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LONG TIME BEHAVIOUR OF CONTINUOUS-STATE NONLINEAR

BRANCHING PROCESSES WITH CATASTROPHES

ALINE MARGUET AND CHARLINE SMADI

Abstract. Motivated by the study of a parasite infection in a cell line, we introduce a
general class of Markov processes for the modelling of population dynamics. The population
process evolves as a diffusion with positive jumps whose rate is a function of the population
size. It also undergoes catastrophic events which kill a fraction of the population, at a
rate depending on the population state. We study the long time behaviour of this class of
processes.
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1. Introduction

We introduce a general class of non-negative continuous-time and space Markov processes,
including diffusive terms, as well as negative and positive jumps. They can be seen as a
generalization of a class of continuous-state nonlinear branching processes introduced recently
in [18], which did not allow for negative jumps. Our motivation comes from the study of a
parasite infection in a cell population (see the companion paper [20]). The processes studied
in the current work may indeed be interpreted as the dynamics of the quantity of parasites
in a cell line. Catastrophic events correspond to cell divisions during which a cell splits its
parasites between its two daughter cells, according to a probability kernel κ(dθ) on (0, 1).
The quantity of parasites in a cell line is thus multiplied by θ ∈ (0, 1), which can also be
interpreted as the death of a fraction (1 − θ) of the parasites in the cell line. First, we
investigate the possibility for the processes to be absorbed or to explode in finite time. In
each case, we give conditions under which the event has null or positive probability, and
even provide conditions under which it happens almost surely. Building on these results, we
then explore the long time behaviour of the process. We give criteria for the processes to
converge to a positive random variable, to 0 or to ∞. Moreover, in the case of almost sure
extinction, we give bounds on the exponential decay of the survival probability.

The class of processes under study belongs to a class of processes recently introduced as
strong solutions of Stochastic Differential Equations (SDE) in [21], and only few processes of
this class have been studied until now. This framework allows to take into account interac-
tions between individuals as well as the effects of the environment. The addition of interac-
tions between individuals in continuous-time branching processes has recently attracted a lot
of interest. For instance, Feller diffusions and Continous State Branching Processes (CSBPs)
with logistic competition have been studied in [14, 16] and [5], respectively, Feller diffusions
with some nonlinear birth rates have been studied in [24], and polynomial interactions have
been considered in [17]. Li and coauthors [18] have recently introduced a general class of con-
tinuous state nonlinear branching processes, and have investigated extinction, explosion and
coming down from infinity for this class. However, in all these models, only positive jumps
are allowed. They result from large birth events, and were first introduced by constructing
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the continuous state process as the limit of a sequence of discrete branching processes (see
for instance [15, 3]). In parallel, models where the interactions between individuals result
from the fact that the whole population is subject to the variations of the same environment
have been intensively studied recently, in particular in the framework of CSBPs in random
environment. This class of models, initially introduced by Keiding and Kurtz [13, 12] in the
case of Feller diffusions in a Brownian environment, have been generalised and studied by
many authors during the last decade [7, 1, 23, 22, 9, 21, 19, 2]. In this setting, negative
jumps may occur, being for instance the result of environmental catastrophes killing each
individual with the same probability [1]. However, in CSBPs in random environment, the
environment is independent of the population state. In particular the rate of catastrophes
does not depend on the population size. We relax this assumption in the current work.

In the next section, we define the processes of interest and give sufficient conditions for
their existence and uniqueness as the solution of an SDE. Sections 3, 4 and 5 are dedicated
to the possibility of absorption and explosion of the process in finite time. In Section 6 we
study the long time behaviour of the process. The proofs are derived in Section 7.

In the sequel, we work on a filtered probability space (Ω,F ,Ft,P), N := {0, 1, 2, ...} will
denote the set of non-negative integers, R+ := [0,∞) the real line and R∗+ := (0,∞). We will
denote by C2

b (R+) the set of twice continuously differentiable bounded functions on R+. Fi-
nally, for any stochastic process X on R+, we will denote by Ex [f(Xt)] = E

[
f(Xt)

∣∣X0 = x
]
.

2. Definition of the population process

We consider continuous-time and continuous-state Markov processes solution to the fol-
lowing SDE:

Xt = X0 +

∫ t

0
g(Xs)ds+

∫ t

0

√
2σ2(Xs)dBs +

∫ t

0

∫ p(Xs− )

0

∫
R+

zQ̃(ds, dx, dz) (2.1)

+

∫ t

0

∫ r(Xs− )

0

∫ 1

0
(θ − 1)Xs−N(ds, dx, dθ),

where X0 is non-negative, g is a real function on R+, σ, p and r are non-negative functions

on R+, B is a standard Brownian motion, Q̃ is a compensated Poisson point measure with
intensity ds⊗ dx⊗ π(dz), π is a positive measure on R+, and N is a Poisson point measure
with intensity ds ⊗ dx ⊗ κ(dθ) where κ is a probability measure on [0, 1]. We assume that

N , Q̃ and B are mutually independent.
Under some mild conditions, the SDE (2.1) has a unique pathwise strong solution. We

will work under these conditions in the sequel.

Assumption A.

- The functions r and p are locally Lipschitz and p(0) = 0, r(0) <∞.
- The function g is continuous on R+, g(0) = 0 and for any n ∈ N there exists a finite

constant Bn such that for any 0 ≤ x ≤ y ≤ n

|g(y)− g(x)| ≤ Bnφ(y − x),

where

φ(x) =

{
x (1− lnx) if x ≤ 1,
1 if x > 1.

- The function p is non-decreasing on R+.
- The function σ is Hölder continuous with index 1/2 on compact sets and σ(0) = 0.
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- The measure π satisfies ∫ ∞
0

(
z ∧ z2

)
π(dz) <∞.

The form of this assumption comes from the conditions of [21, Proposition 1] that we will
apply to get the next result. The condition g(0) = p(0) = σ(0) = 0 ensures that the process
stays non-negative and that 0 is an absorbing state. Notice that the second point makes
sense from a biological point of view. The value of p(x) corresponds to the rate of large
reproductive events when the population is of size x. It thus means that more individuals
produce more offspring.

Proposition 2.1. Suppose that Assumption A holds. Then, Equation (2.1) has a path-
wise unique non-negative strong solution absorbed at 0 and ∞. It is a Markov process with
infinitesimal generator G, satisfying for all f ∈ C2

b (R+),

Gf(x) = g(x)f ′(x) + σ2(x)f ′′(x) + p(x)

∫
R+

(
f(x+ z)− f(x)− zf ′(x)

)
π(dz)

+r(x)

∫ 1

0
(f(θx)− f(x))κ(dθ). (2.2)

Here, we adopt the formalism of [21] for the definition of a solution to the SDE (2.1):
a [0,∞]-valued process X = (Xt, t ≥ 0) is a solution if it satisfies (2.1) up to the time
τn := inf{t ≥ 0, Xt ≥ n} for all n ≥ 1, and Xt =∞ for all t ≥ τ := limn→∞ τn.

We can now study the long time behaviour of the process X solution to (2.1).

3. Absorption of the process

A first question, which is natural when modelling populations, is to know if the process
can get extinct in finite time. Let us introduce the stopping times τ−(x) and τ+(x) via

τ−(x) := inf{t ≥ 0 : Xt < x}, τ+(x) := inf{t ≥ 0 : Xt > x}, for x > 0 (3.1)

and
τ−(0) := inf{t ≥ 0 : Xt = 0}, (3.2)

with the convention inf ∅ := ∞. Moreover, we denote by Θ a random variable distributed
according to κ.

The study of the absorption of the process X relies on the construction of a sequence of
martingales. Let us define

A :=
{
a > 1, E[Θ1−a] <∞

}
and the set of functions Ga given for a ∈ A ∪ (0, 1) and x > 0 by

Ga(x) := (a− 1)

(
g(x)

x
− aσ

2(x)

x2
− r(x)

1− E[Θ1−a]

1− a
− p(x)Ia(x)

)
, (3.3)

where

Ia(x) = ax−2

∫
R+

z2

(∫ 1

0
(1 + zx−1v)−1−a(1− v)dv

)
π(dz). (3.4)

The behaviour around 0 of Ga characterizes the likelihood of the process X to reach 0. It
depends on everything except the negative jump term close to 0. This is because the division
rate r is bounded for small values of the process (r(0) < ∞ and r is continuous), and thus
the process cannot reach 0 due to an accumulation of jumps. We entitle the conditions SN0
(Small Noise around 0) and LN0 (Large Noise around 0).
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(SN0) There exists a ∈ A and a non-negative function f on R+ such that

g(x)

x
− aσ

2(x)

x2
− p(x)Ia(x) = f(x) + o(lnx), (x→ 0). (3.5)

(LN0) There exist a < 1, η > 0 and x0 > 0 such that for all x ≤ x0

g(x)

x
− aσ

2(x)

x2
− p(x)Ia(x) ≤ −

(
ln(x−1)

) (
ln(ln(x−1))

)1+η
. (3.6)

Remark 3.1. Condition (LN0) can be generalized. Indeed, a careful reading of the proof
shows that a sufficient condition is that there exists a positive non-increasing function f on
R+ such that

i) there exist a < 1 and x0 > 0 such that for all x ≤ x0,

g(x)

x
− aσ

2(x)

x2
− p(x)Ia(x) ≤ −f(x),

ii) there exist ε < 1 and δ > 0 such that

∞∑
n=1

(1 + δ)nf
(
ε(1−δ)(1+δ)n

)−1
<∞.

Under a first moment assumption for the positive jumps, Conditions (SN0) and (LN0)
may be simplified.

Remark 3.2. If
∫
R+
zπ(dz) <∞, (3.5) is equivalent to

g(x)

x
− aσ

2(x)

x2
= f(x) + o(lnx), (x→ 0),

and (3.6) is equivalent to

g(x)

x
− aσ

2(x)

x2
≤ −

(
ln(x−1)

) (
ln(ln(x−1))

)1+η
.

See Section 7.2 for the proof of this result.

We can now state results on the absorption of the process in terms of those two conditions.

Theorem 3.3. Suppose that Assumption A holds and let X be the pathwise unique solution
to (2.1).

i) If Condition (SN0) holds, then Px (τ−(0) <∞) = 0 for all x > 0.
ii) If Condition (LN0) holds, then Px (τ−(0) <∞) > 0 for all small enough x > 0.

iii) If Condition (LN0) holds and if r(x) > 0 for every x > 0, then for any x > 0,
Px (τ−(0) <∞) > 0.

Theorem 3.3 extends [18, Theorem 2.3], and we thus use some ideas of the proof of [18,
Theorem 2.3] to derive our results. Moreover, several adaptations are needed as negative
jumps may occur in our process. Notice that we give tighter bounds than in [18, Theorem
2.3] where (ln(x−1))r, r < 1 and (ln(x−1))r, r > 1 were considered instead of the right-hand
sides of (3.5) and (3.6).

Theorem 3.3 shows that the behaviour of the noise around zero determines the fate of
the process in terms of absorption: if it is large enough compared to the growth rate of
the parasites around zero, then the probability of being absorbed in finite time is positive.
Notice that under our conditions, the process cannot be absorbed because of negative jumps.
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4. Explosion of the process

We now focus on the possibility for the process to explode in finite time. For the modelling
of a parasite infection, it would correspond to an explosion of the quantity of parasites in a
lineage or in the cell population. Unable to overcome the infection, the latter would thus be
likely to die (see companion paper [20]).

We define
τ+(∞) := lim

n→∞
τ+(n),

and we are interested in the probability of the event {τ+(∞) <∞}.
In this case, the behaviour of Ga at infinity determines the likelihood of the process to

reach infinity in finite time. Unlike for the absorption behaviour, the law and frequency
of negative jumps may impact the probability of explosion of the process. We entitle the
conditions SN∞ (Small Noise for large values) and LN∞ (Large Noise for large values).

(SN∞) There exist a < 1 and a non-negative function f on R+ such that

g(x)

x
− aσ

2(x)

x2
− r(x)

1− E[Θ1−a]

1− a
− p(x)Ia(x) = −f(x) + o(lnx), (x→ +∞).

(LN∞) There exist a ∈ A, η > 0 and x0 > 0 such that for all x ≥ x0

g(x)

x
− aσ

2(x)

x2
− r(x)

1− E[Θ1−a]

1− a
− p(x)Ia(x) ≥ lnx (ln(lnx))1+η .

The next result describes the possible behaviours for the process in terms of explosion.

Theorem 4.1. Suppose that Assumption A holds and let X be the pathwise unique solution
to (2.1).

i) If Condition (SN∞) holds, then Px (τ+(∞) <∞) = 0 for all x > 0.
ii) If Condition (LN∞) holds then Px (τ+(∞) <∞) > 0 for all large enough x > 0.

iii) If Condition (LN∞) holds and if σ(x) + p(x) > 0 for every x > 0, then for any
x > 0, Px(τ+(∞) <∞) > 0 .

Theorem 4.1 extends [18, Theorem 2.8], and again we use some ideas of this previous work.
However, several adaptations are again needed as negative jumps may occur in our process.
Moreover, we completed the proof of [18, Theorem 2.8] as one argument seemed to be miss-
ing to conclude. Finally, as in Theorem 3.3, we give tighter bounds than in [18, Theorem 2.8].

It is interesting to notice that the explosion of the process depends on all the components
of the population dynamics. The Malthusian growth rate g increases the likelihood of the
explosion phenomenon when increasing, whereas the fluctuations of the Brownian part and
due to the large reproductive events decrease it. An interesting consequence of this result is
that the presence of the catastrophic events may prevent the explosion of the population. In
particular, if the process represents the quantity of parasites in a cell line and the catastrophes
correspond to the sharing of the parasites between the two daughter cells at division, the
cell population may avoid the explosion of the quantity of parasites by increasing its division
rate or by modifying the law of the sharing of the parasites between the two daughter cells.

5. Simpler conditions for absorption or explosion of the process

When the fluctuations of the process X are no too strong (see Proposition 5.1 for details),
the conditions for absorption and explosion of the process X take simpler expressions. In
particular, they do not rely on the existence of a positive real number a satisfying some
conditions. As we will see, they allow to make links with previous results on CSBP in
random environment.
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From now on, we will always assume that the following conditions hold:

|E[ln Θ]| =
∣∣∣∣∫ 1

0
ln θκ(dθ)

∣∣∣∣ <∞, ∫
R+

ln(1 + z)π(dz) <∞. (5.1)

We introduce a new function H (linked to the family (Ga, a 6= 1)) whose behaviour at 0
(resp. infinity) is linked to the absorption (resp. explosion) behaviour of the process X:

H(x) := lim
a→1

Ga(x)

a− 1
=
g(x)

x
− σ2(x)

x2
+ r(x)E [ln Θ]− p(x)I(x),

where Ga is defined in (3.3),

I(x) := lim
a→1

Ia(x) = −
∫
R+

[
ln
(
1 + zx−1

)
− zx−1

]
π(dz), (5.2)

and Ia is defined in (3.4). We refer the reader to Appendix A for the derivation of the limit.
Note that I is well-defined under the classical moment assumption

∫
R+
z ∧ z2π(dz) < ∞.

Using Theorems 3.3 and 4.1 we can prove the following result.

Proposition 5.1. Let X be the pathwise unique solution to (2.1), suppose
∫
R+
z2π(dz) <∞.

(Absorption) i) If

H(x) = o(lnx) and
σ2(x)

x2
+
p(x)

x2
= O(lnx), (x→ 0)

then for all x > 0, Px (τ−(0) <∞) = 0.
ii) If there exist η > 0 and x0 > 0 such that ∀x < x0,

H(x) ≤ − ln(x−1)
(
ln ln(x−1)

)1+η
and

σ2(x)

x2
+
p(x)

x2
= O(ln(x−1)

(
ln ln(x−1)

)1+η
), (x→ 0),

then for all x > 0, Px (τ−(0) <∞) > 0.
(Explosion) i) If

H(x) = o(lnx) and
σ2(x)

x2
+ r(x) +

p(x)

x2
= O(lnx), (x→ +∞)

then for all x > 0, Px (τ+(∞) <∞) = 0.
ii) If there exist η > 0 and x0 > 0 such that ∀x > x0,

H(x) ≥ lnx (ln lnx)1+η and
σ2(x)

x2
+ r(x) +

p(x)

x2
= O(lnx (ln lnx)1+η), (x→ +∞),

then for all x > 0, Px (τ+(∞) <∞) > 0.

We thus see that for the phenomena of absorption and explosion, the trade-off between
the growth of the parasites and the division of the parasites between the two daughter cells
is fully described by the behaviour of the function H at zero and infinity. In fact, and as we
will see in the next section, the long time behaviour of the infection in a cell line is governed
by the behaviour of this function. However, to conclude on the behaviour of the process
in finite time, we also need the variance of the noise and the rate of positive jumps to be
small enough around 0 or infinity. Note that if g(x) ≡ gx, r(x) ≡ r and p(x) ≡ 0, we have
H(x) = g+E[ln Θ]− σ(x)2x−2 and we retrieve the key quantity g+E[ln Θ] found in [4] but
unfortunately, the condition on σ for the case of absorption is too strong to be satisfied by
the standard noise of Feller diffusions σ(x)2 = σ2x. However, the weaker assumption (LN0)
is satisfied in this case. But for the finite time behaviour of the process, rather than the sign
of g + E[ln Θ], it is the strength of the fluctuations that matters.

More generally when X is a CSBP in random environment, there exists a Lévy process

K̄ such that (Xte
−K̄t , t ≥ 0) is a non-negative local martingale, and as such a non-negative
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supermartingale which converges to a non-degenerate random variable (see [1, 23, 19, 9, 2]
for instance). The expectation of K̄1 thus gives information on the long time behaviour of
the process X in this case. Our function H is in fact an extension of this expectation in the
non-linear case. This link will be more explicit in the next section.

6. Long time behaviour of the process

The long time behaviour of the process X depends on the interplay between g, which
tends to increase (resp. decrease) it when positive (resp. negative), r, which decreases it,
and the fragmentation kernel κ which has a less intuitive effect. It is also impacted by the
random fluctuations of the large birth events. We consider the following possibilities for the
relative strengths of g and r (Local Slow/Fast Growth (LSG, LFG), Global Slow/Fast/Very
Fast Growth (GSG, GFG, GVFG):

(LSG) There exist η > 0 and x0 ≥ 0 such that

H(x) ≤ −η, ∀ x > x0.

(LFG) There exist η > 0 and x1 ≥ 0 such that

H(x) ≥ η, ∀ x < x1.

(GSG) There exist r > 0 and η ≥ 0 such that r(x) ≥ r, ∀ x ≥ 0 and

g(x)

xr(x)
+ E [ln Θ] ≤ −η, ∀ x > 0.

(GFG) There exist r > 0 and η > 0 such that r(x) ≥ r, ∀ x ≥ 0 and

g(x)

xr(x)
+ E [ln Θ] ≥ η, ∀ x > 0.

(GVFG) There exist r > 0 and η ≥ 0 such that r(x) ≥ r, ∀ x ≥ 0 and

g(x)

xr(x)
+ E [ln Θ]− 2σ2(x)

x2r(x)
− p(x)

r(x)

∫
R+

z2x−2

1 + zx−1
π(dz) ≥ η, ∀ x > 0.

Remark 6.1. Let us make some remarks on these conditions

• Condition (LSG) is satisfied in particular if there exist η, x0 > 0 such that

g(x)

x
+ r(x)E [ln Θ] ≤ −η, ∀ x > x0,

as ln(x+ z)− lnx− z/x ≤ 0 for all x, z > 0 by the Mean Value Theorem.
• (GVFG) implies (GFG).
• (GVFG) implies (SN0). This follows from the fact that if A is non-empty, we can

find a ∈ A such that the following inequality holds (see the proof on page 27):

g(x)

x
− aσ

2(x)

x2
− p(x)Ia(x) ≥ g(x)

x
− 2σ2(x)

x2
− p(x)

∫
R+

z2x−2

1 + zx−1
π(dz). (6.1)

In particular, the process X cannot reach 0 under Assumption (GVFG).

The next result states in particular that under Condition (LSG), the division mechanism
and the random fluctuations overcome the growth of X. In this case, the process X converges
to a finite variable, which may be 0 if X can be absorbed.

Theorem 6.2. Suppose that Assumptions A holds.



8 ALINE MARGUET AND CHARLINE SMADI

• If Conditions (SN0), (SN∞) hold and (LSG) or (LFG) is satisfied, then, for all
x ≥ 0, the process (Xt, t ≥ 0) converges in law as t tends to infinity to X∞ satisfying

Ex [g(X∞)−X∞r(X∞) (1− E [Θ])] = 0. (6.2)

Moreover, the distribution of X∞ is the unique stationary distribution of the process
X and for every bounded and measurable function f , almost surely,

lim
t→∞

1

t

∫ t

0
f(Xs)ds = E[f(X∞)].

• If Condition (SN∞) holds, if there exist ε, x0 > 0 such that (LN0) holds for x ≤ ε
and (LSG) holds for x ≥ x0, and if r > 0 on [ε ∧ e−1, x0] then for all x ≥ 0,

Px (∃t <∞, Xt = 0) = 1. (6.3)

• If Condition (SN0) holds, if there exist ε, x0 > 0 such that (LN∞) holds for x ≥ 1/ε
and (LFG) holds for x ≤ x0, and if p > 0 on [x0, 1/ε], then for all x ≥ 0,

Px (∃t <∞, Xt =∞) = 1. (6.4)

The second point of this result generalizes [4, Proposition 1.1] to the case of more general
parasites dynamics. Indeed, in [4], the authors considered the case g(x) = gx, σ(x)2 = σ2x
and p(x) ≡ 0 for some g, σ > 0. Note that in this case, if r is constant, (LN0) and (SN∞)
always hold and (LSG) reduces to g + rE[ln Θ] < 0, which is the condition stated in [4,
Proposition 1.1 i)]. If r is a non-increasing or non-decreasing function, we also retrieve the
same conditions as in [4, Proposition 1.1 ii)iii)]. The function H describes the strengths of
the different mechanisms, so that Conditions (LSG) and (LFG) determine the fate of the
infection, depending on which mechanism overcomes the others at critical parasites concen-
trations (small or large).

Finally, we provide some properties on the long time behaviour of X under Assumptions
(GSG), (GFG) and (GVFG), extending the classification for stable CSBPs with random
catastrophes (corresponding to r(x) = r, g(x) = gx, σ(x) = σ

√
x and π ≡ 0 or σ ≡ 0,

p(x) = x and π stable). The first result extends [1, Corollary 2].

Proposition 6.3. Suppose that Assumption A is satisfied.

i) If Condition (GSG) holds for η > 0, then

lim
t→∞

Xt = 0, almost surely.

ii) If Condition (GSG) holds for η = 0, then

lim inf
t→∞

Xt = 0, almost surely.

iii) If Condition (GFG) holds, if there exists ε > 0 such that∫ ∞
0

z ln1+ε(1 + z)π(dz) <∞

and if the function x 7→ (σ2(x) + p(x))/x is bounded, then

Px
(

lim inf
t→∞

Xt > 0
)
> 0.

In the last case, we additionally prove in the next corollary that with positive probability,
X grows (at least) exponentially. Moreover, when the diffusion term is large enough (σ(x)
larger than

√
x, which corresponds to Feller diffusion), we are able to provide a bound on

the absorption rate in the two first cases.

Corollary 6.4. Suppose that Assumption A is satisfied.
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i) If Condition (GSG) holds for η > 0, and infx≥0 σ
2(x)/x > 0 then

– If E [(Θ− 1) ln Θ] < η, then for any x > 0

Px(Xt > 0) = O
(
er(E[ln 1/Θ]−η−1/2)t

)
, (t→∞).

– If E [(Θ− 1) ln Θ] = η, then for any x > 0

Px(Xt > 0) = O
(
t−1/2er(E[ln 1/Θ]−η−1/2)t

)
, (t→∞).

– If E [(Θ− 1) ln Θ] > η, then for any x > 0

Px(Xt > 0) = O
(
t−3/2er(E[ln 1/Θ]−η+E[(Θτ−1)])t

)
, (t→∞),

where τ ∈ [0, 1) is the unique value such that E[ln(1/Θ)]− η + E [Θτ ln Θ] = 0.
ii) If Condition (GSG) holds for η = 0, and infx≥0 σ

2(x)/x > 0 then for any x > 0

Px(Xt > 0) = O
(
t−1/2

)
, (t→∞).

iii) Under the assumptions of point iii) of Proposition 6.3, there exists a stochastic process
(Kt, t ≥ 0), larger than a Lévy process with drift η, and a non-decreasing function ρ
such that ρ(t) ≥ rt and

lim
t→∞

Xte
−Kρ(t) = W (6.5)

where W is a finite non-negative random variable satisfying P(W > 0) > 0.

Absorption rates of CSBPs in random environment have been intensively studied during
the last decade [7, 1, 23, 19, 2]. In these references, g(x) = gx , σ2(x) = σ2x, for some σ ≥ 0,
p(x) = x and r(x) ≡ r is independent of X, whereas these assumptions are relaxed in our
case (notice however that we make moment assumptions on the jump measures). Corollary
6.4 thus provides bounds on the survival probability for a new class of processes.

Let us finally describe the long time behaviour of the processX under Condition (GVFG).

Proposition 6.5. Suppose that Assumption A is satisfied.

i) If Condition (GVFG) holds for η > 0, then

lim
t→∞

Xt =∞, almost surely.

ii) If Condition (GVFG) holds for η = 0, then

lim sup
t→∞

Xt =∞, almost surely.

This result describes quantitatively how much the growth of the process has to overcome
its fluctuations to drift to infinity.

The rest of the paper is dedicated to the proofs.

7. Proofs

Using recent results on SDEs with jumps, we first prove that the class of processes we are
interested in may be realized as unique pathwise solutions to SDEs.
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7.1. Proofs of Section 2.

Proof of Proposition 2.1. The proof is a direct application of Proposition 1 in [21]. First
according to their conditions (i) to (iv) on page 60, our parameters are admissible. Second,
we need to check that conditions (a), (b) and (c) in [21] are fulfilled.

In our case, condition (a) writes as follows: for any n ∈ N, there exists An <∞ such that
for any 0 ≤ x ≤ n,∫ ∞

0

∫ 1

0

∣∣(θ − 1)x1{z≤r(x)}
∣∣κ(dθ)dz = xr(x)

∫ 1

0
(1− θ)κ(dθ) ≤ An(1 + x).

The function r is continuous, and thus bounded on [0, n]. As a consequence, condition (a)
holds.

To verify condition (b), it is enough to check that for any n ∈ N there exists Bn <∞ such
that for 0 ≤ x ≤ y ≤ n,

|g(x)− g(y)|+
∫ ∞

0

∫ 1

0
(1− θ)

∣∣x1{u≤r(x)} − y1{u≤r(y)}
∣∣κ(dθ)du ≤ Bnφ(y − x).

Indeed, the function rn : z 7→ Bnφ(z) on R+ is concave and non-decreasing and satisfies∫
0+ r

−1
n (z)dz =∞. Now we have the following:∫ ∞

0

∣∣x1{u≤r(x)} − y1{u≤r(y)}
∣∣ du

=

∫ ∞
0

(
(y − x)1{u≤(r(x)∧r(y))} + y1{r(x)<u≤r(y)} + x1{r(y)<u≤r(x)}

)
du

= 1{r(x)<r(y)}(yr(y)− xr(x)) + 1{r(y)≤r(x)}(yr(y) + xr(x)− 2xr(y))

≤ |yr(y)− xr(x)|+ r(y)(y − x) + x|r(x)− r(y)|.

But recall that a function that is locally Lipschitz on a compact interval is Lipschitz on this
interval. Hence, r is Lipschitz on [0, n], and condition (b) holds under Assumption A.

Finally, let us focus on condition (c). First, as p is non-decreasing, the function x 7→
x + z1{u≤p(x)} is non-decreasing for all (z, u) ∈ R2

+. Second, the following inequality must
be satisfied: for any n ∈ N there exists Dn <∞ such that for 0 ≤ x, y ≤ n,

|σ(x)−σ(y)|2+

∫
R2
+

(∣∣1{u≤p(x)}z − 1{u≤p(y)}z
∣∣ ∧ ∣∣1{u≤p(x)}z − 1{u≤p(y)}z

∣∣2)π(dz)du ≤ Dn|x−y|.

The first term fulfills the condition as σ is Hölder continuous with index 1/2. The second
term is equal to∫ ∞

0
(z ∧ z2)π(dz)

∫ ∞
0

∣∣1{u≤p(x)} − 1{u≤p(y)}
∣∣ du =

(∫ ∞
0

(z ∧ z2)π(dz)

)
|p(x)− p(y)|,

and we conclude using again that p is Lipschitz on [0, n]. Hence, condition (c) is satisfied.
We can thus conclude that Proposition 1 in [21] applies, which in particular justifies that X
admits the infinitesimal generator given in (2.2). �

7.2. Proofs of Section 3. Let us first prove Remark 3.2.

Proof of Remark 3.2. Under the assumptions of Remark 3.2, the integral corresponding to
the positive jumps is bounded in the neighborhood of 0. To show that, we divide the integral
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into two parts. First

lim sup
x→0+

(
p(x)x−2

∫ x

0
z2

(∫ 1

0
(1 + zx−1v)−1−a(1− v)dv

)
π(dz)

)
≤ lim sup

x→0+

(
p(x)x−1

∫ x

0

z

x
zπ(dz)

)
≤
(

lim sup
x→0+

p(x)x−1

)∫
R+

zπ(dz) <∞,

where we used that p is locally Lipschitz on R+ and p(0) = 0 (Assumption A) which implies
that p is Lipschitz on [0, 1] and that x 7→ p(x)/x is bounded in the vicinity of 0.

For the second part, first, note that for all x > 0 and z ∈ [x,∞)∫ 1

0
(1 + zx−1v)−1−a(1− v)dv ≤

∫ x/z

0
dv +

∫ 1

x/z
(1 + zx−1v)−1−adv

=
x

z
+

x

az

[
2−a − (1 + zx−1)−a

]
≤ x

z

(
1 +

2−a

a

)
.

Then,

lim sup
x→0+

(
p(x)x−2

∫ ∞
x

z2

(∫ 1

0
(1 + zx−1v)−1−a(1− v)dv

)
π(dz)

)
≤
(

lim sup
x→0+

p(x)x−1

)∫ ∞
0

z

[
1 +

1

a
2−a
]
π(dz) <∞.

Therefore, if
∫
R+
zπ(dz) < ∞, the part in Ga corresponding to the positive jumps does not

affect the boundedness of Ga in the vicinity of 0. �

We now prove Theorem 3.3. As mentioned previously, the proof uses ideas of the proof of
[18, Theorem 2.3]. However, as we extend this theorem, several steps of the proof have to
be modified. For the sake of readability we provide the whole proof, including parts which
were done similarly in [18]. The proof relies on a martingale, whose construction is detailed
in the next lemma. Recall the definitions of τ± in Equations (3.1) and (3.2).

Lemma 7.1. Suppose that Assumption A holds. For all b > c > 0, let T = τ−(c) ∧ τ+(b).
Then, for all a ∈ A ∪ (0, 1), the process

Z
(a)
t∧T := (Xt∧T )1−a exp

(∫ t∧T

0
Ga (Xs) ds

)
is a Ft-martingale.

Proof of Lemma 7.1. We follow the ideas of the proof of [18, Lemma 5.1]. Let a ∈ A∪ (0, 1).
Applying Itô’s formula with jumps (see for instance [11, Theorem 5.1]), we have for all t ≥ 0

X1−a
t =X1−a

0 +

∫ t

0

[
(1− a)

g(Xs)

Xs
X1−a
s − (1− a)aX−a−1

s σ2 (Xs)

]
ds

+

∫ t

0

∫
R+

p(Xs)((z +Xs)
1−a −X1−a

s − (1− a)zX−as )π(dz)ds

+

∫ t

0

∫ r(Xs− )

0

∫ 1

0

(
θ1−a − 1

)
X1−a
s− N(ds, dx, dθ)

+ (1− a)

∫ t

0
X1−a
s

√
2σ2(Xs)dBs +

∫ t

0

∫ p(Xs− )

0

∫
R+

[
(Xs− + z)1−a −X1−a

s−

]
Q̃(ds, dx, dz)

= X1−a
0 −

∫ t

0
X1−a
s Ga(Xs)ds+Mt,
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where Ga has been defined in (3.3) and (Mt, t ≥ 0) is a local martingale. For the last equality,
we used formula (A.1) for Ia. Next, using integration by parts we get

Z
(a)
t∧T =X1−a

0 +

∫ t∧T

0
Ga (Xs)Zsds+

∫ t∧T

0
exp

(∫ s

0
Ga (Xr) dr

)
dMs −

∫ t∧T

0
Ga (Xs)Zsds,

so that
(
Z

(a)
t∧T , t ≥ 0

)
is a local martingale. Similarly to [18], we have

Eε
[
sup
s≤t

(Xs∧T )1−a exp

(∫ s∧T

0
Ga (Xr) dr

)]
<∞,

using Assumptions A, so that from [25, Theorem 51 p.38],
(
Z

(a)
t∧T , t ≥ 0

)
is a martingale. �

Proof of Theorem 3.3. We first focus on point i). Let n ∈ N be such that n ≥ 2 and let
0 < ε < b < 1 and a ∈ A be such that (3.5) holds for all u ≤ b. Let Tn = τ−(εn) ∧ τ+(b).

According to Lemma 7.1, Z
(a)
t∧Tn is an Ft-martingale. As in [18], using Fatou’s lemma, we

have

Eε
[
X1−a
Tn

exp

(∫ Tn

0
Ga (Xs) ds

)]
≤ lim

t→+∞
Eε
[
X1−a
t∧Tn exp

(∫ t∧Tn

0
Ga (Xs) ds

)]
= ε1−a.

(7.1)

Next

Eε
[
X1−a
Tn

exp

(∫ Tn

0
Ga (Xs) ds

)]
≥ Eε

[
X1−a
Tn

exp

(
−Tn

∣∣∣∣ inf
x∈[εn,b]

Ga(x)

∣∣∣∣)1{τ−(εn)<τ+(b)}

]
.

(7.2)

We distinguish three cases.

(1) If
0 ≤ inf

x∈(0,b]
Ga(x) <∞,

then ∣∣∣∣ infx∈[εn,b]Ga(x)

ln(εn)

∣∣∣∣ ≤ Ga(b)

n| ln ε|
.

(2) If
−∞ < inf

x∈(0,b]
Ga(x) < 0,

then ∣∣∣∣ infx∈[εn,b]Ga(x)

ln(εn)

∣∣∣∣ ≤
∣∣infx∈(0,b]Ga(x)

∣∣
n| ln ε|

.

(3) If
inf

x∈(0,b]
Ga(x) = −∞,

then there exists a sequence (αn, n ∈ N) converging to 0 as n goes to ∞ and such
that εn ≤ αn ≤ b, and∣∣∣∣ infx∈[εn,b]Ga(x)

ln(εn)

∣∣∣∣ =
|Ga(αn)|
n| ln ε|

≤
∣∣∣∣Ga(αn)

lnαn

∣∣∣∣ .
In the three cases, we obtain according to (SN0),∣∣∣∣ infx∈[εn,b]Ga(x)

ln(εn)

∣∣∣∣ −−−−−→n→+∞
0.

Let

dn :=

∣∣∣∣∣ ln
(
ε(a−1)n/2

)
infx∈[εn,b]Ga(x)

∣∣∣∣∣ =
a− 1

2

∣∣∣∣ ln εn

infx∈[εn,b]Ga(x)

∣∣∣∣ −−−−−→n→+∞
+∞.
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As a > 1, we have X1−a
Tn

1{τ−(εn)<τ+(b)} ≥ (εn)1−a1{τ−(εn)<τ+(b)} . Then, we get from (7.1)
and (7.2),

ε1−a ≥ (εn)1−a Eε
[
exp

(
−dn

∣∣∣∣ inf
x∈[εn,b]

Ga(x)

∣∣∣∣)1{τ−(εn)<τ+(b)∧dn}

]
= (εn)1−a E

[
exp

(
ln
(
ε(a−1)n/2

))]
Pε
(
τ−(εn) < τ+(b) ∧ dn

)
.

We thus obtain

Pε
(
τ−(εn) < τ+(b) ∧ dn

)
≤ ε(a−1)(n/2−1).

By the Borel-Cantelli Lemma, we have

Pε
(
τ−(εn) < τ+(b) ∧ dn i.o.

)
= 0, (7.3)

where i.o. stands for infinitely often. As a consequence we get that, Pε-a.s.,

τ−(εn) ≥ τ+(b) ∧ dn
for n large enough. If there are infinitely many n so that

τ−(εn) ≥ dn, (7.4)

then we have τ−(0) =∞. If (7.4) holds for at most finitely many n, then by (7.3), we have
τ−(εn) > τ+(b) for all n large enough. We conclude that for all 0 < ε < b,

Pε
(
τ−(0) =∞ or τ+(b) < τ−(0)

)
= 1. (7.5)

We will now use a coupling to show that Pε(τ−(0) <∞) = 0. Let for N ∈ N,

r[0,N ] := sup
0≤x≤N

r(x),

which is finite as r is a continuous function. Let X̃ be the unique strong solution to

X̃t =X̃0 +

∫ t

0
g(X̃s)ds+

∫ t

0

√
2σ2(X̃s)dBs +

∫ t

0

∫ p(X̃s− )

0

∫
R+

zQ̃(ds, dx, dz)

+

∫ t

0

∫ r[0,N ]

0

∫ 1

0
(θ − 1)X̃s−N(ds, dx, dθ),

where the Brownian motion B and the Poisson random measures Q̃ and N are the same as
in (2.1). We will use four properties of this equation.

a) It has a unique strong solution according to Proposition 2.1.

b) If X̃(1) and X̃(2) are two solutions with X̃
(1)
0 ≤ X̃

(2)
0 , then X̃

(1)
t ≤ X̃

(2)
t for any

positive t.

c) If X̃ is a solution with X̃0 = X0, then X̃t ≤ Xt for any t smaller than τ−(0)∧τ+(N).

d) Equation (7.5) holds for both X and X̃.

Our aim now is to prove that

Pε
(
τ̃−(0) <∞

)
= 0, (7.6)

where the τ̃ ’s are defined as the τ ’s in (3.1) and (3.2) but for the process X̃. Using the
coupling described in point c), it will imply that

Pε
(
τ+(N) ≤ τ−(0)

)
= 1,

and letting N tend to infinity, we will get

Pε
(
τ−(0) =∞

)
= 1.
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Before proceeding to the proof of (7.6), let us notice that from coupling b) we have:

Eb

[
e−λτ̃

−(ε)1{τ̃−(ε)<∞}

]
≤ Eb

[
e−λτ̃

−(ε)1{τ̃−(ε)<∞}

]
∀ b ≤ b. (7.7)

Now the strategy to prove (7.6) will be to show that for any λ > 0

A(λ, ε) :=

∫ 1

0
Eθε

[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]
κ(dθ) = 0.

For any 0 < θ ≤ 1, (7.5) yields

Eθε
[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]
= Eθε

[
e−λτ̃

−(0)1{τ̃+(b)<τ̃−(0)<∞}

]
≤ Eθε

[
e−λτ̃

+(b)1{τ̃+(b)<τ̃−(0)}

]
Eb
[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]
,

where the last inequality comes from the Markov property combined with (7.7). Moreover,
using again the Markov property, we have

Eb
[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]
= Eb

[
e−λτ̃

−(ε)1{τ̃−(ε)<∞}EXτ̃−(ε)

[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]]
.

The process can cross the level ε either because of the diffusion or because of a negative
jump. In both cases, Xτ̃−(ε) ≥ εΘ almost surely, where we recall that Θ is a random variable

distributed according to κ and independent of the process before time τ̃−(ε). Then, using
again (7.7),

Eb
[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]
≤ Eb

[
e−λτ̃

−(ε)1{τ̃−(ε)<∞}

] ∫ 1

0
Eθε

[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]
κ(dθ).

We thus get

A(λ, ε) ≤Eb
[
e−λτ̃

−(ε)1{τ̃−(ε)<∞}

]
A(λ, ε).

As

Eb
[
e−λτ̃

−(ε)1{τ̃−(ε)<∞}

]
< 1,

we conclude that A(λ, ε) = 0, which ends the proof of point i).

Let us now focus on point ii). Let δ < (3− 2a)−1 and ε > 0 such that

ε < e−(1−δ)−1 ∧

((
ln 2

2

)1/δ(1−a)( 1

E[Θ1−a]−1 + 1

)1/δ(1−a)
)
. (7.8)

Let T = τ−(ε1+δ)∧τ+(ε1−δ). Finally, let 0 < a < 1 and η > 0 be such that Condition (LN0)
is satisfied. Then, as in the proof of point i), we have for all z > 0 such that ε1+δ < z < ε1−δ,

z1−a ≥ Ez

[
X1−a
τ+(ε1−δ)

exp

(∫ τ+(ε1−δ)

0
Ga (Xu) du

)
1{τ+(ε1−δ)<τ−(ε1+δ)}

]
≥ ε(1−δ)(1−a)Pz

(
τ+(ε1−δ) < τ−(ε1+δ)

)
,

where we have used that if (3.6) holds, then Ga(z) ≥ 0 for z < ε1−δ < e−1. Therefore,

Pz
(
τ+(ε1−δ) < τ−(ε1+δ)

)
≤ ε(δ−1)(1−a)z1−a. (7.9)
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Similarly, for every t ≥ 0

z1−a ≥ Ez
[
X1−a
t exp

(∫ t

0
Ga (Xs) ds

)
1{τ+(ε1−δ)=τ−(ε1+δ)=∞}

]
≥ ε(1+δ)(1−a)et ln(ε−(1−δ)) ln(ln(ε−(1−δ)))1+ηPz

(
τ+(ε1−δ) = τ−(ε1+δ) =∞

)
,

so that

Pz
(
τ+(ε1−δ) = τ−(ε1+δ) =∞

)
≤ z1−aε−(1+δ)(1−a) exp

(
−t ln(ε−(1−δ)) ln(ln(ε−(1−δ)))1+η

)
.

Letting t tend to infinity yields

Pz
(
τ+(ε1−δ) = τ−(ε1+δ) =∞

)
= 0. (7.10)

Let

t(ε) :=
(

ln(ln(ε−(1−δ)))
)−1−η

. (7.11)

We have, using (3.6),

z1−a ≥Ez

[
X1−a
τ−(ε1+δ)

exp

(∫ τ−(ε1+δ)

0
Ga (Xu) du

)
1{t(ε)<τ−(ε1+δ)<τ+(ε1−δ)}

]

≥ exp

[
ln(ε−(1−δ))

(
ln(ln(ε−(1−δ)))

)1+η
t(ε)

]
Ez
[(
Xτ−(ε1+δ)

)1−a
1{t(ε)<τ−(ε1+δ)<τ+(ε1−δ)}

]
=ε−(1−δ)Ez

[
X1−a
τ−(ε1+δ)

1{t(ε)<τ−(ε1+δ)<τ+(ε1−δ)}

]
≥ε−(1−δ)ε(1+δ)(1−a)E[Θ1−a]Pz

(
t(ε) < τ−(ε1+δ) < τ+(ε1−δ)

)
,

where we used as before that for all y ≥ 0, Xτ−(y) ≥ yΘ almost surely where Θ is a random

variable distributed according to κ independent of the process before time τ−(y). We deduce,

Pz
(
t(ε) < τ−(ε1+δ) < τ+(ε1−δ)

)
≤ E[Θ1−a]−1εa+(a−2)δz1−a. (7.12)

Combining (7.9), (7.10) and (7.12), we get for all z > 0 such that ε1+δ < z < ε1−δ,

Pz
(
τ−(ε1+δ) > t(ε)

)
≤ E[Θ1−a]−1εa+(a−2)δz1−a + ε(δ−1)(1−a)z1−a

= ε(δ−1)(1−a)z1−a
(
E[Θ1−a]−1ε1−δ(3−2a) + 1

)
≤
(
E[Θ1−a]−1 + 1

) (
ε(δ−1)z

)1−a
, (7.13)

as by assumption δ is smaller than (3− 2a)−1. By the strong Markov property,

Pz

(
m⋂
n=0

{
τ−(ε(1+δ)n) <∞, τ−(ε(1+δ)n+1

) ◦ θτ−(ε(1+δ)
n

) ≤ t(ε
(1+δ)n)

})
(7.14)

= Ez

[
m∏
n=0

PX
τ−(ε(1+δ)n)

(
τ−(ε(1+δ)n+1

) ≤ t(ε(1+δ)n)
)]

,

where θs : D(R+,R+)→ D(R+,R+) is the shift operator (θsX)(t) = X(s+ t).
There are two possibilities. If

Xτ−(ε(1+δ)
n

) > ε(1+δ)n+1
,
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then we can apply (7.13) with ε(1+δ)n instead of ε, and we get

PX
τ−(ε(1+δ)

n
)

(
τ−(ε(1+δ)n+1

) ≤ t(ε(1+δ)n)
)
≥ 1−

(
E[Θ1−a]−1 + 1

) (
ε(δ−1)(1+δ)nXτ−(ε(1+δ)

n
)

)1−a

≥ 1−
(
E[Θ1−a]−1 + 1

) (
ε(δ−1)(1+δ)nε(1+δ)n

)1−a

= 1−
(
E[Θ1−a]−1 + 1

) (
εδ(1+δ)n

)1−a
.

Else if

Xτ−(ε(1+δ)
n

) ≤ ε
(1+δ)n+1

,

then

PX
τ−(ε(1+δ)

n
)

(
τ−(ε(1+δ)n+1

) ≤ t(ε(1+δ)n)
)

= 1 ≥ 1−
(
E[Θ1−a]−1 + 1

) (
εδ(1+δ)n

)1−a
.

Combining this inequality with (7.14), we thus obtain

Pz

(
m⋂
n=0

{τ−(ε(1+δ)n) <∞, τ−(ε(1+δ)n+1
) ◦ θτ−(ε(1+δ)

n)) ≤ t(ε
(1+δ)n)}

)

≥
m∏
n=0

(
1−

(
E[Θ1−a]−1 + 1

)
ε(1−a)δ(1+δ)n

)
≥

m∏
n=0

e−2(E[Θ1−a]−1+1)ε(1−a)δ(1+δ)
n

= e−2(E[Θ1−a]−1+1)
∑m
n=0 ε

(1−a)δ(1+δ)n
(7.15)

where for the last inequality, we used

ε <

(
ln 2

2

)1/δ(1−a)( 1

E[Θ1−a]−1 + 1

)1/δ(1−a)

,

and that x 7→ 1− x− e−2x is positive for 0 < x ≤ (ln 2)/2. Next,

m∑
n=0

ε(1−a)δ(1+δ)n = ε(1−a)δ
m∑
n=0

ε(1−a)δ((1+δ)n−1) ≤ ε(1−a)δ
m∑
n=0

ε(1−a)δ2n ≤ ε(1−a)δ

1− ε(1−a)δ2
.

(7.16)

Combining (7.15) and (7.16) and letting m→∞, we get by monotone convergence

Pz

( ∞⋂
n=0

{
τ−(ε(1+δ)n) <∞, τ−(ε(1+δ)n+1

) ◦ θτ−(ε(1+δ)
n)) ≤ t(ε

(1+δ)n)
})

≥ e−2(E[Θ1−a]−1+1)ε(1−a)δ(1−ε(1−a)δ
2
)−1
.

Since under Pz,

τ−(0) =

∞∑
n=0

τ−(ε(1+δ)n+1
) ◦ θτ−(ε(1+δ)

n
),

then

Pz

(
τ−(0) ≤

∞∑
n=0

t(ε(1+δ)n)

)
≥ e−2(E[Θ1−a]−1+1)ε(1−a)δ(1−ε(1−a)δ

2
)−1
.

Notice that for εn := ε(1+δ)n ,

t(εn) =
(

ln(ln(ε−(1−δ)(1+δ)n))
)−(1+η)

=
(
n ln(1 + δ) + ln(1− δ) + ln(ln(ε−1)

)−(1+η)
.
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In particular, for large n,

t(εn) ∼ (n ln(1 + δ))−(1+η) .

This ensures that
∞∑
n=1

t(εn) <∞.

We thus have

Pz
(
τ−(0)− <∞

)
≥ e−2(E[Θ1−a]−1+1)ε(1−a)δ(1−ε(1−a)δ

2
)−1

> 0.

This ends the proof of point ii).
We now prove point iii). Assume that for any positive x, r(x) > 0. Let x0 > 0 be such

that
Py(τ−(0) <∞) > 0, ∀y ≤ x0.

Let y > x0. By continuity, we can define:

sup
x≤2y

p(x) =: p <∞, sup
x≤2y

σ(x) =: σ <∞,

sup
x≤2y

g(x) =: g <∞ and inf
x≤2y

r(x) =: r > 0.

Moreover, there exists ν < 1 such that κ([0, ν]) =: νκ > 0, and we can take Nκ ∈ N such
that

2yνNκκ ≤ x0. (7.17)

Notice that by the Dubins–Schwarz Theorem [25, Theorem 42 p.88] and the reflection prin-
ciple, for any t > 0 and A ∈ R,

Py

(
sup

s≤t∧τ+(2y)

∫ s

0

√
2σ2(Xu)dBu > A

)
= 2Py

(
W∫ t∧τ+(2y)

0 2σ2(Xu)du
> A

)

= 2Py

W1 >
A√∫ t∧τ+(2y)

0 2σ2(Xu)du


≤ 2Py

(
W1 >

A√
2tσ2

)
.

where W is a standard Brownian motion. Finally, let J(t, y) denote the event of having no
positive jumps during the time interval [0, t ∧ τ+(2y)]. Its probability is larger than e−tp.

We denote by J(t, y) the complementary event. Then, we have for all t, y > 0,

Py(τ+(2y) ≤ t) = Py
(
Xt∧τ+(2y) > 2y, J(t, y)

)
+ Py

(
Xt∧τ+(2y) > 2y, J(t, y)

)
≤ Py

(
J(t, y)

)
+ Py

(
gt+ sup

0≤s≤t

∫ s

0

√
2σ2(Xu)dBu > y

)
≤ 1− e−pt + 2Py

(
W1 >

y − gt√
2tσ2

)
:= 1− e−pt + 2A(t, y),

and for y > x0,

A(t, y) = P0

(
W1 + y >

y − gt√
2tσ2

)
= P0

(
W1 >

(1−
√

2tσ2)y − gt√
2tσ2

)
≤ A(t, x0),

where the final bound holds for t ≤ (2σ2)−1. Finally, we obtain that there exists tx0 > 0
such that for all y > x0

Py(τ+(2y) ≤ tx0) < 1/2.
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Moreover, the probability that during the time tx0 , conditionally on {τ+(2y) > tx0}, the
process makes at least Nκ negative jumps, with a jump size in (0, ν] is larger than:

ptx0 (r,Nκ, νκ) := e−rνκtx0
∞∑

i=Nκ

(rνκtx0)i

i!
.

This entails, using (7.17),

Py(τ−(x0) ≤ tx0) > ptx0 (r,Nκ, νκ)/2 > 0, (7.18)

which ends the proof of iii). �

7.3. Proofs of Section 4. We now focus on the explosion behaviour of the process.

Proof of Theorem 4.1. As we gave all the details of the proof of Theorem 3.3, we will here
only provide the elements of the proof which differ from the proof of [18, Theorem 2.8].

We take a small enough b−1 and ε satisfying 0 < b < ε−1. We begin the proof of point i)
similarly as in [18, Theorem 2.8], except that we take

dn :=

∣∣∣∣∣ ln
(
ε(1−a)n/2

)
infx∈[b,ε−n]Ga(x)

∣∣∣∣∣
instead of

dn :=
ln(ε−n(1−a)/2)

lnr(ε−n)
,

and obtain in the same way using the Borel Cantelli lemma that

Pε−1(τ+(∞) =∞ or τ−(b) < τ+(∞) <∞) = 1. (7.19)

The authors of [18] then claim that they can conclude the proof as the proof of point i) of
their Theorem 2.3. However, in the latter case, they only need the strong Markov property

to obtain that for any λ > 0, Eε[e−λτ
−(0); τ−(0) < ∞] = 0 and consequently, Pε(τ−(0) <

∞) = 0, as their process does not have negative jumps. In the current case, to obtain that

Eε−1 [e−λτ
+(∞); τ+(∞) <∞] = 0, we (and they) have to take into account the fact that there

are positive jumps and that Xτ+(ε−1) may be strictly bigger than ε−1.

Let us first notice that for any ε−1 ≤ y ≤ 2ε−1, the same reasoning as the one to obtain
(7.19) leads to

Py(τ+(∞) =∞ or τ−(b) < τ+(∞) <∞) = 1. (7.20)

Let us thus fix λ > 0 and introduce the following real number:

A(ε) := sup
ε−1≤y≤2ε−1

Ey
[
e−λτ

+(∞); τ+(∞) <∞
]
.

For any ε < 1, y ≤ ε−1, we have by the Markov inequality

Py(Xτ+(ε−1) > 2ε−1) ≤ Py(Xτ+(ε−1) −Xτ+(ε−1)− > ε−1)

= Py
((
Xτ+(ε−1) −Xτ+(ε−1)−

)2 ∧ (Xτ+(ε−1) −Xτ+(ε−1)−
)
> ε−1

)
≤ ε

∫ ∞
0

(z ∧ z2)π(dz).

Using Equation (7.20) and the strong Markov property, we thus get, for any ε−1 ≤ y ≤
2ε−1:

Ey
[
e−λτ

+(∞); τ+(∞) <∞
]

= Ey
[
e−λτ

+(∞); τ−(b) < τ+(∞) <∞
]

≤ Ey
[
e−λτ

−(b)EXτ−(b)

[
e−λτ

+(∞); τ+(∞) <∞
]

; τ−(b) <∞
]
.
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Using again the strong Markov property, we get for all x ≤ b ≤ ε−1

Ex
[
e−λτ

+(∞); τ+(∞) <∞
]

= Ey
[
e−λτ

+(∞); τ−(b) < τ+(∞) <∞
]

= Ey
[
e−λτ

+(∞); τ−(b) < τ+(ε−1) < τ+(∞) <∞
]

= Ex
[
e−λτ

+(ε−1)EXτ+(ε−1)

[
e−λτ

+(∞); τ+(∞) <∞
]

; τ+(ε−1) <∞
]

≤ A(ε) + ε

∫ ∞
0

(z ∧ z2)π(dz),

where the last inequality is obtained by considering the event {ε−1 ≤ Xτ+(ε−1) ≤ 2ε−1} and
its complement. Finally, combining the last two inequalities, we obtain

Ey
[
e−λτ

+(∞); τ+(∞) <∞
]
≤ Ey

[
e−λτ

−(b); τ−(b) <∞
](
A(ε) + ε

∫ ∞
0

(z ∧ z2)π(dz)

)
.

But there exists C(b) < 1 such that for 2b ≤ y,

Ey
[
e−λτ

−(b); τ−(b) <∞
]
< C(b).

Otherwise we would have

lim
y→∞

Ey
[
e−λτ

−(b); τ−(b) <∞
]

= 1,

and thus τ−(b) would converge to 0 when the initial condition of the process goes to∞ which
would contradict our assumptions on the regularity of the negative jumps. Hence, as for ε
small enough, 2b ≤ ε−1, we obtain for such an ε

A(ε) ≤
C(b)

(∫
R+

(z ∧ z2)π(dz)
)
ε

1− C(b)
.

We thus deduce that

lim
y→∞

Ey
[
e−λτ

+(∞); τ+(∞) <∞
]

= 0.

Now, let us take x, µ > 0. Then, there exists N0 such that for any N ≥ N0,

EN
[
e−λτ

+(∞); τ+(∞) <∞
]
≤ µ.

Hence,

Ex
[
e−λτ

+(∞); τ+(∞) <∞
]
≤ Ex

[
EXτ+(N0)

[
e−λτ

+(∞); τ+(∞) <∞
]]
≤ µ

and thus for all x > 0

Ex
[
e−λτ

+(∞); τ+(∞) <∞
]

= 0,

which completes the proof of point i) (and of point i) of [18, Theorem 2.8]).

The proof of point ii) is the same as the proof of point ii) of [18, Theorem 2.8], except
that we modify the function t(·) as we did for the proof of point ii) of Theorem 3.3.

We now prove point iii). Assume that for any positive x, p(x) + σ(x) > 0. Let x1 > 0 be
such that

Py(τ+(∞) <∞) > 0, ∀y ≥ x1.

Let y < x1. If p(y) > 0, there exists η1 > 0 such that p stays positive on [y − η1, y + η1]
as it is a continuous function according to Assumption A. Hence, for η2 > 0 small enough,
starting from y, we can show as in the proof of Theorem 3.3iii), that the probability that
the process is bigger than x1 thanks to a positive jump is positive:

Py(Xη2 ≥ x1) > 0,
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and using the Markov property, we obtain

Py(τ+(∞) <∞) > 0.

Now assume that p(y) = 0 but σ(y) > 0. As σ is continuous, if σ(z) > 0 for z ∈ [y, x1] then

Py(Xs ≥ x1) > 0, ∀s > 0

thanks to the diffusion and we end the proof by applying again the Markov property. Else,
if σ is only positive on an interval of the form [y, x2) with y < x2 < x1, then by continuity
of p and σ given by Assumption A, p(x2) > 0 and we are back to the first case. We thus
have proven that

Py(τ+(∞) <∞) > 0, ∀y ≥ 0,

as soon as p+ σ > 0 on R∗+. �

7.4. Proof of Section 5.

Proof of Proposition 5.1. Let ε > 0. We first focus on absorption. According to the assump-
tions of point i), there exists x0 > 0 such that for all x < x0,

|H(x)| =
∣∣∣∣g(x)

x
+ r(x)E[ln Θ]− σ2(x)

x2
− p(x)I(x)

∣∣∣∣ < ε

2
| lnx|.

Let us prove that there exists a > 1 such that (SN0) is satisfied i.e. that there exists a > 1
and a positive function f such that

Ha(x) :=
g(x)

x
− aσ

2(x)

x2
− p(x)Ia(x) = f(x) + o(lnx), (x→ 0).

We have

|Ha(x)−H(x)| ≤ −r(x)E[ln Θ] + (1− a)
σ2(x)

x2
+ p(x)|Ia(x)− I(x)|. (7.21)

To study the last term of (7.21), let us define for all x, z ≥ 0,

f(a, x, z) = az2

∫ 1

0
(1− v)(1 + zx−1v)−1−adv, f(1, x, z) = x2

(
zx−1 − ln(1 + zx−1)

)
.

From the definition of Ia and I in (3.4) and (5.2), respectively, we have

Ia(x) = x−2

∫
R+

f(a, x, z)π(dz), I(x) = x−2

∫
R+

f(1, x, z)π(dz).

Moreover, for every x, z > 0,

∂af(a, x, z) = z2

(∫ 1

0
(1− a ln(1 + zx−1v))(1 + zx−1v)−(1+a)(1− v)dv

)
= z2

(∫ 1

0

1− v
(1 + zx−1v)1+a

dv − a
∫ 1

0

ln(1 + zx−1v)(1− v)

(1 + zx−1v)1+a
dv

)
= zx

∫ 1

0

ln(1 + zx−1v)

(1 + zx−1v)a
dv,

where the last equality is obtained using integration by part in the second integral. Then,
computing the integral, we get

∂af(a, x, z) = =
x2

(a− 1)2

[
1− (a− 1) ln(1 + zx−1)(1 + zx−1)1−a − (1 + zx−1)1−a]

Then, according to Taylor-Lagrange’s formula, there exists y ∈ (1− a, 0) such that

1− (1 + zx−1)1−a = − ln(1 + zx−1)(1 + zx−1)y(1− a),
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and we obtain

∂af(a, x, z) =
x2

(a− 1)2

[
(a− 1) ln(1 + zx−1)

(
(1 + zx−1)y − (1 + zx−1)1−a)]

=
x2

(a− 1)

[
(y + a− 1) ln(1 + zx−1)2(1 + zx−1)ŷ

]
(7.22)

for some ŷ ∈ (1− a, y) according to Taylor-Lagrange’s formula. Then, for a > 1,

0 ≤ ∂af(a, x, z) ≤ x2 ln(1 + zx−1)2 ≤ z2

and using that
∫
R+
z2π(dz) <∞, we obtain

x2∂aIa(x) =

∫
R+

∂af(a, x, z)π(dz) ≤
∫
R+

z2π(dz). (7.23)

And, using again Taylor-Lagrange’s formula, for any x > 0 there exists ã(x) ∈ (1, a) such
that

x2|Ia(x)− I(x)| = x2
∣∣∂aIã(x)(x)

∣∣ (a− 1).

Now using the previous computations, we obtain that there exists also x1 < x0 and a0 > 1
such that for all x < x1 and 1 < a < a0,∣∣∣∣r(x)

lnx

∣∣∣∣ |E[ln Θ]| < ε/6, (a− 1)
σ(x)2

x2 lnx
< ε/6,

∣∣∣∣ p(x)

x2 lnx

∣∣∣∣ ∣∣x2Ia(x)− x2I(x)
∣∣ < ε/6.

Finally, combining the last inequalities with (7.21), we obtain for all x < x1 and a ∈ (1, a0),

|Ha(x)| ≤ |H(x)|+ |Ha(x)−H(x)| ≤ ε| lnx|,

and thus Condition (SN0) holds and we may apply Theorem 3.3.

The proof of the second point is similar except that we have to adapt the bounds to the
case a < 1. By assumption, there are η > 0 and x0 > 0 such that for all x < x0,

H(x) ≤ − ln(x−1)(ln ln(x−1))1+η.

We prove that there exist a < 1, η′ > 0 and x1 > 0 such that for all x < x1,

Ha(x) ≤ − ln(x−1)(ln ln(x−1))1+η′

by bounding the difference between Ha and H on [0, x0]. Note that for a < 1, similarly to
(7.22), there exist y ∈ (0, 1− a) and ŷ ∈ (y, 1− a) such that

∂af(a, x, z) =
x2

(1− a)

[
(1− a− y) ln(1 + zx−1)2(1 + zx−1)ŷ

]
≤ x2 ln(1 + zx−1)2(1 + zx−1) ≤ z2, (7.24)

so that we can conclude as before.

We now turn to the proof of results on the explosion of the process.
According to the assumptions of point i), there exists x0 > 0 such that for all x > x0,

|H(x)| =
∣∣∣∣g(x)

x
+ r(x)E[ln Θ]− σ2(x)

x2
− p(x)I(x)

∣∣∣∣ < ε

2
lnx.

We now prove that there exists a < 1 such that (SN∞) is satisfied i.e. that there exist
a < 1 and a positive function f such that

H̃a(x) :=
g(x)

x
− r(x)

1− E[Θ1−a]

1− a
− aσ

2(x)

x2
− p(x)Ia(x) = −f(x) + o(lnx).
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We have

|H̃a(x)−H(x)| ≤ r(x)

∣∣∣∣1− E[Θ1−a]

1− a
+ E[ln Θ]

∣∣∣∣+ (1− a)
σ2(x)

x2
+ p(x)|Ia(x)− I(x)|. (7.25)

For the first term of (7.25), let us consider for θ ∈ (0, 1) the functions

fθ : y ∈ R 7→ θy and gθ : y ∈ R 7→ 1− θy

y
.

Then

f ′θ(y) = (ln θ)θy, f ′′θ (y) = (ln θ)2θy ≥ 0 and g′θ(y) =
1

y2
(fθ(y)− fθ(0)− yf ′θ(y)).

Using Taylor’s formula twice, we get the existence of 0 ≤ λ(θ, y), µ(θ, y) ≤ 1 such that

g′θ(y) =
1

y
(f ′θ(λ(θ, y)y)− f ′θ(y)) = (λ(θ, y)− 1)f ′′θ (µ(θ, y)y) ≤ 0.

We deduce that the function

h : y ∈ R 7→
∫ 1

0

1− θy

y
κ(dθ) =

∫ 1

0

fθ(0)− fθ(y)

y
κ(dθ) = −

∫ 1

0
f ′θ(λ(θ, y)y)κ(dθ)

is non-increasing. Moreover,

−f ′θ(λ(θ, y)y) = −(ln θ)θλ(θ,y)y −−−→
y→0

− ln θ.

As Condition (5.1) holds, we deduce by monotone convergence that

lim
y→0

h(y) = lim
a→1

∫ 1

0

1− θ1−a

1− a
κ(dθ) = −

∫ 1

0
ln θκ(dθ) = −E[ln Θ].

For the last term of (7.25), we can use again (7.23), which is satisfied in this case according
to (7.24). Now combining the previous computations, we obtain that there exists x1 > x0

and a0 ∈ (0, 1) such that for all x > x1 and a0 < a < 1,∣∣∣∣r(x)

lnx

∣∣∣∣ |h(1− a0)− h(0)| < ε/6,

∣∣∣∣ p(x)

x2 lnx

∣∣∣∣ ∣∣x2Ia(x)− x2I(x)
∣∣ < ε/6, (1− a)

σ(x)2

x2 lnx
< ε/6.

Finally, combining the last inequalities with (7.25), we obtain for all x > x1 and a ∈ (a0, 1),

|H̃a(x)| ≤ |H(x)|+ |H̃a(x)−H(x)| ≤ ε ln(x)

and thus Condition (SN∞) holds and we may apply Theorem 4.1.
The proof for the case a > 1 is similar. �

7.5. Proofs of Section 6. We now turn to the proof of Theorem 6.2. Let t0 > 0 be fixed.
First, we prove that if the division mechanism of the cells and the random fluctuations are
stronger than the growth of the parasites in the sense of (LSG) for some x0 > 0, then the
stopping times Ti(x0), are finite a.s. for all i ≥ 0 where T0 = 0 and for all i ≥ 1,

Ti(x0) = inf{t ≥ Ti−1(x0) + t0, Xt ≤ x0}. (7.26)

Lemma 7.2. Under Assumptions A and Condition (SN∞), if (LSG) holds for some η > 0
and x0 > 0, we have E[Ti(x0)] <∞ for all i ≥ 0.
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Proof of Lemma 7.2. Let us consider τ = τ−(x0)∧ τ+(x1) where x1 ≥ x0 and the τ±’s have
been defined in (3.1). According to the strong Markov property, we only have to prove that
Ex(τ−(x0)) <∞ for all x ≥ 0. By Itô’s formula, we have for all t ≥ 0

ln(Xt∧τ ) = ln(X0) +

∫ t∧τ

0

g(Xs)

Xs
ds−

∫ t∧τ

0

σ2(Xs)

X2
s

ds+ E [ln Θ]

∫ t∧τ

0
r(Xs)ds

+

∫ t∧τ

0
p(Xs)

∫ ∞
0

[ln(Xs + z)− ln(Xs)− z/Xs]π(dz)ds+Mt∧τ ,

where (Ms∧τ , s ≥ 0) is a martingale with null expectation. Then, using Condition (LSG),
we obtain

ln(Xt∧τ )− ln(X0) ≤ −η(t ∧ τ) +Mt∧τ . (7.27)

Notice that Xτ−(x0) may be equal to x0 if there is no jump at time τ−(x0), or equal to
Xτ−(x0)−Θ where Xτ−(x0)− ≥ x0, Θ is independent of Xτ−(x0)− and distributed according to
κ. As a consequence, for all t ≥ 0

ln (Xt∧τ ) ≥ ln (Θx0) ,

almost surely. Then, taking the expectation in (7.27), using the last inequality and letting t
tend to infinity yield for all x > 0

Ex(τ) ≤ 1

η
ln

(
x

Θx0

)
.

According to Theorem 4.1, Condition (SN∞) yields that for all x > 0, Px(τ+(∞) <∞) = 0,
so that lim infx1→+∞ τ

−(x0) ∧ τ+(x1) = τ−(x0). Next, by Fatou’s Lemma,

Ex[τ−(x0)] = Ex
[

lim inf
x1→+∞

τ−(x0) ∧ τ+(x1)

]
≤ lim inf

x1→+∞
Ex
[
τ−(x0) ∧ τ+(x1)

]
≤ 1

η
ln

(
x

Θx0

)
<∞,

which ends the proof. �

Let t1 > 0. Similarly, if the growth of the parasites is stronger than the division mechanism
of the cells and the random fluctuations in the sense of (LFG) for some x1 > 0, then the

stopping times T̃i(x1), are finite a.s. for all i ≥ 0 where T̃0 = 0 and for all i ≥ 1,

T̃i(x1) = inf{t ≥ T̃i−1(x1) + t1, Xt ≥ x1}.

Lemma 7.3. Under Assumptions A and Condition (SN0), if x1 > 0 is such that (LFG)

is satisfied for some η > 0, and if
∫
R+

ln(1 + z)π(dz) < ∞, we have E[T̃i(x1)] < ∞ for all

i ≥ 0.

Proof of Lemma 7.3. Without loss of generality, we assume that x1 > 1. Following the same
lines as in the proof of Lemma 7.2, we obtain

ln(Xt∧τ )− ln(X0) ≥ η(t ∧ τ) +Mt∧τ , (7.28)

where τ = τ−(x0) ∧ τ+(x1) where x1 ≥ x0. As in the proof of Lemma 7.2, considering both
cases of X exceeding x1 thanks to a jump or not, we obtain for all t ≥ 0

Ex [ln (Xt∧τ )] ≤
∫
R+

ln (x1 + z)π(dz).

Then, taking the expectation in (7.28), using the last inequality and letting t tend to infinity
yield for all x > 0

Ex(τ) ≤ 1

η

∫
R+

ln (x1 + z)π(dz) <∞.
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According to Theorem 3.3, Condition (SN0) yields that for all x > 0, Px(τ−(0) <∞) = 0,
so that lim infx0→0 τ

−(x0)∧ τ+(x1) = τ+(x1), and we conclude by Fatou’s Lemma as before.
�

Proof of Theorem 6.2. Apart from the proof of Equation (6.3), the proof of Theorem 6.2
follows directly from Lemmas 7.2 and 7.3, and [6, Theorem 7.1.4]. It is very similar to the
proof of the second point of [10, Theorem 1] for instance and we refer the reader to this
paper for details. Equality (6.2) is obtained by taking expectation in (2.1).

Let us now prove (6.3). To do this, we first show that there exist y0, t0 and α > 0 such
that,

inf
0≤x≤y0

Px(Xt0 = 0) ≥ α. (7.29)

Let us fix a < 1 such that (LN0) is satisfied and δ < (3−2a)−1. On page 16, we have proved

that there exist two non-negative functions on R+, t and p such that for all ε < e−1/(1−δ)

such that (LN0) is satisfied for x ≤ ε, and z ∈ (ε1+δ, ε1−δ),

Pz
(
τ−(0) ≤ t(ε)

)
≥ p(ε). (7.30)

where

t(ε) =

∞∑
n=0

t(ε(1+δ)n), p(ε) = e−2(E[Θ1−a]−1+1)ε(1−a)δ(1−ε(1−a)δ
2
)−1
,

t(·) has been defined in (7.11). By a classical functional study, we can check that the function
t is non-decreasing and the function p is non-increasing.

Let us take ε > 0 such that (7.30) is satisfied and z ≤ ε1−δ. Then, there exists ε1 ≤ ε

such that ε1+δ
1 < z < ε1−δ

1 . Now, by monotonicity, we get:

Pz
(
τ−(0) ≤ t(ε)

)
≥ Pz

(
τ−(0) ≤ t(ε1)

)
≥ p(ε1) ≥ p(ε).

Equation (7.29) is thus proven, if we take y0 = ε1−δ, t0 = t(ε) and α = p(ε). Next, we need
to show that there exist t1, α > 0 such that

inf
ε1−δ≤x≤x0

Px(Xt1 ≤ ε1−δ) ≥ α > 0,

where x0 > 0 is such that (LSG) is satisfied. We obtain this property by following the proof
of (7.18).

Recall the definition of Ti(x0) in (7.26). By the strong Markov property and (7.29), we
get for all x ≥ 0 and all i ≥ 0,

Px
(
XTi(x0)+t0 = 0

∣∣(Xt, t ≤ Ti(x0)), Ti(x0) <∞
)
≥ α.

Applying Lemma 7.2 and the strong Markov property, we deduce that for any x ≥ 0,

Px (Xt > 0,∀ t ≥ 0) ≤ Px
(
∀i ≥ 0, XTi(x0)+t0 > 0

)
= Px

(
∀i ≥ 0, XTi(x0)+t0 > 0, Ti(x0) <∞

)
= 0.

This concludes the proof of the second point.

Finally, we prove (6.4). The proof is very similar to the one of (6.3) and we will not give
all the details. Following the proof of [18, Theorem 2.8] with the only difference that we
choose the function t as defined in (7.11), we obtain the existence of a > 1 and of a small
positive δ such that for every small enough ε,

P1/ε

(
τ+(∞) ≤ t(ε)

)
≥
∞∏
k=1

(
1− 2ε(1−a)δ(1+δ)n

)
.

We end the proof as in the case of absorption. �

We now prove Proposition 6.3 and Corollary 6.4 which concern the absorption of the
process.
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Proof of Proposition 6.3. Let us introduce the following time change:

Xt = Y∫ t
0 r(Xs)ds

. (7.31)

According to Theorem 1.4 in Section 6 in [8], there is a version of X satisfying (7.31) for a
process Y that is a solution of the martingale problem with associated generator

GY f(x) =
g(x)

r(x)
f ′(x) +

σ2(x)

r(x)
f ′′(x) +

∫ 1

0
(f(θx)− f(x))κ(dθ)

+
p(x)

r(x)

∫
(f(x+ z)− f(x)− zf ′(x))π(dz),

and is a weak solution to

Yt = Y0 +

∫ t

0

g(Ys)

r(Ys)
ds+

∫ t

0

√
2σ2(Ys)

r(Ys)
dBs +

∫ t

0

∫ 1

0

∫ 1

0
(θ − 1)Ys−N(ds, dx, dθ)

+

∫ t

0

∫ p(Ys− )/r(Ys− )

0

∫
R+

zQ̃(ds, dx, dz), (7.32)

where we chose on purpose the same Poisson Point measures as in the definition of X in
(2.1). In fact, as (7.32) admits a unique strong solution (see the proof of Proposition 2.1), Y
is even pathwise unique. Now let us introduce the processes (Kt, t ≥ 0) and (Zt, t ≥ 0) via

Kt :=

∫ t

0

g(Ys)

Ysr(Ys)
ds+

∫ t

0

∫ 1

0

∫ 1

0
ln θN(ds, dx, dθ)

and

Zt := Yte
−Kt .

Then an application of Itô’s formula with jumps gives

Zt = Y0 +

∫ t

0
e−Ks

√
2σ2(Ys)

r(Ys)
dBs +

∫ t

0

∫ p(Ys− )/r(Ys− )

0

∫
R+

e−Ks−zQ̃(ds, dx, dz).

Hence (Zt, t ≥ 0) is a non-negative local martingale. In particular it is a non-negative
supermartingale and there exists a finite random variable W such that

lim
t→+∞

Yte
−Kt = W, a.s. (7.33)

Under the assumptions of point i), K is smaller than a Lévy process with drift −η. As a
consequence, e−Kt goes to +∞, and we deduce from (7.33) that Y goes to 0. As by assump-

tion
∫ t

0 r(Xs)ds ≥ rt, we deduce from the time change (7.31) that X goes to 0.

We turn to the proof of ii) and consider the associated assumptions. In this case, K is
smaller than an oscillating Lévy process, and we have lim inft→∞Kt = −∞. This implies
lim inft→∞ Yt = 0. Again, we deduce from the time change (7.31) that lim inft→∞Xt = 0.

Let us now prove iii) as well as point iii) of Corollary 6.4. We use arguments similar to the
ones needed to prove [1, Corollary 2]. As we are in a more general setting, we need to adapt
several of these arguments. Most adaptations are obtained by couplings with well-chosen
processes.

We denote by M a finite bound of the function x 7→ (σ2(x)+p(x))/(xr(x)). The first step
consists in showing that P(W > 0|K) > 0. To this aim, we look for a function ṽt(s, λ,K, Y ),
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differentiable with respect to the variable s, such that F (s, Zs) is a martingale conditional
on K = (Ks, s ≥ 0), where

F (s, x) := exp{−xṽt(s, λ,K, Y )}.

By an application of Itô’s formula with jumps, we obtain that ṽt has to satisfy for every
s ≤ t,

∂

∂s
ṽt(s, λ,K, Y ) = eKsψ̃0

(
ṽt(s, λ,K, Y )e−Ks , Ys

)
, ṽt(t, λ,K, Y ) = λ, (7.34)

where

ψ̃0(φ, x) =
σ2(x)

xr(x)
φ2 +

p(x)

xr(x)

∫ ∞
0

(
e−φz − 1 + φz

)
π(dz). (7.35)

In particular

Ey
[
e−λZt

∣∣∣K] = e−yṽt(0,λ,K,Y ). (7.36)

Let us now introduce a function vt(s, λ,K), differentiable with respect to the variable s,
and satisfying.

∂

∂s
vt(s, λ,K) = eKsψ0

(
vt(s, λ,K)e−Ks

)
, vt(t, λ,K) = λ,

where

ψ0(φ) = M

(
φ2 +

∫ ∞
0

(
e−φz − 1 + φz

)
π(dz)

)
.

Then for every λ, x ≥ 0,

ψ̃0(λ, x) ≤ ψ0(λ)

and as a consequence, for all s ≤ t, λ > 0

vt(s, λ,K) ≤ ṽt(s, λ,K, Y ).

Combining this last inequality with (7.36), we obtain that

Ey
[
e−λZt

∣∣∣K] ≤ e−yvt(0,λ,K).

Taking λ = 1 and letting t go to infinity we get

Ey
[
e−W

∣∣∣K] ≤ e−yv∞(0,1,K) < 1,

where the last inequality comes from [1] (see the proof of Corollary 2 on page 7). This allows
us to conclude that

P(W > 0|K) > 0. (7.37)

Under the assumptions of point iii) K is larger than a Lévy process with drift η and as a
consequence, e−Kt goes to 0. From (7.33) and the previous inequality, we deduce that

lim inf
t→∞

Yt =∞

with positive probability. In particular, this implies that

lim inf
t→∞

Xt = lim inf
t→∞

Y∫ t
0 r(Xs)ds

≥ lim inf
t→∞

Yt > 0

with positive probability. �

Proof of Corollary 6.4. Let us begin with point iii). We showed in the proof of Proposition
6.3 (see (7.33)) that under the assumptions of point iii),

lim
t→+∞

Yte
−Kt = W, a.s., (7.38)
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where K is larger than a Lévy process with drift η. Moreover, as r(Xs) ≥ r for any s ≥ 0,
we have for any t ≥ 0,

ρ(t) :=

∫ t

0
r(Xs)ds ≥ rt. (7.39)

Combining (7.31), (7.38) and (7.39), we obtain

lim
t→∞

Y∫ t
0 r(Xs)ds

e
−K∫ t

0 r(Xs)ds = lim
t→∞

Xte
−Kρ(t) = W a.s.

Finally, (7.37) allows to conclude the proof of (6.5).

Let us now focus on points i) and ii). The idea of the proof is to compare the survival prob-
ability of X with the survival probability of a Feller diffusion with jumps, whose asymptotic
behaviour has been studied in [1].

Let us recall the definitions of ṽ and ψ̃0 in (7.34) and (7.35), respectively. Now, according
to (GSG), infx≥0 r(x) > 0 so that by assumption, infx≥0 σ

2(x)/(xr(x)) > 0. Therefore,
there exists a > 0 such that for every φ, x ≥ 0,

ψ̃0(φ, x) ≥ aφ2.

Hence, if we introduce v̄ as the solution to

∂

∂s
v̄t(s, λ,K) = ae−Ks (v̄t(s, λ,K))2 , v̄t(t, λ,K) = λ, (7.40)

we obtain that for all s ≤ t, λ > 0,

v̄t(s, λ,K) ≥ ṽt(s, λ,K, Y ),

implying, using (7.36),

Ey
[
e−λZt

∣∣∣K] ≥ e−yv̄t(0,λ,K).

Letting λ go to infinity yields

Py (Yt = 0|K) = Py (Zt = 0|K) ≥ e−yv̄t(0,∞,K).

But (7.40) has an explicit solution, and

v̄t(0,∞,K) =

(
a

∫ t

0
e−Kudu

)−1

.

We thus deduce that for any t ≥ 0,

Py (Yt > 0) ≤ 1− E
[
e−y(a

∫ t
0 e
−Kudu)−1

]
.

A direct application of [1, Theorem 7] with F (x) = 1−e−y(ax)−1
gives the long time behaviour

of the right hand side of the previous inequality. Finally,

Py (Xt > 0) = Py
(
Y∫ t

0 r(Xs)ds
> 0
)
≤ Py

(
Yrt > 0

)
≤ 1− E

[
e−y(a

∫ rt
0 e−Ksds)−1

]
.

�

We end this proof section by the study of the conditions under which the process X or its
superior limit drift to infinity.

Proof of Equation (6.1). Let a ∈ A. Then (1, a] ⊂ A by definition. In particular, we may
take a ∈ (1, 2]

⋂
A, which implies that

g(x)

x
− aσ

2(x)

x2
≥ g(x)

x
− 2σ2(x)

x2
.
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Now, recall that for x > 0,

I(x) = lim
a→1

Ia(x) =

∫
R+

[
zx−1 + ln

(
1

1 + zx−1

)]
π(dz).

Using that for any u > 0, ln(u) < u− 1, we obtain that

I(x) <

∫
R+

(
1

1 + zx−1
− 1 + zx−1

)
π(dz) =

∫
R+

z2x−2

1 + zx−1
π(dz).

And by continuity, we deduce that there exists a ∈ A such that

Ia(x) <

∫
R+

z2x−2

1 + zx−1
π(dz),

hence

−p(x)Ia(x) ≥ −p(x)

∫
R+

z2x−2

1 + zx−1
π(dz).

This ends the proof. �

Proof of Proposition 6.5. Recall that the time-changed process Y is a weak solution to (7.32),
and let us introduce the process V via Vt := 1/Yt, t ≥ 0, which is well defined as Yt does not
reach 0 under Assumption (GVFG) (see the third point of Remark 6.1). Applying Itô’s
formula with jumps, we obtain that V is a weak solution to the SDE:

Vt = V0+

∫ t

0
Vs

(
2V 2

s

σ2(V −1
s )

r(V −1
s )

− Vs
g(V −1

s )

r(V −1
s )

+
p(V −1

s )

r(V −1
s )

∫
R+

(
1

1 + zVs
− 1 + zVs

)
π(dz)

)
ds

−
∫ t

0
V 2
s

√
2σ2(V −1

s )

r(V −1
s )

dBs +

∫ t

0

∫ 1

0

∫ 1

0

(
1

θ
− 1

)
Vs−N(ds, dx, dθ)

+

∫ t

0

∫ p(V −1

s−
)/r(V −1

s−
)

0

∫
R+

Vs−

(
1

1 + zVs−
− 1

)
Q̃(ds, dx, dz).

Now, if we introduce the processes K̃ and Z̃ via:

K̃t =

∫ t

0

(
2V 2

s

σ2(V −1
s )

r(V −1
s )

− Vs
g(V −1

s )

r(V −1
s )

+
p(V −1

s )

r(V −1
s )

∫
R+

(
1

1 + zVs
− 1 + zVs

)
π(dz)

)
ds

−
∫ t

0

∫ 1

0

∫ 1

0
ln θN(ds, dx, dθ)

and Z̃t := Vte
−K̃t for any t ≥ 0, we obtain, applying again Itô formula with jumps:

Z̃t = V0 −
∫ t

0
e−K̃sV 2

s

√
2σ2(V −1

s )

r(V −1
s )

dBs

+

∫ t

0

∫ p(V −1

s−
)/r(V −1

s−
)

0

∫
R+

e−K̃s−Vs−

(
1

1 + zVs−
− 1

)
Q̃(ds, dx, dz).

In other words, Z̃ is a non-negative local martingale, and thus a supermartingale. It converges
to a non-degenerated and non-negative random variable W̃ . We conclude the proof as the
proof of points i) and ii) of Proposition 6.3. �
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Appendix A. Detailed computation of the limit of Ia

In this section, we prove that for all x > 0,

lim
a→1

Ia(x) = I(x)

where we recall that

Ia(x) = a

∫
R+

z2

x2

(∫ 1

0

1− v
(1 + zx−1v)1+a

dv

)
π(dz), I(x) = −

∫
R+

[
ln
(
1 + zx−1

)
− zx−1

]
π(dz).

Note that computing the integral, we have

Ia(x) =

∫
R+

(
zx−1 +

1− (1 + zx−1)1−a

1− a

)
π(dz), (A.1)

and

lim
a→1

1− (1 + zx−1)1−a

1− a
= − ln(1 + zx−1).

By Taylor’s formula applied to the function y 7→ (1 + y)1−a, there exists ζ ∈ (0, zx−1) such
that

Ia(x) =

∫
R+

zx−1
(
1− (1 + ζ)−a

)
π(dz) ≤

∫
R+

zx−1
(
1− (1 + zx−1)−1

)
π(dz) <∞,

according to Assumption A. Then, using the dominated convergence theorem, we obtain

lim
a→1

Ia(x) = I(x).
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