeed, titration with 1,4-diazabicyclo[2.2.2] (DABCO) up to one molar equivalent resulted in 

drastic changes on the absorption spectrum (Figure S2). As a control experiment, no changes 

occurred upon addition of DABCO to an acetonitrile solution of [4] (Figure S3) that corresponds 

to solvated-[3] in acetonitrile.11a Consequently, a structure for [5] in which one copper would be 

coordinated by an acetonitrile exogenous ligand and the other one by a water molecule is a rational 

hypothesis (Cu-OH2 converted into Cu-OH upon deprotonation). This new structure was 

successfully DFT-optimized (Figure 2, left) and showed, as for [1], [2] and [3], the presence of a 

Cu-Cu bond (2.7 Å) that was further confirmed by Natural Bond Order analysis (NBO, Figure 2, 

middle).  



 

Figure 2. (left) Optimized structure of [5]; selected interatomic distances (Å) and angles(°): Cu1-Cu2, 2.703; Cu1-S1, 
2.236; Cu1-N1, 2.083; Cu1-N2, 1.977; Cu1-N5, 2.029; Cu2-S1, 2.197; Cu2-N3, 2.059; Cu2-N4, 1.953; Cu2-O1, 2.158; 
Cu1-S-Cu2, 75.15 (see Table S1 in the Supporting Information for additional metric details); (middle) occupied natural 
orbital relevant to the Cu–Cu bond; (right) localized SOMO. 

Each copper is pentacoordinated with two nitrogen atoms from the ligand (N1/N2 for Cu1 

and N3/N4 for Cu2), the bridging thiophenolate (S1), one vicinal copper ion and either one oxygen 

(O1) or an extra nitrogen atom (N5) from a water or an acetonitrile molecule, respectively. For 

both, the geometry is best described as distorted tetragonal (τCu1 = 0.28 and τCu2 = 0.27).12 Mülliken 

population analysis indicates closely distributed spin densities between Cu1 (0.24), Cu2 (0.26) and 

S1 (0.25) that account for 75% of the total. The remaining (25%) is spread over the pyridine rings 

(Figure S4 for the spin density plot). The localized Singly Occupied Molecular Orbital (SOMO, 

Figure 2, right) displays 56% Cu and 20% S character and shows a σ-antibonding interaction 

between the Cu 3dz2 orbitals and the S 3px orbital. A non-negligible degree of covalence for the 

Cu–S bond is expected due to the contribution of the S atom in the SOMO. For comparison, the 

distributed spin densities calculated for [2] are 0.27 (Cu1), 0.27 (Cu2) and 0.23 (S), and the 

spreading between Cu’s and S (77%). This indicates that chemical modification at one metal center 

does not affect the spin distribution. 



The calculated electronic excitations at 1200 nm, 763 nm, 693 nm and 496 nm obtained by 

TDDFT for optimized [5] are now in good agreement with the experiment (multi-peak analysis, 

1222 nm, 776 nm, 630 nm, 560 nm, Figure S5). The nature of the transitions is finally assigned to 

intervalence (IVCT, CuS→CuS, NIR) and ligand to metal (LMCT) charge transfer processes 

(Figure S6). 

Examination of [5] by EPR spectroscopy (Figure 3 and Figure S7) evidenced an interesting 

temperature dependence behavior. Up to 120K, the spectra are indicative of a valence-localized S 

= ½ system (g1 = 2.201, g2 = 2.066, g3 = 2.036, giso = 2.101; A1Cu = 545 MHz, A2Cu = 64 MHz,  

A3Cu = 10 MHz and Aiso = 206 MHz) with a four lines pattern (ICu = 3/2, 2nI+1 = 4 with n = 1). 

Going to 292K results in drastic changes with a more complicated multi-lines signature that 

resembles the one previously detected for fully delocalized [1] and [2]. [5] can thus be considered 

as a unique example of Cu2S-containing MV species belonging to the class II category according 

to the Robin and Day classification.13 Independently, the spectrum recorded upon addition of one 

molar eq. of DABCO at 10 K also differs from that of [5], confirming the presence of a coordinating 

water ligand. The parameters (g1 = 2.224, g2 = 2.074, g3 = 2.042 and giso = 2.113; A1Cu = 582 MHz,  

A2Cu = 98 MHz, A3Cu = 10 MHz, Aiso = 230 MHz, Figure S8) are again in that case close to the 

analog generated with [2] under the same conditions (g1 = 2.180, g2 = 2.050, g3 = 2.012, giso = 2.08;  

A1Cu = 535 MHz, A2Cu = 150 MHz, A3Cu = 10 MHz, Aiso = 232 MHz, Figure S9). These parameters 

correlate well with the computed ones performed on DFT optimized structures considering a  

CuII-OH structure for both deprotonated [2] and [5] (Figures S10 and S11). Given the localized 



character, no significant difference would have been expected since in both cases the CuII-OH 

motifs have identical chemical environments provided by the ligand.  

 

Figure 3. X-band EPR spectra of [5] recorded at 10 K, 120 K and 292 K in acetone. 

 

Finally, the cyclic voltammogram (CV) recorded for [5] in acetone displays two distinct quasi-

reversible redox processes (Figure 4). The first one (Epa1 = -90 mV, Epc1 = -250 mV, ∆Ep = 160 

mV, E1/2 = -170 mV vs Fc+/0) is assigned to a Cu2
I,I → Cu2

II,I  system and the second (Epa2 = 335 

mV, Epc2 = 195 mV, ∆Ep = 140 mV, E1/2 = 265 mV) to Cu2II,I  → Cu2
II,II . The CV has similarities 

compared to that of [2] with the Cu-Cu bond and N/O environment but differs from [3] and [4] 

with exclusive N-coordinating atoms and (or not) Cu-Cu bond (Figure S12). The electronic 

communication within the cores that relies on the Cu2S triangle motif is thus highly sensitive to the 



environment. The anodic system is the most affected, with higher redox potential in presence of 

the metal-metal bond that tends to stabilize the MV state over a larger potential range.  

 

Figure 4. Cyclic voltammogram of [5] in acetone with 0.1 M Bu4N(ClO4) as supporting electrolyte and glassy carbon 
as working electrode. The curve corresponds to the n+1 scan at 100 mV.s-1.  

 

The molecular structure of [5] in acetone being established, its N2Or activity was 

investigated using UV-vis, EPR, ESI-MS and gas chromatography (GC) methods. Interestingly, 

while [3] (in dichloromethane) and [4] (in acetonitrile) are completely unreactive, noticeable 

changes are detected by absorption spectroscopy upon N2O bubbling into an acetone solution of 

[5] (Figure 5). 



 

Figure 5. UV-vis monitoring of the conversion of [5] (solid black to red) upon N2O bubbling in acetone (0 to 10 min) 
and (insert) full UV-vis/NIR spectra of [5] (solid black) and the final species (solid red).  

 

While the two main absorption bands at 1205 nm and 775 nm vanished within 10 minutes, a new 

feature is detected at 415 nm. The presence of an isosbestic point at 390 nm indicates the 

consumption of the starting complex and its clean conversion into a new species without side 

reactions. This behavior was already evidences for [2], unique Cu2S MV reported at that time for 

single turnover N2O reduction at room temperature. An EPR and ESI-MS follow-up of the reaction 

gave additional information about redox character of the reaction (Figure S13). Indeed, the axial 

S= ½ signal characteristic of [5] gradually disappeared concomitantly with N2O bubbling and a +2 

net charge fragment consistent with the integrity of the organic framework, two Cu(II) ions and the 

presence of an hydroxo ligand (Figure S14) are observed. These results are thus consistent with the 

formation of a dinuclear Cu(II) complex with an hydroxo bridge that confers the required 



antiferromagnetic coupling to silent the EPR signal. Additionally, examination of the headspace 

gas gave clear evidence about N2 formation and confirms N2O reduction (Figure S15). A reaction 

rate order for [5] of 0.77 ± 0.02 under pseudo-first order conditions was determined (Figure S16), 

suggesting (as for [2]) the involvement of a reaction intermediate that consumes [5] along the 

reaction (since a two-electron process is required for the reduction). Finally, the reaction rate was 

calculated to be 83 ± 3 min-1 whereas 8.0 ± 0.1 min-1 was obtained for [2] (Figure S17). This result 

is important form a structure/activity correlation point of view. Since the aquo species are the only 

active ones, the coordination sphere of the adjacent Cu center has a non-negligible effect on the 

reaction rate and is now a new parameter to be considered. In addition, for [2], a stabilizing H-bond 

between the water and triflate ligands could also explain such differences in reactivity.  

 

CONCLUSION 

In summary, a new dinuclear MV copper complex [5] containing an opened Cu2S core with 

acetonitrile and water molecules as exogenous ligands was generated upon dissolution of a 

bis(CH3CN) precursor [3] in acetone and fully characterized. The DFT-optimized structure is 

analogous to that of the other aqua parent [2], with the presence of a Cu-Cu bond. The electronic 

structure was probed by TDDFT methods and the NIR band connected to IVCT. [5] has an original 

(unique in this series and not observed for [2] with the (H2O)Cu-Cu(OTf) motif.) EPR temperature 

dependence behavior with a localized valence at least between 10 K and 120 K and a delocalized 



character at 292 K  The electrochemical behavior of [5] reminds that of [2] and differs from the 

other members of the series where the water ligand and (or) the Cu-Cu bond (is) are missing ([3] 

and [4]). Even more interesting was the detection of a N2Or activity that led us to attest for the 

importance of a Cu-OH2 moiety when targeting such a reactivity, and corroborates the results 

obtained for [2]. Finally, the kinetic data indicate (i) a rate order under pseudo-first order conditions 

close to 1 in agreement with the participation of a reaction intermediate that consumes [5] to 

promote the two-electron reduction process and (ii)  a reaction rate 10 times faster compared to [2]. 

This result is of main interest for establishing a rationale for N2O activation with these bio-inspired 

systems. Indeed, not only the Cu-OH2 part is essential, but also the coordination sphere of the 

adjacent Cu center influences the reaction. For [5] the 3NCuSCuN2O1 motif reminds that of the 

dissymmetric CuICuIV edge at CuZ* with exclusively nitrogen atoms in addition to the oxygen form 

water. This chemical environment could be the common determinant for an efficient reactivity. 

Experiments to prepare (i) new complexes combining various  

Cu-X spheres and the Cu-OH2 motif to confirm these result and (ii)  derivatives lacking de Cu-Cu 

bond but still having the Cu-OH2 motif, which would to help in evaluating the influence of this 

structural feature on the reactivity and currently performed.  
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