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UMR 6303 CNRS & Université de Bourgogne Franche-Comté,
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The Bogoliubov-Fröhlich Hamiltonian models the interaction of an impurity with the excitations
of a Bose-Einstein condensate. It has been observed that the dependence of the ground state energy
on the ultraviolet cutoff differs significantly from what would be expected from similar well-known
models. We give a detailed explanation of this UV behaviour, and provide an explicit representation
of the renormalised Hamiltonian.

I. THE BOGOLIUBOV-FRÖHLICH MODEL

A. Introduction

The Bogoliubov-Fröhlich Hamiltonian models the dy-
namics of impurities immersed in a Bose-Einstein Con-
densate. The interaction between the impurities and the
bosons can lead to the formation of polarons. Such effects
are well-known from similar models, such as H. Fröhlich’s
paradigmatic model of electrons interacting with optical
phonons in a crystal [11], and have been studied in vari-
ous contexts, in both physics and mathematics.
In a BEC, the excitations of particles out of the joint

condensate wavefunction can be described by a quantum
field, similar to phonons. In the Bogoliubov approxima-
tion, the dispersion of the excitations is related to Bo-
goliubov’s famous formula for the excitation spectrum
that helps explain superfluidity [1]. The interaction with
the impurities is essentially a contact interaction, due to
the dilute nature of the condensate gas. If the interac-
tion is approximated by a linear coupling of impurities to
the excitation field, one obtains the Bogoliubov-Fröhlich
Hamiltonian, whose form closely resembles the Hamilto-
nian used by Fröhlich. However, the contact interaction
gives rise to much stronger ultraviolet singularities. In
this article we will show how these can be addressed.
Polarons in a BEC have recently attracted consider-

able attention, and a variety of theoretical methods has
been employed in their study [3, 5, 6, 8, 14, 16, 17, 19,
21, 25, 26, 34–36, 38, 41]. Comparing numerical results,
Grusdt [14] found that the system is well described by
a Bogoliubov-Fröhlich Hamiltonian when the interaction
is either attractive or not too strong. Bose condensates
with mobile impurities have recently been realised in ex-
periments [2, 4, 18, 20], providing first tests of these the-
oretical predictions.
Concerning the ultraviolet behaviour, it was observed

in [17] that the ground state energy displays a divergence
of the form e1Λ+e2 log Λ, where Λ is the UV-cutoff. The
linearly divergent term was expected, and the mechanism
behind it is well understood from other models (see IIA
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for a detailed discussion). The logarithmic divergence is
specific to the model and its origin is more subtle.

The goal of this article is to explain this logarithmic
divergence in detail and give an explicit description of
the renormalised Bogoliubov-Fröhlich Hamiltonian. This
operator can be obtained by subtracting suitable num-
bers from the Hamitlonian with UV-cutoff and taking
the limit Λ → ∞. Such a limiting procedure often fails
to specify the remormalised Hamiltonian in an explicit
way. In practice, one is thus forced to work with the
cutoff model, taking a sequence of larger and larger val-
ues for Λ until one observes convergence of the relevant
quantities. However, we are able to present a formula for
the renormalised operator, Eq. (49), that can be studied
directly. This operator is self-adjoint, and thus generates
a unitary time-evolution, and its spectrum is bounded
from below, as we will show in Section II B. We also
characterise the domain of definition of the operator, con-
sisting of those vectors Ψ in the Hilbert space for which
‖HrenΨ‖2 = 〈Ψ|H2

renΨ〉 <∞. The explicit description of
Hren will open up new possibilities of studying aspects of
the model analytically. In Section II C we also present an
expansion of Hren in powers of the coupling constant g
that could prove useful for both analytical and numerical
approaches.

The characterisation of Hren and its domain can be
understood in the position representation using interior-
boundary-conditions. These boundary conditions for
quantum field theories were proposed in [39, 40] (see there
for additional refernces). They resemble the well-known
Bethe-Peierls conditions for contact pseudo-potentials,
but in a context where the particle number is not
conserved. Reflecting the creation and annihilation of
excitation-particles on contact, they relate the singular
behaviour of Ψ near collision configurations to the values
of Ψ with fewer bosons. We explain how this relates to
the Bogoliubov-Fröhlich model in Section II E.

B. The Hamiltonian

In this section we introduce the relevant objects and
notation, for a detailed introduction of the Bogoliubov-
Fröhlich model we refer to [15].
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For the most part, we will restrict our discussion to
the model with a single impurity, in order to keep the
notation simple. We comment on the case of multiple
impurities in Section II D. The Hamiltonian (with ultra-
violet cutoff Λ) is given by

HΛ = H0 + gΦΛ(x), (1)

where

H0 =
p2

2M
+ dΓ(ω) =

p2

2M
+

∫
dkω(k)a†kak (2)

is the sum of the kinetic energies of impurity and bosons,
and the cutoff interaction is given by

ΦΛ(x) =

∫
dkvΛ(k)e

ikx
(
ak + a†−k

)
. (3)

The dispersion relation of the excitations is given by

ω(k) = ck
√
1 + (kξ)2/2 (4)

and the cutoff form factor is

vΛ(k) =





1

(2π)3/2

(
(ξk)2

2 + (ξk)2

)1/4

k 6 Λ

0 k > Λ.

(5)

Here, g is a coupling constant, M is the mass of the im-
purity, p its momentum, and and x = −i∇p its position
operator. The constants ξ and c are the coherence length
and the speed of sound in the BEC, respectively and we
set ~ = 1 by choice of units.
For fixed boson number n, we will denote the function

H0(p;k1, . . . ,kn) = H0(p;K) =
p2

2M
+

n∑

i=1

ω(ki), (6)

where the semicolon delimits the momentum variables of
the impurity (or, in Section IID, the impurities) and the
bosons.
For a finite cutoff, the expression (1) defines a self-

adjoint operator on the domain D(HΛ) = D(H0) of vec-
tors Ψ in the Hilbert space H = HI⊗F, the tensor prod-
uct of the space HI = L2(R3) for the impurity and the
bosonic Fock space F of the excitations, for which H0Ψ
has finite norm.

Proposition 1. For Λ < ∞, HΛ is self-adjoint on the

domain

D(HΛ) = D(H0) = {Ψ ∈ H|H0Ψ ∈ H} (7)

and bounded from below.

Proof. Using [7, Prop.3.6], we find that HΛ is bounded

relative to H
1/2
0 . Since H

1/2
0 6 εH0 + (4ε)−1, the

claim then follows from the Kato-Rellich Theorem [31,
Thm.X.12].

The model is of course translation invariant, so total
momentum is conserved. One can represent the Hamil-
tonian as a function of the total momentum P by ap-
plying the unitary transformation U = eixdΓ(k), which
maps the impurity momentum p into the total momen-
tum P = p+ dΓ(k). The transformed wavefunction UΨ
can be considered as a function of the total momentum
taking values in F. Then

〈Φ|HΛΨ〉 =
∫

dP〈(UΦ)(P)|HΛ(P)(UΨ)(P)〉F, (8)

with the transformed Hamiltonian at total momentum P

HΛ(P) = H0(P) + gΦΛ, (9)

where

H0(P) =
1

2M
(P− dΓ(k))2 + dΓ(ω) (10)

and ΦΛ = ΦΛ(0) (this notation should not be confused
with the function (6)).

II. RENORMALISATION OF THE

BOGOLIUBOV-FRÖHLICH HAMILTONIAN

Having defined the Hamiltonian, we may immediately
observe two instances of the UV-problem. First of all,
the norm

‖HΛ(P)|∅〉P‖2 =
P 2

2M
+g2

∫
dk|vΛ(k)|2 ∼ g2

6π2
Λ3, (11)

diverges, so the vacuum (at total momentum P) can-
not be in the domain of definition of H∞(P) (if the lat-
ter exists). Secondly, the perturbative expression for the
ground state energy,

P 2

2M
− g2

∫
dk

|vΛ(k)|2
1

2M (P− k)2 + ω(k)
+ g3(. . . ) (12)

is also divergent, indicating that the ground state energy
of H∞(P) would have to be minus infinity (though one
should not infer any quantitative predictions from this
formula, as the non-interacting ground state does not
have a mass-gap).
We sketch in Section IIA how these problems can be

addressed for general Hamiltonians of Fröhlich type. In
our case, there will be an additional logarithmically di-
vergent expression, and the procedure for constructing
Hren will be given in detail in Sect. II B. Our main result
is

Theorem 2. There exists a self-adjoint and lower

bounded operator (Hren, D(Hren)), and numbers EΛ, Λ >
0, such that

HΛ − EΛ → Hren

in norm resolvent sense.



3

The content of this theorem is proved in Proposi-
tions 7, 8 below. Importantly, Theorem 2 proves that
the ground state energy of HΛ −EΛ remains finite, since
Hren is bounded below and the spectrum converges. It
also shows that the unitary propagators converge,

eiEΛte−iHΛt → e−iHrent, (13)

in norm. For a detailed discussion of the notion of resol-
vent convergence see [32, Sect.VIII.7].
We emphasise that the objects whose existence is

stated here are in fact explicit. The Hamiltonian Hren

and its domain D(Hren) are given by (49) and (50),
respectively. Its interpretation in terms of interior-
boundary conditions is discussed in Sect. II E. The num-

bers EΛ = E
(1)
Λ +E

(2)
Λ , with E

(1)
Λ ∼ e1Λ, E

(2)
Λ ∼ e1 log Λ,

depending on the parameters M, g, ξ, c of the model, are
given in (15) and (29).

A. UV-Behaviour of Fröhlich-Type Models

Hamiltonians of the Fröhlich type have been studied
for various different form factors v(k) and dispersion re-
lations ω(k). With some restrictions, they provide a class
of models where the UV-problem can be solved rigorously
on the level of the Hamiltonian. Let us briefly review the
picture of their UV-behaviour that emerges cite some key
results (assuming that ω > m to focus on the UV prob-
lem):

1. If
∫
dk|v∞(k)|2 <∞ the model is UV-regular; H∞

is well defined on the domain D(H∞) = D(H0).

2. If
∫
dk|v∞(k)|2 = ∞ but

∫
dk |v∞(k)|2

k2+1 < ∞, the
model remains UV regular, H∞ is well defined, but
on a domain D(H∞) different from D(H0) (in fact,
D(H∞) ∩ D(H0) = {0}). This is the case for the
original optical Fröhlich model, where v(k) ∝ 1/k,
ω ≡ const. (see [12, 23] for proofs and additional
references).

3. If
∫
dk |v∞(k)|2

k2+1 = ∞, the model is not UV-regular
and the ground state energy of HΛ tends to nega-

tive infinity. However, if
∫
dk |v∞(k)|2

(k2+1)2 <∞ one can

hope to define a remormalised HamiltonianHren by
simply renormalising the ground state energy. This
was done rigorously by Nelson [28] for the case of

a relativistic scalar field, i.e. ω(k) =
√
k2 +m2,

v(k) ∝ ω(k)−1/2, and later extended to a larger
class of models (see e.g. [13, 23]). For the class of
models treated in those articles, it is sufficient to
subtract the value of (12) at P = 0 from the Hamil-
tonian HΛ to obtain convergence (in the sense of
resolvents)

HΛ − E
(1)
Λ (0) → Hren. (14)

4. The Bogoliubov-Fröhlich Hamiltonian does not fall
into the class treated in [13, 23, 28]. In view of
the different behaviour of its ground state energy,
it cannot be treated by the same methods. In
Sect. II B below we will construct the renormalised
Hamiltonian for this case and prove convergence by
a new method. This method was developed in [22]
for the case v(k) ≡ const. and ω(k) = k2 + 1 cor-
responding to a local interaction (note [42]), and
generalises the approach of [23].

B. Construction of Hren

Here we explain how to obtain the renormalised Hamil-
tonian Hren and prove Theorem 2. For some of the tech-
nical details we will refer to [22], where a similar re-
sult is proved for the model with v∞(k) ≡ const. and
ω(k) = k2 + 1, which has the same UV-behaviour.
Let us start by describing the method for determining

Hren. The key is to find a way of incorporating the diverg-
ing numbers EΛ into the full Hamiltonian that makes the
expected cancellations explicit. The second-order contri-
bution to the ground state energy can be written as

E
(1)
Λ = −g2〈∅|ΦΛH0(0)

−1ΦΛ∅〉
= −g2〈∅|a(vΛ)H0(0)

−1a†(vΛ)∅〉, (15)

∼ −g
2µ

π2
Λ, (16)

with a(vΛ) =
∫
dkvΛ(k)ak, and the effective reduced

mass at high momentum µ = (M−1 + cξ
√
2)−1. Set

a(vΛ(x)) =
∫
dkeikxvΛ(k)ak and Gσ,Λ = −g(H0 +

σ)−1a†(vΛ(x)). Then we can write for any σ > 0

HΛ =H0 + g
(
a†(vΛ(x)) + a(vΛ(x))

)

=(H0 + σ)(1 −Gσ,Λ) + ga(vΛ(x)) − σ

=(1−G†
σ,Λ)(H0 + σ)(1 −Gσ,Λ)− σ (17)

− g2a(vΛ(x))(H0 + σ)−1a†(vΛ(x)). (18)

Notice that (15) is just the (P = 0) vacuum expectation
of (18). To exhibit the cancellations, we spell out how the
operator (18), which preserves the boson-number, acts on
a wavefuntion with a fixed number n of bosons. We have

− g2a(vΛ(x))(H0 + σ)−1a†(vΛ(x))ψ
(n) (19)

=
−g2
n+ 1

n+1∑

i,j=1

∫
dki

vΛ(ki)vΛ(kj)ψ
(n)(p− ki + kj ,��kj)

H0(p− ki;k1, . . . ,kn+1)
,

where ��kj indicates that the function depends on all of

the kℓ with ℓ 6= j. Note that for i = j, ψ(n) does not
depend on the variable of integration ki at all, so the
operator given by this expression is just mulitplication
by some function of p,��ki. By symmetry, it is equal to
the function for i = n + 1. This function diverges as
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Λ → ∞, but combining with (15) yields

Σ
(1)
d,Λ(p,K) (20)

:= −g2
∫

dq

(
|vΛ(q)|2

H0(p− q;K,q) + σ
− |vΛ(q)|2

q2

2M + ω(q)

)
,

where K = (k1, . . . ,kn). This integral is finite also for

Λ = ∞, giving a function Σ
(1)
d = Σd,∞(p,K).

The terms in (19) with i 6= j are quite different. They
act on ψ(n) as integral operators, and not multiplication
operators. The result of this action will be finite, even
for Λ = ∞, at least if ψ(n) decreases sufficiently fast for
large momenta. This operator is given by
(
Σ

(1)
od,Λψ

(n)
)
(p,K) (21)

= −g2
n∑

j=1

∫
dq
vΛ(q)vΛ(kj)ψ

(n)(p− q+ kj ,��kj ,q)

H0(p− q;K,q) + σ
.

We set Σ
(1)
Λ = Σ

(1)
d,Λ+Σ

(1)
od,Λ, and Σ(1) = Σ

(1)
∞ . The opera-

tor Σ(1) is related to the interaction between the bosons
and the impurity mediated by exchange of a single bo-
son. The strength of this interaction is estimated in the
following Lemma.

Lemma 3. There is an n-independent constant C such

that

‖Σ(1)ψ(n)‖ 6 g2C‖(H0 + 1)1/2ψ(n)‖. (22)

Moreover, the difference to Σ
(1)
Λ satisfies for any ε > 0

‖(Σ(1)
Λ − Σ(1))ψ(n)‖ 6 CΛ‖(H0 + 1)1/2+εψ(n)‖, (23)

with limΛ→∞ CΛ = 0.

Proof. The estimates of the integral defining Σ
(1)
d follow

by scaling and explicit evaluation (see [10, Sect.6]). The

integral operator Σ
(1)
od can be bounded by the Schur test.

The important observation that the constant does not

depend on n, even though the sum in Σ
(1)
od contains n

terms, was made in [27]. A detailed proof is obtained by
following the steps of [22, Lem.17].
The statement on convergence is obtained by applying

the same reasoning with the form factor v∞ − vΛ (see
also [33]).

The family of operators Gσ,Λ also has a limit Gσ :=

Gσ,∞, since
∫
dk |v∞(k)|2

(k2+1)2 <∞. More precisely:

Lemma 4. For any 0 6 s < 1/4 there exists a constant

C and a family CΛ with limΛ→∞ CΛ = 0 such that for

any Ψ ∈ H we have

‖Hs
0GσΨ‖ 6 C‖Ψ‖, (24)

and

‖Hs
0 (Gσ −Gσ,Λ)Ψ‖ 6 CΛ‖Ψ‖. (25)

Moreover, there exists σ0 > 0 such that for all σ > σ0,
1−Gσ is invertible with bounded inverse

∑∞
j=0G

j
σ.

Proof. See [33, Cor.3.3].

Given these facts, we could hope to take the limit

Λ → ∞ of the expression (18) minus E
(1)
Λ together

with (17) to obtain Hren. In fact, this works for the less
singular models from [13, 28], as demonstrated in [23].
However, this does not work for the Bogoliubov-Fröhlich
Hamiltonian, as can be inferred by again looking at the
perturbative ground state energy (at P = 0). Consider

HΛ(0)− E
(1)
Λ + σ (26)

= (1−G†
σ,Λ)(H0 + σ)(1 −Gσ,Λ)|P=0 +Σ

(1)
Λ |P=0.

The ground state of the leading term is just (1 −
Gσ,Λ)

−1|∅〉P=0. The perturbative approximation of the
ground state energy is thus

〈∅|G†
σ,ΛΣ

(1)
Λ Gσ,Λ∅〉P=0 + g5(. . . ), (27)

since Σ(1) ∝ g2 and Gσ,Λ ∝ g. As we have seen in

Lemma 3, Σ
(1)
d |P=0 is a multiplier whose growth is pro-

portional to
√
H0(0) ∼ k√

2µ
on the one-boson space. On

the other hand, Gσ,Λ|∅〉P=0 = −g(H0(0)+σ)
−1vΛ, so the

growth of (27) is proportional to

g4√
2µ

∫
dk

|vΛ(k)|2k
( k2

2M + ω(k))2
, (28)

which diverges like log Λ. The off-diagonal part Σ
(1)
od will

contribute at the same order. We set, choosing σ = 0,

E
(2)
Λ := 〈∅|G†

0,ΛΣ
(1)
Λ G0,Λ∅〉P=0. (29)

By evaluation of the corresponding integrals we find

E2 ∼ e2 log Λ, (30)

with

e2 =
g4µ3

π3
γ
( µ
M

)
, (31)

γ(s) :=
√
1− s2 − 1

s
arctan

(
s√

1− s2

)
,

and µ defined as in (16). This is in excellent agree-
ment with the numerical results provided in [15, Fig.5.5].

From (31) we see that the contributions from Σ
(1)
d

and Σ
(1)
od cancel in the limit of a static impurity, i.e.

limM→∞ e2(M) = 0 (see [24] for a treatment of a static
model). More precisely, we have the asymptotic be-
haviour for large M

e2 = − 2g4µ5

3π3M2
+O(M−3) (32)

(compare [15, Eq.(5.43)] and note [43]).
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We can extract this divergence fromHΛ by a procedure
similar to the first step, but treating Σ(1) on the same
footing as H0. We define

G̃σ,Λ = −g
(
H0 +Σ

(1)
Λ + σ

)−1

a†(vΛ(x)). (33)

By a calculation analogous to (17), we have

HΛ = (1 − G̃†
σ,Λ)(H0 +Σ

(1)
Λ + σ)(1 − G̃σ,Λ)− σ (34)

− g2a(vΛ(x))(H0 +Σ
(1)
Λ + σ)−1a†(vΛ(x))− Σ

(1)
Λ . (35)

We now expand the last line using the resolvent identity

and obtain

(35) =E
(1)
Λ +G†

σ,ΛΣ
(1)
Λ Gσ,Λ (36)

−G†
σ,ΛΣ

(1)
Λ (H0 + σ)−1Σ

(1)
Λ G̃σ,Λ. (37)

From Lemma 3 and Lemma 4 we see that (37) defines
a bounded operator, including for Λ = ∞, and that the
expression for finite Λ converges to the final one in the
operator norm. We thus mainly need to analyse

Θ
(2)
Λ := G†

σ,ΛΣ
(1)
Λ Gσ,Λ − E

(2)
Λ . (38)

To this end, we consider, as in Eq. (19) before, how
this operator will act on a wavefunction ψ(n) with n

bosons. Starting with the contribution due to Σ
(1)
d,Λ, we

observe again that some terms give multiplication op-
erators by a function that diverges as Λ → ∞, while
others are integral operators and well defined for Λ =
∞, if ψ(n) decreases quickly enough. Spelling these
terms out, we group the divergent terms together with

〈∅|G†
0,ΛΣ

(1)
d,ΛG0,Λ∅〉P=0 and set (with K = (k1, . . . ,kn) as

before)

Ξd,Λ(p,K) = g4
∫

dq|vΛ(q)|2
(

Σ
(1)
d,Λ(p− q;K,q)

(H0(p− q;K,q) + σ)2
−

Σ
(1)
d,Λ(−q;q)

H0(q;q)2

)
, (39)

(
Ξod,Λψ

(n)
)
(p,K) = g4

n∑

j=1

∫
dq
vΛ(q)vΛ(kj)Σ

(1)
d,Λ(p− q,K,q)ψ(n)(p− q+ kj ,��kj ,q)

(H0(p− q;K,q) + σ)
2 . (40)

By the same reasoning as for Σ(1), both of these operators
are well defined for Λ = ∞.

Applying the same procedure to G†
σ,ΛΣ

(1)
od,ΛGσ,Λ, we

find

Υd,Λ(p,K) = −g4
∫

dqdq′
( |vΛ(q)|2|vΛ(q′)|2
(H0(p− q;K,q) + σ) (H0(p− q− q′;K,q,q′) + σ) (H0(p− q′;K,q′) + σ)

− |vΛ(q)|2|vΛ(q′)|2
H0(q;q)H0(q+ q′;q,q′)H0(q′;q′)

)
,

(41)

(
Υod,Λψ

(n)
)
(p,K) = −g4

j6n+1
ℓ6n+2∑

(j,ℓ) 6=(n+1,n+2)

∫
dkn+1dkn+2Ij,ℓ(p,k1, . . . ,kn+2) (42)

Ij,ℓ =
vΛ(kn+1)vΛ(kn+2)vΛ(kj)vΛ(kℓ)ψ

(n)(p− kn+1 − kn+2 + kj + kℓ,��kj ,��kℓ)(
H0(p− kn+1;✟✟✟kn+2) + σ

)
(H0(p− kn+1 − kn+2; . . . ) + σ)

(
H0(p− kn+1 − kn+2 + kj ;✟✟✟kn+1) + σ

) .

Setting

Θ
(2)
d,Λ :=Ξd,Λ +Υd,Λ, (43)

Θ
(2)
od,Λ :=Ξod,Λ +Υod,Λ, (44)

we have, for finite or infinite Λ,

Θ
(2)
Λ =Θ

(2)
d,Λ +Θ

(2)
od,Λ. (45)
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The operator Θ
(2)
d is a multiplication operator by a func-

tion of logarithmic growth in p, k1, . . . , kn, while Θ
(2)
od is

an integral operator that is bounded. In view of (37) we
then set

Σ
(2)
Λ := Θ

(2)
Λ −G†

σ,ΛΣ
(1)
Λ (H0 + σ)−1Σ

(1)
Λ G̃σ,Λ, (46)

again omitting the subscript in the case Λ = ∞.

Lemma 5. For any ε > 0 there is a constant C and a

family CΛ, limΛ→∞ CΛ = 0, such that

‖Σ(2)Ψ‖ 6 g4C‖(H0 + 1)εΨ‖, (47)

and

‖(Σ(2) − Σ
(2)
Λ )Ψ‖ 6 CΛ‖(H0 + 1)εΨ‖. (48)

Proof. As mentioned above, the regular part Σ(2) −Θ(2)

defines a bounded operator by Lemma 3 and Lemma 4.

The bounds of the integral defining Θ
(2)
d are elemen-

tary. The integral operator Θ
(2)
od is again bounded us-

ing the Schur test. A detailed argument showing that
the norms do not grow with the boson-number is given
in [22, Lem.19].

By the resolvent identity and Lemma 3, G̃σ,Λ and

G̃σ,∞ = G̃σ have essentially the same properties as Gσ,Λ.

Lemma 6. The statements of Lemma 4 hold equally for

G̃σ,Λ.

In view of (35) we can now define the renormalised
Hamiltonian by subtracting the appropriate constants,
combining them with the operator (35) to form Σ(2) and
taking Λ = ∞. Explicitly, for σ sufficiently large (as

required for 1− G̃σ to be invertible), we define

Hren = (1− G̃†
σ)(H0 +Σ(1) + σ)(1 − G̃σ) + Σ(2) − σ.

(49)

Note that Σ(2) − Θ(2) = O(g6) in operator norm, so for
a perturbative treatment one may choose to neglect this,
making the formulas completely explicit (see also Sec-
tion II C).
The domain of definition D(Hren) consists of those vec-

tors Ψ ∈ H for which the first term is finite, i.e.,

D(Hren) := {Ψ ∈ H|‖(H0 + 1)(1− G̃σ)Ψ‖ <∞}. (50)

Proposition 7. For any σ > 0 such that (1 − G̃σ) is

invertible, the operator Hren with domain D(Hren) is self-
adjoint and bounded from below.

Proof. Since (1 − G̃σ) is invertible, the leading term
of Hren is clearly self-adjoint on D(Hren) = (1 −
G̃σ)

−1D(H0) and non-negative. By the Kato-Rellich
Theorem, it is thus sufficient to show that Σ(2) is bounded
relative to this term, with relative bound zero. Let

Ψ ∈ D(Hren). Then, using Lemma 6 and Lemma 5, we
have for ε, δ > 0 and some constants C,C′, Cδ

‖Σ(2)Ψ‖ 6C‖(H0 + 1)ε(1 − G̃σ)Ψ‖+ ‖Σ(2)G̃σΨ‖
6δ‖H0(1− G̃σ)Ψ‖+ Cδ‖Ψ‖ (51)

6C′δ‖(1− G̃†
σ)H0(1− G̃σ)Ψ‖+ Cδ‖Ψ‖,

where in the second step we also used Young’s inequality.
This proves the claim.

To establish Theorem 2 it remains to prove that HΛ −
EΛ converges to Hren. Note that this also proves that
Hren is independent of σ > σ0, even though its definition
explicitly uses σ.

Proposition 8. Let E
(1)
Λ and E

(2)
Λ be given by (15), re-

spectively (29) and EΛ = E
(1)
Λ + E

(2)
Λ . Then

lim
Λ→∞

(HΛ − EΛ ± i)−1 = (Hren ± i)−1

in the norm of operators on H.

Proof. Denote H̃Λ := HΛ − E
(1)
Λ − E

(2)
Λ . By the iden-

tity (35) and the definition of Σ
(2)
Λ we have

H̃Λ = (1 − G̃†
σ,Λ)(H0 + Σ

(1)
Λ + σ)(1 − G̃σ,Λ) + Σ

(2)
Λ − σ.

(52)

The difference of resolvents is then

(Hren ± i)−1 − (H̃Λ ± i)−1 (53)

= (Hren ± i)−1

(
(1− G̃†

σ)
(
Σ

(1)
Λ − Σ(1)

)
(1− G̃σ)

+
(
(1− G̃†

σ)
(
H0 +Σ

(1)
Λ

)
(G̃σ − G̃σ,Λ)

)

+
(
(G̃†

σ − G̃†
σ,Λ)

(
H0 +Σ

(1)
Λ

)
(1 − G̃σ,Λ)

)

+
(
Σ

(2)
Λ − Σ(2)

))
(H̃Λ ± i)−1.

By the argument of Proposition 7, (Hren±i)−1(1−G̃†
σ)H0

and H0(1 − G̃σ,Λ)(H̃Λ ± i)−1 define bounded operators,

uniformly in Λ. By Lemma 3, Σ
(1)
Λ , the first term then

tends to zero in norm. Since G̃σ,Λ → G̃σ, also the sec-
ond and third term converge to zero. From Proposi-
tion 7 and Lemma 6 we see that (Hren ± i)−1(H0 + 1)ε

defines a bounded operator for some ε > 0. Since

(H0 + 1)−ε
(
Σ

(2)
Λ − Σ(2)

)
converges to zero in norm, by

Lemma 5, this proves the claim.

C. Formal Perturbation Theory

Our technique of extracting the divergent contribu-
tions to the Hamiltonian can be regarded as a form of
perturbative expansion. This expansion can be carried
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out to higher orders, which require no further renormal-
isation. It could have practical importance for numeri-
cal simulations or the construction of trial states. Here,
we make more explicit the general form of this expan-
sion. However, we remark that this expansion does not
directly imply a rigorous expansions of e.g. ground states
of Hren(P), since the model has no mass gap.
Starting from the definition of Σ(j), j = 1, 2, we can

continue by recursively setting

T (j) = H0 +

j∑

i=1

Σ(i) (54)

G(j)
σ = −g

(
T (j) + σ

)−1

a†(vx), (55)

and then, using that T (j) = T (j−1) +Σ(j) and the defini-
tion of Σ(j),

Σ(j+1) = −g2a(vx)
(
T (j) + σ

)−1

a†(vx)− T (j) +H0

= g2a(vx)
(
T (j) + σ

)−1

Σ(j)
(
T (j−1) + σ

)−1

a†(vx).

(56)

By the same calculation as in (18), (35), we then have
the identity,

Hren = (1−G(j)
σ )†(T (j)+σ)(1−G(j)

σ )+Σ(j+1)−σ, (57)

where we have already taken Λ = ∞ and σ sufficiently
large. Note that Σ(j) carries a power of g2j . Additionally,
by our bounds on Σ(2), all Σ(j) for j > 2 are bounded
operators on H, so we really have Σ(j) = O(g2j). This
formula clearly suggests to study Hren−Σ(j+1)+σ, or its
restriction to fixed momentum P, which is isospectral to
T (j)(P)+σ. These operators may have bound states with
non-zero boson-number with molecule-like properties.

D. The Model with Multiple Impurities

We now outline how the Hamiltonian for multiple im-
purities can be treated by the method presented above.
We treat the impurities as distinguishable particles, so
that both fermions and bosons can accommodated by
restricting to wavefunctions with the correct symmetry.
For a fixed number NI of impurities, the Hamiltonian

with cutoff is given by

HΛ := H0 +

NI∑

j=1

gΦΛ(xj), (58)

with

H0(p1. . . . ,pNI
;K) =

NI∑

j=1

p2
j

2M
+ dΓ(ω(k)). (59)

We now follow the procedure of Section II B and in-
dicate the differences for the many-impurity case. In

general, now every creation/annihilation operator is as-
sociated with one of the impurities, at which the cre-
ation/annihilation takes place.

To start with, we consider the generalisations of Σ(1)

and E
(1)
Λ . In Eq. (19) there is now an additional double

sum over the impurities, with which both instances of
vΛ are associated. When these impurities coincide, we

obtain a contribution analogous to Σ(1) + E
(1)
Λ . Terms

corresponding to interaction of two different impurities
give rise to additional integral operators in Σ(1). These
can be dealt with in the same way as before, see [22,

Lem.7]. Consequently, the numbers E
(1)
Λ should be re-

placed by NIE
(1)
Λ . The interpretation of this is of course

that the renormalisation adjusts the rest-energy of the
impurities.

The next step is to consider E
(2)
Λ and Σ(2). For this, it

is necessary to understand the divergent terms in

G†
σ,ΛΣ

(1)
Λ Gσ,Λ. (60)

As in the previous reasoning, they are characterised by
the fact that they lead to multiplication operators, as
opposed to integral operators. Note, however, that this
expression now contains four sums over the impurities.
Divergent terms arise whenever each of the indices co-
incides with another one, so one might expect that the

correct choice of E
(2)
Λ behaves like N2

I . This is not the
case, due to cancellations between contributions coming

from Σ
(1)
d and Σ

(1)
od , and the correct replacement for E

(2)
Λ

is exactly NIE
(2)
Λ .

This can be seen from the following calculations. The

relevant terms in G†
σ,ΛΣ

(1)
d,ΛGσ,Λ are given by the evalua-

tion at p1 = · · · = pNI
= 0 of

− g4
∫

dq′ |vΛ(q′)|2
H0(pj − q′, . . . ;K,q′)2

(61)

×
∫
dq

( |vΛ(q)|2
H0(pi − q,pj − q′, . . . ;K,q,q′)

− |vΛ(q)|2
H0(q;q)

)
.

The number of terms with i = j is of course NI, and these
give rise to exactly the same divergence as for NI = 1.
The NI(NI − 1) contributions with i 6= j each give

− g4
∫
dq′ |vΛ(q′)|2

H0(q′;q′)2

∫
dq

( |vΛ(q)|2
H0(q,q′;q,q′)

− |vΛ(q)|2
H0(q;q)

)

= g4
∫
dq′

∫
dq

|vΛ(q′)|2|vΛ(q)|2
H0(q′;q′)H0(q,q′;q,q′)H0(q;q)

. (62)

By inspection of the formulas (41), (42), wee see

that G†
σ,ΛΣ

(1)
od,ΛGσ,Λ gives exactly the same contribution

as (62), but with the opposite sign, from the terms where
the boson-indices (j, ℓ) = (n+1, n+2) are associated with
different impurities.
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E. Interior-Boundary Conditions

Here we explain briefly how the Bogoliubov-Fröhlich
Hamiltonian, and in particular the condition (50) charac-
terising its domain, can be understood in terms of interior
boundary conditions. More details on this approach can
be found in [39, 40]. It was used by the author in [22] to
study a three-dimensional model of Fröhlich type with
point interactions, providing key insights for our treat-
ment of the Bogoliubov-Fröhlich Hamiltonian.
A core idea of interior boundary conditions is that the

configuration space of multiple particles should not con-
tain configurations with more than one particle at the
same location. It thus has a boundary, given by the
configurations with x = yi, for some i (or yi = yj for
i 6= j, but these play no role here since the bosons do
not interact directly). On this boundary one should then
choose boundary conditions that correctly implement the
physical model. For particles interacting via contact
pseudo-potentials, with conserved particle number, these
are of Skornyakov–Ter-Matirosyan type [37] (although
these conditions are not sufficient in general, [9]. In a
model where the particle number is not conserved, the
total boundary consists of the collision configurations of
any number of particles. The interior boundary condi-
tion will then relate (generalised) boundary values of the
wavefunctions with different particle numbers, thus giv-
ing rise to creation/annihilation of particles.
Let us investigate the behaviour on the boundary for

our model in more detail. This carries some important
information, as it gives a criterion for a wavefunction to
be an element of D(Hren) that can be verified directly.
In particular, any eigenfunctions of Hren or the fixed-
momentum operators Hren(P) must satisfy these condi-
tions (in the latter case with x = 0). Expressed on the
sector with n + 1 bosons, the condition (50) for Ψ ∈ H
to be in D(Hren) implies

ψ(n+1) − G̃σψ
(n) ∈ D(H0) ∩H(n+1). (63)

In the position representation, every element of D(H0)∩
H(n+1) can be evaluated on the plane {yj = x} for any
j = 1, . . . , n + 1 (by [31, Thm.IX.38] – this does not
mean that the function is continuous), giving an element
of H(n). In this sense, the condition means that ψ(n+1)−
G̃σψ

(n) is regular, and thus ψ(n) and G̃σψ
(n) have the

same singularities. Spelling out G̃σψ
(n), we find

−g√
n+ 1

n+1∑

j=1

(H0 +Σ(1) + σ)−1v̌(x− yj)ψ
(n)(x,✚✚yj),

(64)

where v̌ is the inverse Fourier transform of v∞(k). One
easily checks, by comparing with the case v̌ = cδ, that the
singularities of this expression are located on the planes
where x = yj . Furthermore, the j-th term diverges only
on this plane, but is regular at x = yi 6= yj , so the

singularities at x = yj are essentially the same as for
n = 0 and x = y. In that case, we have

G̃σψ
(0) = −g

(
(H0 + σ)−1v̌(x− y)ψ(0)(x) (65)

− (H0 + σ)−1Σ(1)(H0 +Σ(1) + σ)−1v̌(x− y)ψ(0)(x)
)
.

The term in the first line clearly has a divergence pro-
portional to |x − y|−1 as y → x. More careful analysis
reveals that the second term has a divergence propor-
tional to log |x − y|. The function ψ(n+1) thus has the
asymptotic behavior

ψ(n+1)(x,y1, . . . ,yn+1) ∼ (66)

−g√
n+ 1

(
c−1|x− yj |−1) + c0 log |x− yj |

)
ψ(n)(x,✚✚yj),

as |x − yj | → 0, for all points with x 6= yi, i 6= j
and some constants c−1, c0 (their precise values can be
obtained from [39, Eq.(56)] by choosing the parameter

my =
√
2cξ).

In this context, the renormalisation procedure can be
interpreted as the extension of the annihilation operator
a(vx) to functions with singularities as in (67). This ex-
tension is obtained by neglecting divergent contributions
due to the “evaluation” of singular functions at yj = x

(cf. [23, Sect.3.2] and [22, Eq.(29)]). Let A denote such an
extension. Then we can express the action of the Hamil-
tonian Hren on an element Ψ ∈ D(Hren) of its domain as
(cf. [22, Eq.(10)])

HrenΨ = H0Ψ+ a†(vx)Ψ +AΨ+ E0Ψ, (67)

where E0 is a constant that can be set to zero by changing
the definition of A. Note that in this equation every one
of the first three summands should be interpreted as a
distribution, and only their sum defines an element of
H. This means that the domain of Hren has been chosen
specifically in order to make their singularities, which are
located on the collision configurations, cancel each other
out.

III. CONCLUSIONS

We have constructed the renormalised Bogoliubov-
Fröhlich Hamiltonian by an explicit procedure. In doing
so, we derived an exact expression for the constant of
proportionality of the log(Λ)-energy-shift first observed
in [17]. The algebra underlying our method provides a
way of expanding the Hamiltonian in powers of g that is
compatible with renormalisation. We have also explained
the relation to the approach of interior boundary condi-
tions, by which our method is inspired. Our presentation
of the Hamiltonian provides new tools for both analytical
and numerical approaches to the BEC-polaron system.
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[12] M. Griesemer and A. Wünsch. Self-adjointness and
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