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LONG TIME BEHAVIOUR OF A GENERAL CLASS OF BRANCHING

MARKOV PROCESSES

ALINE MARGUET AND CHARLINE SMADI

Abstract. We introduce a general class of branching Markov processes for the modelling of
structured populations. Each individual has a nonnegative trait (size, quantity of parasites
or proteins, ...), which evolves as a diffusion with positive jumps. The growth rate, diffusive
function and jump rate of this trait may depend on the trait value. The individual death
rate also depends on the trait. At death, an individual gives birth to two offspring and its
trait is shared (unequally) between these two offspring. We study the long time behaviour
of the trait along a lineage and in the whole population.

Key words and phrases: Continuous-time and space branching Markov processes, struc-
tured population, long time behaviour
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Introduction

We introduce a general class of continuous-time and space branching Markov processes
for the study of structured populations. Each individual in the population is characterized
by a trait whose dynamics follows a Markov process. Then, at a random time depending
on the individual’s trait dynamics, the individual dies and gives birth to two descendants,
whose traits at birth depend on the trait of the mother. We are interested in the long time
behaviour of these structured branching processes and in their biological interpretation in
terms of population dynamics. First, we focus on the dynamics of the process along a lin-
eage. We give criteria for the process along a lineage to be almost surely absorbed at 0 in
finite time, to converge to a positive random variable, or to follow some long time asymp-
totics. Moreover, in the case of almost sure extinction, we give bounds on the exponential
decay of the survival probability and in the case of survival with a positive probability, we
prove that the process grows at least exponentially. Second, we introduce a one-dimensional
auxiliary process, also known as spinal process, whose dynamics provides useful information
on the dynamics of the whole structured population, via a Many-to-One formula (see [2]
for instance). Combining couplings and results derived in the study of the process along a
lineage, we investigate the long time behaviour of this auxiliary process and prove that it
converges under some assumptions on the trait dynamics. Moreover, we show that this aux-
iliary process corresponds to the trait of a uniformly sampled individual in the population
and deduce some properties on the long time behaviour of the process at the population
level, extending previous results derived for a smaller class of structured Markov branching
processes (see [6, 2, 10] for instance).

Notice that the study of the process along a lineage is of independent interest. It be-
longs to a class of processes recently introduced as strong solutions of Stochastic Differen-
tial Equations (SDE) in [30], and only few processes of this class have been studied until
now. This class of processes allows to take into account interactions between individuals as
well as the effects of the environment. The addition of interactions between individuals in
continuous-time branching processes has recently attracted a lot of interest. For instance,
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Feller diffusions and Continous State Branching Processes (CSBP) with logistic competition
have been studied in [22, 24] and [7], respectively, Feller diffusions with some nonlinear birth
rates have been studied in [33], and polynomial interactions have been considered in [25].
Li and coauthors [26] have recently introduced a general class of continuous state nonlinear
branching processes, and have investigated extinction, explosion and coming down from in-
finity for this class. However, in all these models, only positive jumps are allowed. They
result from large birth events, and were first introduced by constructing the continuous state
process as the limit of a sequence of discrete branching processes (see for instance [23, 5]).
In parallel, models where the interactions between individuals result from the fact that the
whole population is subject to the variations of the same environment have been intensively
studied recently, in particular in the framework of CSBPs in random environment. This class
of models, initially introduced by Keiding and Kurtz [21, 20] in the case of Feller diffusions
in a Brownian environment, have been recently generalised and studied by many authors
[9, 3, 32, 31, 17, 30, 27, 4]. In this setting, negative jumps may occur, being for instance the
result of environmental catastrophes killing each individual with the same probability [3].
However, in CSPBs in random environment, the environment is independent of the popu-
lation state. In particular the rate of catastrophes does not depend on the population size.
We relax this assumption in the current work.

A classical method to obtain information on the distribution of one trait in a structured
branching population is to introduce a spinal decomposition and to prove a Many-to-One
formula. It consists in distinguishing a particular line of descent in the population, and to
prove that the dynamics of the trait along this particular lineage is representative of the
dynamics of the trait of a typical individual in the population, i.e. an individual picked
uniformly at random. In particular, we refer to [14, 16, 10] for general results on these
topics in the continuous-time case. Using recent results of Marguet in [28], we exhibit an
auxiliary process for the class of processes under consideration, in the particular case where
the division rate is constant or linear in the individual’s trait. Then, to obtain properties at
the population level, we study this (time-inhomogeneous) auxiliary process. In particular,
we prove its convergence, using results in [29], and extending some results of the first part
of our study (concerning the process along a lineage) to the time-inhomogeneous case.

The main application that we consider for our study is the modelling of a parasite infec-
tion in a cell population. Some experiments, conducted in the TAMARA laboratory, have
shown that cells distribute unequally their parasites between their two daughter cells [36].
This could be a mechanism aiming at concentrating the parasites in some cell lines in order
to ”save” the remaining lines. It is thus important to understand the effect of this unequal
sharing on the long time behaviour of the infection in the cell population. This question has
been addressed by Bansaye and Tran in [6]. They introduced and studied branching Feller
diffusions with a cell division rate depending on the quantity of parasites in the cell and a
sharing of parasites at division between the two daughter cells according to a random vari-
able with any symmetric distribution on [0, 1]. They provided some extinction criteria for
the infection in a cell line, in the case where the cell division rate is a constant or monotone
function of the quantity of parasites in a cell, as well as recovery criteria at the population
level, in the constant division rate case. In [3], Bansaye and coauthors extended this study
by providing the long time asymptotic of the recovery rate in the latter case. Our work
further extends these results in several directions. First, we allow the parasites growth rate
and diffusion coefficient in a cell to depend on the quantity of parasites. Second, we add the
possibility to have positive jumps in the parasites dynamics, with a rate which may depend
on the quantity of parasites. Finally, we do not make any assumption on the monotonicity of
the cell division rate. This situation is much more difficult to study than the previous ones,
as the genealogical tree of the cell population depends on the whole history of the number of
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parasites in the different cell lines, whereas in [6, 3], the growth of the population is indepen-
dent of the parasites dynamics. Another application we can think of, similar in spirit, is the
modelling of the protein aggregates in a cell population. These latter, usually eliminated by
the cells, can undergo sudden increases due to cellular stress for instance (positive jumps),
and are known to be distributed unequally between daughter cells (see [35] for instance).

The paper is structured as follows. The class of branching Markov processes under consid-
eration is introduced in Section 1. In Section 2, we give results on the long time behaviour of
the process along a lineage. Section 3 is dedicated to the results on the long time behaviour
of the process at the population level. The proofs are derived in Section 4.

In the sequel N := {0, 1, 2, ...} will denote the set of nonnegative integers, R+ := [0,∞)
the real line and R∗+ := (0,∞). We will denote by C2

b (R+) the set of twice continuously
differentiable bounded functions on R+. Finally, for any stochastic process X on R+ or Z
on the set of point measures on R+, we will denote by Ex [f(Xt)] = E

[
f(Xt)

∣∣X0 = x
]

and

Eδx [f(Zt)] = E
[
f(Zt)

∣∣Z0 = δx
]
.

1. Definition of the population process

We use the classical Ulam-Harris-Neveu notation to identify each individual. Let

U :=
⋃
n∈N
{0, 1}n ,

denote the set of all possible labels.
In this section, we define the structured population model, following the construction

detailed in [28]. We consider a branching Markov process where each individual in the
population is characterized by a trait. We assume that this trait evolves as a diffusion with
positive jumps. More precisely, we consider the SDE

Xt = X0 +

∫ t

0
g(Xs)Xsds+

∫ t

0

√
2σ2(Xs)dBs +

∫ t

0

∫ p(Xs− )

0

∫
R+

zQ̃(ds, dx, dz), (1.1)

where X0 is nonnegative, g, σ and p are nonnegative functions on R+, B is a standard

Brownian motion, Q̃ is a compensated Poisson point measure with intensity ds⊗ dx⊗π(dz)
independent of B and π is a probability measure on R+.

An individual with trait x dies at rate r(x) where r is a nonnegative function on R+ and
is replaced by two individuals with characteristics at birth given by Θx and (1−Θ)x where
Θ is a nonnegative random variable on [0, 1] such that P(Θ = 0) = P(Θ = 1) = 0 and with
associated symmetric distribution κ(dθ).

We denote by MP (R+) the set of point measures on R+. Following [12], we work in
D(R+,MP (R+)), the set of càdlàg measure-valued processes. For any Z ∈ D(R+,MP (R+)),
t ≥ 0, we write

Zt =
∑
u∈Vt

δXu
t
, (1.2)

where Vt ⊂ U denotes the set of all individuals alive at time t and for all u ∈ Vt, Xu
t denotes

the trait at time t of the individual u. Some assumptions are needed to ensure that the
process is well-defined. The first set of hypotheses ensures the existence and uniqueness of a
strong solution to (1.1) (see the proof of Proposition 2.1 for details).

Assumption A. - The functions r, p and g are continuous, and for any n ∈ N there
exists a finite constant Bn such that for any 0 ≤ x ≤ y ≤ n

|yg(y)− xg(x)| ≤ Bn(y − x)
(
ln(y − x)−1 + 1

)
.
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- The function p is locally Lipschitz and p(0) = 0.
- The function σ is 1/2-Hölderian on compact sets and σ(0) = 0.
- The measure π satisfies ∫ ∞

0

(
z ∧ z2

)
π(dz) <∞.

Then according to [30, Proposition 1], there is a unique strong solution (Xt, t ≥ 0) to (1.1).
It is a Markov process with infinitesimal generator G, satisfying for all f ∈ C2

b (R+),

Gf(x) = xg(x)f ′(x) + σ2(x)f ′′(x) + p(x)

∫
R+

(
f(x+ z)− f(x)− zf ′(x)

)
π(dz).

Following [28], we denote by (Φ(x, s, t), s ≤ t) the corresponding stochastic flow i.e. the
unique strong solution to (1.1) satisfying Xs = x and the dynamics of the trait between
division events is well-defined.

We also need assumptions to ensure the non-explosion of the process in finite time.

Assumption B. i) There exist r1, r2 ≥ 0 and γ ≥ 1 such that for all x ≥ 0

r(x) ≤ r1x
γ + r2.

ii) There exist c1, c2 ≥ 0 such that, for all x ∈ R+,

lim
n→+∞

Ghn,γ(x) ≤ c1x
γ + c2,

where γ has been defined in i) and hn,γ ∈ C2
b (R+) is a sequence of functions such

that limn→+∞ hn,γ(x) = xγ for all x ∈ R+.

We can now properly define the population process Z. Let E = U × [0, 1] × R+ and
N(ds, du, dz, dθ) be a Poisson point measure on R+ × E with intensity ds × n(du) × dz ×
κ(dθ), where n(du) denotes the counting measure on U . Let (Φu(x, s, t), u ∈ U , x ∈ X , s ≤ t)
be a family of independent stochastic flows satisfying (1.1) describing the individual-based
dynamics. We assume that M and (Φu, u ∈ U) are independent. We denote by Ft the
filtration generated by the Poisson point measure M and the family of stochastic processes
(Φu(x, s, t), u ∈ U , x ∈ X , s ≤ t) up to time t.

Proposition 1.1. Under Assumptions A and B, there exists a strongly unique Ft-adapted
càdlàg process (Zt, t ≥ 0) taking values in MP (R+) such that for all f ∈ C2

b (R+) and t ≥ 0,

〈Zt, f〉 = f (x0) +

∫ t

0

∫
R+

Gf(x)Zs (dx) ds+Mf
t (x)

+

∫ t

0

∫
E

1{
u∈Vs− , z≤r(X

u
s−

)
} (f (θXu

s−) + f ((1− θ)Xu
s−)− f (Xu

s−))M (ds, du, dθ, dz) ,

where for all t ≥ 0, Mf
t (x) is a Ft-martingale.

The proof is a direct application of [28, Theorem 2.2].

2. Behaviour of the process along a lineage

To understand the long time behaviour of the population, we will first focus on the process
(Xt, t ≥ 0) which describes the dynamics of the process Z in a lineage, for example the most
left lineage, and can be described by the SDE:

Xt = X0 +

∫ t

0
g(Xs)Xsds+

∫ t

0

√
2σ2(Xs)dBs +

∫ t

0

∫ p(Xs− )

0

∫
R+

zQ̃(ds, dx, dz) (2.1)

+

∫ t

0

∫ r(Xs− )

0

∫ 1

0
(θ − 1)Xs−N(ds, dz, dθ),
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where Q̃ and B have been introduced in (1.1), and N is a Poisson random measure with
intensity ds ⊗ dz ⊗ κ(dθ), issued from M by choosing (arbitrarily) that any division events

affects the particle on the left of the genealogical tree. Recall that by definition, N , Q̃ and
B are mutually independent.

2.1. Solution of the stochastic differential equation. First of all, we state that under
some mild conditions, the SDE (2.1) has a unique pathwise strong solution. We will work
under these conditions in the sequel.

Assumption C. Assumption A holds and for any 0 ≤ x ≤ y ≤ n

1{r(x)<r(y)}(yr(y)− xr(x)) + 1{r(y)≤r(x)}(yr(y) + xr(x)− 2xr(y))

≤ Bn(y − x)
(
ln(y − x)−1 + 1

)
.

The form of this assumption comes from the conditions of Proposition 1 in [30] that we
will use to get the next result.

Proposition 2.1. Suppose that Assumption C holds. Then, Equation (2.1) has a pathwise
unique nonnegative strong solution.

In the proofs of Section 3, we also need to consider a slight generalization of the SDE (2.1)
where an individual with trait x dies and transmits a proportion θ ∈ [0, 1] of its trait to its
left offspring at a rate r(x)l(θ), that depends on θ, where l : [0, 1] → R+ is a nonnegative
function. However, using the properties of Poisson random measures we can prove that a
solution to such an SDE can be rewritten as the solution to (2.1) by modifying the death
rate r and the fragmentation kernel κ.

Lemma 2.2. Assume that
∫ 1

0 l(θ)κ(dθ) <∞. Let

κ̂(dθ) = l(θ)

(∫ 1

0
l(θ)κ(dθ)

)−1

κ(dθ), r̂(x) = r(x)

∫ 1

0
l(θ)κ(dθ),

and Q̃, B and N be defined as in (2.1). Then, there exists a Poisson random measure N ′

with intensity ds⊗ dz ⊗ κ̂(dθ) such that X is the pathwise unique solution to

Xt = X0 +

∫ t

0
g(Xs)Xsds+

∫ t

0

√
2σ2(Xs)dBs +

∫ t

0

∫ p(Xs− )

0

∫
R+

zQ̃(ds, dx, dz)

+

∫ t

0

∫ r̂(Xs− )

0

∫ 1

0
(θ − 1)Xs−N

′(ds, dz, dθ),

if and only if X is the pathwise unique nonnegative strong solution to

Xt = X0 +

∫ t

0
g(Xs)Xsds+

∫ t

0

√
2σ2(Xs)dBs +

∫ t

0

∫ p(Xs− )

0

∫
R+

zQ̃(ds, dx, dz)

+

∫ t

0

∫ r(Xs− )
∫ 1
0 l(θ)

0
(θ − 1)Xs−N(ds, dz, dθ).

The next two subsections are dedicated to the study of the long time behaviour of the
process X solution to (2.1).

2.2. Absorption probability and convergence of the process. The first question we
are interested in is to know if the trait reaches 0 along a lineage. It depends on the behaviour
of the function σ, controlling the diffusive part of the process, in the neighbourhood of 0.

Let us introduce the stopping times τ−(x) and τ+(x) via

τ−(x) := inf{t ≥ 0 : Xt < x}, τ+(x) := inf{t ≥ 0 : Xt > x}, for x > 0 (2.2)
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and

τ−(0) := inf{t ≥ 0 : Xt = 0}, (2.3)

with the convention inf ∅ :=∞.
To study the absorption of the process X, we will extend [26, Theorem 2.3]. This extension

relies on the construction of a sequence of martingales satisfying the following assumption.

Assumption D. Let 0 < c < ε < b, T = τ−(c)∧ τ+(b). For some a ∈ R+ \ {1} there exists
a function Ga such that

M
(a)
t := X1−a

t∧T exp

(∫ t∧T

0
Ga(Xs)ds

)
is a martingale and

Eε
[
X1−a
T exp

(∫ T

0
Ga (Xs) ds

)]
≤ ε1−a.

Moreover, in order to be able to use coupling arguments, we consider an additional as-
sumption on the rate p.

Assumption E0. The function p is nondecreasing.

We can now state the result on the absorption of the process.

Theorem 2.3. Suppose that Assumption E0 is satisfied. Let X be the pathwise unique
solution to (2.1), 0 < c < ε < b and T = τ−(c) ∧ τ+(b).

i) If there exist a nonnegative nondecreasing function f going to ∞ at ∞, and a > 1
such that Assumption D holds and

Ga(u) ≥ − ln(u−1)/f2(1/u) (2.4)

for u small enough, then Px (τ−(0) <∞) = 0 for all x > 0.
ii) If there exist a < 1 and η > 0 such that Assumption D holds and

Ga(u) ≥ ln(u−1)
(
ln(ln(u−1))

)1+η
(2.5)

for u small enough, then Px (τ−(0) <∞) > 0 for all small enough x > 0.

As Theorem 2.3 extends [26, Theorem 2.3], the proofs of these two results are simi-
lar. However, several adaptations are needed as negative jumps may occur in our process.
Moreover, we give tighter bounds than in [26, Theorem 2.3] where (ln(u−1))r/2, r < 1 and

(ln(u−1))r/2, r > 1 were considered instead of the right-hand sides of (2.4) and (2.5).

In order to translate conditions 2.4 and 2.5 in terms of the functions controlling the
dynamics of X, we now construct functions Ga satisfying Assumption D. This requires some
conditions on the measure π and on the function p. Therefore, we slightly modify Assumption
E0 to take into account those requirements.

Assumption E. The function p is nondecreasing, lim sup0+ p(x)/x <∞ and∫ ∞
0

zπ(dz) <∞.

For the sake of readability, we consider Assumption E instead of a weaker assumption that
would have been sufficient (we just need Ga(x) to be well defined for small x) but harder to
state. Next, we define

A =

{
a ∈ R+,

∫ 1

0

(
θ1−a − 1

)
κ(dθ) <∞.

}
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The set of functions Ga, for a ∈ A, may then be introduced for x > 0 via

Ga(x) := (a− 1)g(x)− a(a− 1)
σ2(x)

x2
− r(x)

∫ 1

0

(
θ1−a − 1

)
κ(dθ)

− p(x)

∫
R+

(
(zx−1 + 1)1−a − 1− (1− a)zx−1

)
π(dz). (2.6)

As an application of Theorem 2.3, we are now able to exhibit sufficient conditions on the
diffusive term σ of the dynamics of X ensuring absorption.

(A1) There exist a > 1 ∈ A, a nonnegative nondecreasing function f going to ∞ at ∞,
and u0 > 0 such that for all u ≤ u0

σ(u)

u
≤
(
ln(u−1)

)1/2
/f(1/u). (2.7)

(A2) There exist η > 0 and u0 > 0 such that for all u ≤ u0

σ(u)

u
≥
(
ln(u−1)

)1/2 (
ln(ln(u−1))

)(1+η)/2
. (2.8)

We can now state results on the absorption of the process in terms of those two conditions.

Corollary 2.4. Suppose that Assumptions C and E hold.

i) If Condition (A1) holds, then Px (τ−(0) <∞) = 0 for all x > 0.
ii) If Condition (A2) holds then Px (τ−(0) <∞) > 0 for x small enough.

iii) If Condition (A2) holds and moreover, σ(x) + r(x) > 0 for any x > 0, then for any
x > 0 and s > 0, Px (τ−(0) < s) > 0.

The third point of Corollary 2.4 refines the result on the probability of non-absorption by
stating that the probability to reach 0 at any positive time is positive under mild conditions.
This property will be useful in the study of the process at the population level.

The long time behaviour of the process X in a lineage depends on the interplay between
g, which tends to increase it, r, which decreases it, and the fragmentation kernel κ which has
a less intuitive effect. From now on, Θ will denote a random variable distributed according
to κ. We will always assume that the following condition holds:

|E[ln Θ]| =
∣∣∣∣∫ 1

0
ln θκ(dθ)

∣∣∣∣ <∞. (2.9)

We consider the following possibilities for the relative strengths of g and r:

(B0) Condition (2.9) holds and there exist η > 0 and x0 ≥ 0 such that

g(x) + r(x)E [ln Θ] ≤ −η, ∀ x ≥ x0.

(B1) Condition (2.9) holds and there exist r > 0 and η ≥ 0 such that r(x) ≥ r, ∀x ≥ 0
and

g(x)

r(x)
+ E [ln Θ] ≤ −η, ∀ x ≥ 0.

(B2) Condition (2.9) holds and there exist r > 0 and η > 0 such that r(x) ≥ r, ∀x ≥ 0
and

g(x)

r(x)
+ E [ln Θ] ≥ η, ∀ x ≥ 0.

The next result states that under Condition (B0), the division mechanism overcomes the
growth of X. In this case, the process X converges to a finite variable, which may be 0
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if X can be absorbed. To state this result, we need to introduce the following sequence of
stopping times. Let t0 > 0, T0 = 0 and for all i ≥ 1 and x0 ≥ 0,

Ti(x0) = inf{t ≥ Ti−1(x0) + t0, Xt ≤ x0}. (2.10)

Theorem 2.5. Suppose that Assumptions C, E and Condition (B0) hold for some x0 > 0.
Then, for all x ≥ 0, the process (Xt, t ≥ 0) converges in law as t tends to infinity to X∞
with distribution

P(X∞ ∈ ·) =
1

E[T1(x0)]
E

[∫ T1(x0)

0
1{Xs∈·}ds

]
, (2.11)

satisfying

E
[
X∞

(
g(X∞)− r(X∞)

2

)]
= 0. (2.12)

Moreover, the distribution of X∞ is the unique stationary distribution of the process X and
for every bounded and measurable function f , almost surely,

lim
t→∞

1

t

∫ t

0
f(Xs)ds = E[f(X∞)].

Furthermore, if Condition (A2) holds and there exists d > 0 such that inf0≤y≤x0+d r(y) +
σ(x) > 0 for all x > 0, then X∞ = 0 almost surely and for all x ≥ 0,

Px (∃t <∞, Xt = 0) = 1. (2.13)

2.3. Classification of the long time behaviours. Finally, we provide some properties
on the long time behaviour of X under Assumptions (B1) and (B2) with x0 = 0, extending
the classification for stable CSPBs with random catastrophes (corresponding to σ(x) = σ

√
x

and π ≡ 0 or σ ≡ 0, p(x) = x and π stable, r(x) = r and g(x) = g) given in [3, Corollary 2].

Proposition 2.6. Suppose that Assumptions C and E are satisfied.

i) If Condition (B1) holds for η > 0, then

lim
t→∞

Xt = 0, almost surely.

ii) If Condition (B1) holds for η = 0, then

lim inf
t→∞

Xt = 0, almost surely.

iii) If Condition (B2) holds, if there exists ε > 0 such that∫ ∞
0

z ln1+ε(1 + z)π(dz) <∞

and if the function x 7→ (σ2(x) + p(x))/x is bounded, then

Px
(

lim inf
t→∞

Xt > 0
)
> 0.

In the last case, we additionally prove in the next corollary that with positive probability,
X grows (at least) exponentially. Moreover, when the diffusion term is large enough (σ(x)
larger than

√
x, which corresponds to Feller diffusion), we are able to provide a bound on

the absorption rate in the two first cases.

Corollary 2.7. Suppose that Assumptions C and E are satisfied.

i) If Condition (B1) holds for η > 0, and infx≥0 σ
2(x)/x > 0 then

– If E [(Θ− 1) ln Θ] < η, there exists c1 > 0 such that for any x > 0

Px(Xt > 0) ≤ c1xe
r(E[ln 1/Θ]−η−1/2)t, (t→∞).
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– If E [(Θ− 1) ln Θ] = η, there exists c2 > 0 such that for any x > 0

Px(Xt > 0) ≤ c2xt
−1/2er(E[ln 1/Θ]−η−1/2)t, (t→∞).

– If E [(Θ− 1) ln Θ] > η, there exists c3(x) > 0 such that for any x > 0

Px(Xt > 0) ≤ c3(x)t−3/2er(E[ln 1/Θ]−η+E[(Θτ−1)])t, (t→∞),

where τ ∈ [0, 1) is the unique value such that E[ln 1/Θ]− η + E [Θτ ln Θ] = 0.
ii) If Condition (B1) holds for η = 0, and infx≥0 σ

2(x)/x > 0 then, there exists c4(x) > 0
such that for any x > 0

Px(Xt > 0) ≤ c4(x)t−1/2, (t→∞).

iii) Under the assumptions of point iii) of Proposition 2.6, there exists a Lévy process Λt
with drift η and an increasing function ρ such that ρ(t) ≥ rt and

lim inf
t→∞

Xte
−Λρ(t) = W (2.14)

where W is a finite nonnegative random variable satisfying P(W > 0) > 0.

Absorption rates of CSBPs in random environment have been intensively studied during
the last decade [9, 3, 32, 27, 4]. In these references, g is constant, σ2(x) = σ2x, for some
σ ≥ 0, p(x) = x and r(x) ≡ r is independent of X, whereas these assumptions are relaxed
in our case (notice however that we make moment assumptions on the jump measures).
Corollary 2.7 provides thus bounds on the asymptotic behaviour for a new class of models.

3. Behaviour of the process at the population level

We now investigate the behaviour of the Markov process at the population level, and
introduce an auxiliary process providing information on the behaviour of a ”typical individ-
ual”. To ease the statement of the results, we consider the case of the modelling of a parasite
infection in a cell population.

3.1. Construction of the auxiliary process and stochastic differential equation.
Recall from (1.2) that the population state at time t, Zt, can be represented by a sum of
Dirac masses. We denote by (Mt, t ≥ 0) the first-moment semi-group associated with the
population process Z given for all measurable function f and x, t ≥ 0 by

Mtf(x) = Eδx

[∑
u∈Vt

f(Xu
t )

]
.

The trait of a typical individual in the population is characterized by the so-called auxiliary
process Y (see [28, Theorem 3.1] for detailed computations and proofs) corresponding to the
following time-inhomogeneous semi-group for r ≤ s ≤ t, x ≥ 0:

P (t)
r,s f(x) =

Ms−r(fMt−s1)(x)

Mt−r1(x)
,

where 1 is the constant function on R+ equal to 1. More precisely, if we denote by m(x, s, t) =
Mt−s1(x) the mean number of individuals in the population at time t starting from one
individual with trait x at time s with s ≤ t, then, for all measurable bounded function
F : D([0, t],R+)→ R, we have:

Eδx

[∑
u∈Vt

F (Xu
s , s ≤ t)

]
= m(x, 0, t)Ex

[
F
(
Y (t)
s , s ≤ t

)]
. (3.1)
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Here (Y
(t)
s , s ≤ t) is a time-inhomogeneous Markov process whose law is characterized by its

associated infinitesimal generator (A(t)
s , s ≤ t) given for f ∈ D(A) and x ≥ 0 by:

A(t)
s f(x) =Ĝ(t)

s f(x) + r̂(t)
s (x)

∫
X

(f (θx)− f (x)) κ̂(t)
s (x, dθ) ,

where

D(A) =
{
f ∈ C2

b (R+) s.t. m(·, s, t)f ∈ C2
b (R+), ∀t ≥ 0, ∀s ≤ t

}
and

Ĝ(t)
s f(x) =

(
g(x)x+ 2σ2(x)

∂xm(x, s, t)

m(x, s, t)
+ p(x)

∫
R+

z

(
m(x+ z, s, t)−m(x, s, t)

m(x, s, t)

)
π(dz)

)
f ′(x)

+ σ2(x)f ′′(x) + p(x)

∫
R+

(f(x+ z)− f(x)− zf ′(x))
m(x+ z, s, t)

m(x, s, t)
π(dz),

r̂(t)
s (x) = 2r(x)

∫ 1

0

m(θx, s, t)

m(x, s, t)
κ(dθ),

κ̂(t)
s (x, dθ) = 1{0≤θ≤1}m(θx, s, t)

(∫ 1

0
m(θx, s, t)κ(dθ)

)−1

κ(dθ).

Explicit expressions for the mean number of individuals are usually out of range. However,
the computations are duable in two particular cases. In the first one, the parasites Malthusian
growth is constant and the cell division rate is a linear function of the quantity of parasites,
as stated in the next assumption.

Assumption F. There exist α > 0, g, β ≥ 0 such that g(x) ≡ g, r(x) = αx+ β, and∫ ∞
0

z2π(dz) <∞. (3.2)

Such a division rate corresponds for the cell to a strategy of linear increase of its division
rate in order to get rid of the parasites. Under Assumption F, a direct computation shows
that if g 6= β, the mean number of individuals can be written

m(x, s, t) =
αx

g − β
eg(t−s) +

(
1− αx

g − β

)
eβ(t−s). (3.3)

As a consequence, we obtain the following expressions for Ĝ, r̂ and κ̂:

Ĝ(t)
s f(x) =

(
gx+

(
2σ2(x) + p(x)E

[
Z2
]) α

(
e(g−β)(t−s) − 1

)
(g − β) + αx

(
e(g−β)(t−s) − 1

)) f ′(x) + σ2(x)f ′′(x)

+ p(x)

∫
R+

(f(x+ z)− f(x)− zf ′(x))

(
1 +

αz
(
e(g−β)(t−s) − 1

)
(g − β) + αx

(
e(g−β)(t−s) − 1

))π(dz),

r̂(t)
s (x) = (αx+ β)

(
1 +

g − β
g − β + αx

(
e(g−β)(t−s) − 1

)) ,
and

κ̂(t)
s (x, dθ) = 1{0≤θ≤1}2

g − β + αθx
(
e(g−β)(t−s) − 1

)
2(g − β) + αx

(
e(g−β)(t−s) − 1

)κ(dθ),
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where Z is a positive random variable with law π. For the sake of readability, we introduce
the following functions for y > 0, s, z ≥ 0, and θ ∈ [0, 1]:

f1(y, s) := g +

(
2
σ2(y)

y
+ E

[
Z2
] p(y)

y

)
α
(
e(g−β)s − 1

)
g − β + αy

(
e(g−β)s − 1

) ,
f2(y, s, θ) := 2(αy + β)

g − β + αθy
(
e(g−β)s − 1

)
g − β + αy

(
e(g−β)s − 1

) ,
and

f3(y, s, z) := p(y)

(
1 +

αz
(
e(g−β)s − 1

)
(g − β) + αy

(
e(g−β)s − 1

)) .
We thus obtain that A(t) is the infinitesimal generator of the solution to the following SDE,
when existence and unicity in law of the solution hold: for 0 ≤ s ≤ t,

Y (t)
s =Y

(t)
0 +

∫ s

0

[
Y (t)
u f1(Y (t)

u , t− u)
]
du+

∫ s

0

∫ ∞
0

∫ f3(Y
(t)

u−
,t−u,z)

0
zQ̃(du, dz, dx)

+

∫ s

0

√
2σ2

(
Y

(t)
u

)
dBu +

∫ s

0

∫ f2(Y
(t)

u−
,t−u,θ)

0

∫ 1

0
(θ − 1)Y

(t)
u−N(du, dz, dθ), (3.4)

where Q̃, B and N are the same as in (2.1).

For the sake of completeness, we give in the appendix the expressions of the kernels and
functions (fi, 1 ≤ i ≤ 3) in the case g = β, as well as the proof of Proposition 3.1 in this case.
We will not consider this special case in the sequel, as it entails additional computations and
does not bring new insights.

Before studying the auxiliary process, we prove that it can be realised as the unique strong
solution to the SDE (3.4) under some moment conditions on the measure associated with
positive jumps. We need to consider an additional assumption on p that ensures that the
rate of positive jumps f3 of the process Y is increasing with the quantity of parasites.

Assumption G. For every x ≥ 0,

xp′(x) ≥ p(x).

Notice that Assumption G is satisfied for any function p of the form p(x) = χxψ lnω x with
χ ≥ 0, ψ ≥ 1, and ω ≥ 0.

Proposition 3.1. Suppose that Assumptions C and G, as well as condition (3.2) hold. Then,
Equation (3.4) has a pathwise unique nonnegative strong solution.

Remark 3.2. Notice that the reproduction law could be generalised to allow for a random

number of offspring (independent of the individual trait). In this case, the constant 2 in r̂
(t)
s

would be replaced by the mean number of offspring (see [2, 28]).

The aim of the next sections is to derive properties on the behaviour for large t of the

auxiliary process (Y
(t)
s , s ≤ t).

3.2. Linear division rate: Absorption probability and convergence of the auxiliary

process. In what follows, we set Y
(t)
s = Y

(t)
t for all s ≥ t. As for the study of the process

along a lineage, we proceed by couplings of random processes several times in the proofs of
results stated in Sections 3.2 and 3.3.
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The next proposition is the analogue of Corollary 2.4 on the absorption of the auxiliary
process in finite time and its proof is very similar, except that we have to deal with time
dependencies. Let

τ−t (0) := inf{0 < s ≤ t : Y (t)
s = 0},

with the convention inf ∅ :=∞.

Proposition 3.3. Suppose that Assumptions C, E, F and G hold. Then points i) and iii)
of Corollary 2.4 hold with τ−t (0) in place of τ−(0).

Notice that in the current case, the assumptions of points ii) and iii) of Corollary 2.4 are
the same, because r > 0 on R∗+.

In the case where the absorption of the auxiliary process occurs with positive probability,
we are able to prove the convergence of the last part of the auxiliary process trajectory on
a time window of any size.

Proposition 3.4. Let T ≥ 0. Suppose that Assumptions C, E, F and G and Condition (A2)
hold. Assume further that

lim sup
x→∞

(
6σ2(x) + 5E

[
Z2
]
p(x)

x3

)
<

2α

5
E[Θ(1−Θ5)] (3.5)

and that E
[
Z6
]
< ∞. Then, there exist C, c > 0 and a probability measure Π on the

Borel σ-field of D ([0, T ],X ) endowed with the Skorokhod distance such that for all bounded
measurable function F : D ([0, T ],X )→ R and for all x ≥ 0,∣∣∣E [F (Y (t+T )

t+s , s ≤ T
) ∣∣∣Y (t+T )

0 = x
]
−Π(F )

∣∣∣ ≤ Ce−ct ‖F‖∞ x.
This convergence result allows us to establish a law of large numbers, linking asymptot-

ically the behaviour of a typical individual, given by the auxiliary process Y (t), with the
behaviour of the whole population. To use the results of [29], we need to consider an addi-
tional condition on the division rate. This condition is needed to get Many-to-One formulas
for the whole tree and forks (see [28, Proposition 3.5, Proposition 3.6]), which are used to
control the fluctuations of the population trajectories in the proof of [29, Corollary 3.4].

Assumption H. For all x ≥ 0,

lim
t→∞

∫ t

0
r(Xs)ds =∞, almost surely.

This assumption is satisfied for instance if β > 0. Note that in [29], this assumption is
also required for the proof of the convergence of the auxiliary process but a close look at the
proof shows that it is in fact not needed.

Theorem 3.5. Under the assumptions of Proposition 3.4 and Assumptions B and H, for all
bounded measurable function F : D([0, T ],X )→ R, for all x0, x1 ≥ 0, we have,∑

u∈Vt+T F
(
Xu
t+s, s ≤ T

)
Nt+T

− E
[
F
(
Y

(t+T )
t+s , s ≤ T

) ∣∣∣Y (t+T )
0 = x1

]
−−−−→
t→+∞

0 in L2(δx0),

where Nt := Card(Vt).

This result from [29] ensures that asymptotically, the trajectory of the traits of a sampling
along its ancestral lineage corresponds to the trajectory of the auxiliary process. Hence, the
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study of the asymptotic behaviour of the proportion of individuals satisfying some prop-
erties, such as the proportion of infected individuals, is reduced to the study of the time-
inhomogenous process Y . Notice that unfortunately, the conditions on p for Theorem 3.5 to
hold are restrictive, as p has to satisfy

lim sup
x→0+

p(x)

x
<∞, lim sup

x→∞

p(x)

x3
<∞ and xp′(x) ≥ p(x).

However, these conditions still cover a class of functions not studied in this context until
now (in particular χxψ lnω x, with χ ≥ 0, 1 < ψ ≤ 3, ω ≥ 0 (ω = 0 if ψ = 3)), and
include in particular the classical rate of positive jumps of CSBP (χx, χ ≥ 0). Moreover (see
Proposition 3.6) we can obtain results on moderate infection without Theorem 3.5. In these
cases the assumptions on p are much weaker.

3.3. Linear division rate: Moderate infection. We show that if the individual divi-
sion rate depends linearly on the individual’s trait, the infection stays moderate, and the
population may even recover under some assumptions, as stated in the next result.

Proposition 3.6. Suppose that Assumptions B, C, E, F, G and H hold, that g < β and that
condition (3.5) holds.

i) If either lim sup0+ σ
2(y)/y <∞ or E

[
Z6
]
<∞ and (A2) holds, then

lim
K→∞

lim
t→∞

P
(∑

u∈Vt 1{Xu
t >K}

Nt
> ε

)
= 0.

ii) If lim sup0+ σ
2(y)/y <∞, E

[
Z6
]
<∞, and (A2) holds, then∑

u∈Vt 1{Xu
t =0}

Nt
→ 1 in L2(δx0), (t→∞).

Notice that point ii) covers the classical diffusive function (σ2(x) = σ2x, σ > 0).
Proposition 3.6 extends the results of [6] to a class of division rates increasing with the

quantity of parasites. It is similar in spirit to Conjecture 5.1 in [6] in the case of birth rates
increasing with the quantity of parasites, but Bansaye and Tran considered a case where the
division rate is bounded, which is not our case. Moreover, we consider positive jumps and
various diffusive functions for the growth of the parasites.

3.4. Constant division rate: Long time behaviour of the infection. We now consider
the special case of a constant division rate for cells (r(x) ≡ β > 0) but keep the possibility
for the individual parasites’ growth rate g to depend on the quantity of parasites. In this
case we can observe moderate infections, but also cases where the quantity of parasites goes
to infinity with an exponential growth in a positive fraction of the cells.

When the function r is constant, the auxiliary process Y (t) follows a time homogeneous
SDE. Therefore, in this section, we drop the dependence in t and we denote by Y the auxiliary
process. More precisely, applying the results of Section 3.1 we obtain that Y is the unique
strong solution to the following SDE. For all s ≥ 0,

Ys = Y0 +

∫ s

0
g(Yu)Yudu+

∫ s

0

√
2σ2(Yu)dBu +

∫ s

0

∫ p(Yu− )

0

∫
R+

zQ̃(du, dx, dz)

+

∫ s

0

∫ 2β

0

∫ 1

0
(θ − 1)Yu−N(du, dz, dθ).

In other words, the auxiliary process has the same law as the process along a lineage with a
cell division rate multiplied by two (see [2, 6]).

Proposition 3.7. Suppose that Assumptions B, C, E hold, and that r(x) ≡ β > 0.
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i) If there exists η > 0 such that for x ≥ 0, g(x) + 2βE[ln Θ] > η, the function x 7→
(σ2(x) + p(x))/x is bounded and there exists ε1 > 0 such that∫

R+

z ln1+ε1(1 + z)π(dz) <∞,

then for ε > 0

lim inf
t→∞

E

[∑
u∈Vt 1{Xu

t >e
(η−ε)t}

Nt

]
> 0 and

{
lim sup
t→∞

∑
u∈Vt 1{Xu

t >e
(η−ε)t}

Nt

}
=
{
Y

(t)
t > 0,∀t ≥ 0

}
.

ii) If there exists η > 0 such that for x ≥ 0, g(x) + 2βE[ln Θ] < −η,∑
u∈Vt 1{Xu

t >ε}

Nt
→ 0 in probability, (t→∞).

iii) If Assumption (A2) holds and if there exist η > 0 and x0 ≥ 0 such that for x ≥ x0,
g(x) + 2βE[ln Θ] < −η, then∑

u∈Vt 1{Xu
t =0}

Nt
→ 1 a.s., (t→∞).

Proposition 3.7 extends Theorem 4.2 in [6] allowing for non constant parasite’s growth
rates, a general class of diffusive functions, and positive jumps.

4. Proofs

4.1. Proofs of Section 2.1.

Proof of Proposition 2.1. The proof is a direct application of Proposition 1 in [30]. First
according to their conditions (i) to (iv) on page 60, our parameters are admissible. Second,
we need to check that conditions (a), (b) and (c) in [30] are fulfilled.

In our case, condition (a) writes as follows: for any n ∈ N, there exists An <∞ such that
for any 0 ≤ x ≤ n, ∫ ∞

0

∫ 1

0

∣∣(θ − 1)x1{z≤r(x)}
∣∣ dzκ(dθ) ≤ An(1 + x).

But we have the equality∫ ∞
0

∫ 1

0

∣∣(θ − 1)x1{z≤r(x)}
∣∣ dzκ(dθ) =

1

2
xr(x),

and thus (a) holds, as r is continuous.
To satisfy condition (b), it is enough to check that for any n ∈ N there exists Bn < ∞

such that for 0 ≤ x ≤ y ≤ n,

|xg(x)−yg(y)|+
∫ ∞

0

∫ 1

0
(1−θ)

∣∣x1{u≤r(x)} − y1{u≤r(y)}
∣∣ duκ(dθ) ≤ Bn(y−x)

(
ln
(
(y − x)−1

)
+ 1
)
.

Indeed, the function φ : x 7→ x(ln (1/x) + 1) is concave and non-decreasing on [0, 1/e], and
satisfies

∫
0+ 1/φ =∞. Now we have the following series of equalities:∫ ∞

0

∣∣x1{u≤r(x)} − y1{u≤r(y)}
∣∣ du =∫ ∞

0

(
(y − x)1{u≤(r(x)∧r(y))} + y1{r(x)<u≤r(y)} + x1{r(y)<u≤r(x)}

)
du

= 1{r(x)<r(y)}(yr(y)− xr(x)) + 1{r(y)≤r(x)}(yr(y) + xr(x)− 2xr(y)).

This yields that condition (b) holds under Assumption C.
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Finally, let us focus on (c), which can be rewritten as follows: for any n ∈ N there exists
Dn <∞ such that for 0 ≤ x, y ≤ n,

|σ(x)−σ(y)|2+

∫ ∞
0

∫ ∞
0

(∣∣1u≤p(x)z − 1u≤p(y)z
∣∣ ∧ ∣∣1u≤p(x)z − 1u≤p(y)z

∣∣2)π(dz)du ≤ Dn|x−y|.

The first term fulfills the condition as σ is 1/2-Hölderian by Assumption A. The second term
is equal to∫ ∞

0
(z ∧ z2)π(dz)

∫ ∞
0

∣∣1u≤p(x) − 1u≤p(y)

∣∣ du =

(∫ ∞
0

(z ∧ z2)π(dz)

)
|p(x)− p(y)|.

This ends the proof, according to Assumption A. �

4.2. Proofs of Section 2.2. We first prove Theorem 2.3. As mentioned previously, the
proof is close to the one of [26, Theorem 2.3]. However, as we extend this theorem, several
steps of the proof are modified. For the sake of readability we provide the whole proof,
including parts which were done similarly in [26].

Proof of Theorem 2.3. We first focus on point i). Let n ∈ N be such that n ≥ 2 and let
0 < ε < b be such that ε < 1 and (2.4) holds for all u ≤ b. Let Tn = τ−(εn) ∧ τ+(b). By
assumption, we have for a > 1

ε1−a ≥ Eε
[
X1−a
Tn

exp

(∫ Tn

0
Ga (Xs) ds

)]
≥ Eε

[
X1−a
Tn

exp (−TnZ(Θ, εn)) 1{τ−(εn)<τ+(b)}
]
,

(4.1)

where
Z(Θ, εn) = ln((Θεn)−1)(f((Θεn)−1))−2

and Θ is a random variable distributed according to κ and independent of XT−n
. This bound

comes from the fact that x 7→ ln(1/x)f(1/x)−2 is a decreasing function and it also holds if
X reaches εn without jumping. Let

dn :=
− ln

(
ε(a−1)n/2

)
E [Z(Θ, εn)]

≥ f
(
(Θεn)−1

)2 (a− 1)/2
(
n ln ε−1

)
E [ln(Θ−1)] + n ln ε−1

→∞, (n→∞).

As a > 1, we have X1−a
Tn

1{τ−(εn)<τ+(b)} ≥ (εn)1−a1{τ−(εn)<τ+(b)} . Then, we get from (4.1),

ε1−a ≥ (εn)1−a Eε
[
exp (−dnZ(Θ, εn)) 1{τ−(εn)<τ+(b)∧dn}

]
≥ (εn)1−a E

[
exp

(
ln
(
ε(a−1)n/2

) Z(Θ, εn)

E [Z(Θ, εn)]

)]
Pε
(
τ−(εn) < τ+(b) ∧ dn

)
,

because Θ is independent of XT−n
. Using that for all α, δ > 0,

E
[
e
−α Z

E[Z]

]
≥ E

[
e
−α Z

E[Z] 1{Z≤δE[Z]}

]
≥ e−αδP (Z ≤ δE[Z]) ≥ e−αδ(1− δ−1)

yields for all δ > 1

ε1−a ≥ (1− δ−1)ε(1−a)nε(a−1)nδ/2Pε
(
τ−(εn) < τ+(b) ∧ dn

)
.

We thus get that for all 1 < δ < 2,

Pε
(
τ−(εn) < τ+(b) ∧ dn

)
≤ δ

δ − 1
ε(a−1)((2−δ)n−2)/2.

By the Borel-Cantelli Lemma, we have

Pε
(
τ−(εn) < τ+(b) ∧ dn i.o.

)
= 0, (4.2)

where i.o. stands for infinitely often. As a consequence we get that, Pε-a.s.,

τ−(εn) ≥ τ+(b) ∧ dn
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for n large enough. If there are infinitely many n so that

τ−(εn) ≥ dn, (4.3)

then we have τ−(0) =∞. If (4.3) holds for at most finitely many n, then by (4.2), we have
τ−(εn) > τ+(b) for all n large enough. We conclude that for all 0 < ε < b such that (2.4)
holds for all u ≤ b,

Pε
(
τ−(0) =∞ or τ+(b) < τ−(0)

)
= 1. (4.4)

We will now use a coupling to show that Pε(τ−(0) <∞) = 0. Let for N ∈ N,

r[0,N ] := sup
0≤x≤N

r(x),

(which is finite as r is a continuous function) and X̃ be the unique strong solution to

X̃t =X̃0 +

∫ t

0
g(X̃s)X̃sds+

∫ t

0

√
2σ2(X̃s)dBs +

∫ t

0

∫ p(X̃s− )

0

∫
R+

zQ̃(ds, dx, dz)

+

∫ t

0

∫ r[0,N ]

0

∫ 1

0
(θ − 1)X̃sN(ds, dz, dθ),

where the Brownian motion B and the Poisson random measures Q̃ and N are the same as
in (2.1). We will use four properties of this equation.

a) First it has a unique strong solution according to Proposition 2.1.

b) If X̃(1) and X̃(2) are two solutions with X̃
(1)
0 ≤ X̃

(2)
0 , then X̃

(1)
t ≤ X̃

(2)
t for any

positive t (because p is a nondecreasing function according to Assumption E0).

c) If X̃ is a solution with X̃0 = X0, then X̃t ≤ Xt for any t smaller than τ−(0)∧ τ+(N)
(using again Assumption E0).

d) Equation (4.4) holds also for X̃.

Our aim now is to prove that

Pε
(
τ̃−(0) <∞

)
= 0, (4.5)

where the τ̃ ’s are defined as the τ ’s in (2.2) and (2.3) but for the process X̃. Using the
coupling described in point c), it will imply that

Pε
(
τ+(N) ≤ τ−(0)

)
= 1,

and letting N tend to infinity, we will get

Pε
(
τ−(0) =∞

)
= 1.

Before proceeding to the proof of (4.5), let us notice that from coupling b) we have:

Eb

[
e−λτ̃

−(ε)1{τ̃−(ε)<∞}

]
≤ Eb

[
e−λτ̃

−(ε)1{τ̃−(ε)<∞}

]
∀ b ≤ b. (4.6)

Now the strategy to prove (4.5) will be to show that for any λ > 0

A(λ, ε) :=

∫ 1

0
Eθε

[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]
κ(dθ) = 0.

For any 0 < θ ≤ 1, (4.4) yields

Eθε
[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]
= Eθε

[
e−λτ̃

−(0)1{τ̃+(b)<τ̃−(0)<∞}

]
≤ Eθε

[
e−λτ̃

+(b)1{τ̃+(b)<τ̃−(0)}

]
Eb
[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]
,
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where the last inequality comes from the Markov property combined with (4.6). Moreover,
using again the Markov property, we have

Eb
[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]
= Eb

[
e−λτ̃

−(ε)1{τ̃−(ε)<∞}EXτ̃−(ε)

[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]]
.

The process can cross the level ε either because of the diffusion or because of a negative
jump. In both cases, Xτ̃−(ε) ≥ εΘ almost surely, where Θ is a random variable distributed

according to κ and independent of the process before time τ̃−(ε). Then, using again (4.6),

Eb
[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]
≤ Eb

[
e−λτ̃

−(ε)1{τ̃−(ε)<∞}

] ∫ 1

0
Eθε

[
e−λτ̃

−(0)1{τ̃−(0)<∞}

]
κ(dθ).

We thus get

A(λ, ε) ≤Eb
[
e−λτ̃

−(ε)1{τ̃−(ε)<∞}

]
A(λ, ε).

As

Eb
[
e−λτ̃

−(ε)1{τ̃−(ε)<∞}

]
< 1,

we conclude that A(λ, ε) = 0, which ends the proof of point i).

Let us now focus on point ii). Let 0 < a < 1, η > 0, δ < (3 − 2a)−1 and ε < e−(1−δ)−1

such that (4.14) is satisfied. Let T = τ−(ε1+δ) ∧ τ+(ε1−δ). By Assumption D, for all z > 0
such that ε1+δ < z < ε1−δ,

z1−a ≥ Ez

[(
Xτ+(ε1−δ)

)1−a
exp

(∫ τ+(ε1−δ)

0
Ga (Xu) du

)
1{τ+(ε1−δ)<τ−(ε1+δ)}

]
≥ ε(1−δ)(1−a)Pz

(
τ+(ε1−δ) < τ−(ε1+δ)

)
,

where we have used that if (2.5) holds, then Ga(z) ≥ 0 for z small enough. Therefore,

Pz
(
τ+(ε1−δ) < τ−(ε1+δ)

)
≤ ε(δ−1)(1−a)z1−a. (4.7)

Similarly, for every t ≥ 0

z1−a ≥ Ez
[
(Xt)

1−a exp

(∫ t

0
Ga (Xs) ds

)
1{τ+(ε1−δ)=τ−(ε1+δ)=∞}

]
≥ ε(1+δ)(1−a)et ln(ε−(1−δ)) ln(ln(ε−(1−δ)))1+ηPz

(
τ+(ε1−δ) = τ−(ε1+δ) =∞

)
,

so that

Pz
(
τ+(ε1−δ) = τ−(ε1+δ) =∞

)
≤ z1−aε−(1+δ)(1−a) exp

(
−t ln(εδ−1) ln(ln(ε−(1−δ)))1+η

)
.

Letting t tend to infinity yields

Pz
(
τ+(ε1−δ) = τ−(ε1+δ) =∞

)
= 0. (4.8)

Let

t(ε) :=
(

ln(ln(ε−(1−δ)))
)−1−η

. (4.9)
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We have, using (2.5),

z1−a ≥Ez

[(
Xτ−(ε1+δ)

)1−a
exp

(∫ τ−(ε1+δ)

0
Ga (Xu) du

)
1{t(ε)<τ−(ε1+δ)<τ+(ε1−δ)}

]

≥ exp

[
ln(ε−(1−δ))

(
ln(ln(ε−(1−δ)))

)1+η
t(ε)

]
Ez
[(
Xτ−(ε1+δ)

)1−a
1{t(ε)<τ−(ε1+δ)<τ+(ε1−δ)}

]
=ε−(1−δ)Ez

[(
Xτ−(ε1+δ)

)1−a
1{t(ε)<τ−(ε1+δ)<τ+(ε1−δ)}

]
≥ε−(1−δ)ε(1+δ)(1−a)E[Θ1−a]Pz

(
t(ε) < τ−(ε1+δ) < τ+(ε1−δ)

)
,

where we used as before that for all y ≥ 0, Xτ−(y) ≥ yΘ almost surely where Θ is a random

variable distributed according to κ independent of the process before time τ−(y). We deduce,

Pz
(
t(ε) < τ−(ε1+δ) < τ+(ε1−δ)

)
≤ E[Θ1−a]−1εa+(a−2)δz1−a. (4.10)

Combining (4.7), (4.8) and (4.10), we get for all z > 0 such that ε1+δ < z < ε1−δ,

Pz
(
τ−(ε1+δ) > t(ε)

)
≤ E[Θ1−a]−1εa+(a−2)δz1−a + ε(δ−1)(1−a)z1−a

= ε(δ−1)(1−a)z1−a
(
E[Θ1−a]−1ε1−δ(3−2a) + 1

)
≤
(
E[Θ1−a]−1 + 1

) (
ε(δ−1)z

)1−a
, (4.11)

as by assumption δ is smaller than (3− 2a)−1. By the strong Markov property,

Pz

(
m⋂
n=0

{
τ−(ε(1+δ)n) <∞, τ−(ε(1+δ)n+1

) ◦ θτ−(ε(1+δ)
n

) ≤ t(ε
(1+δ)n)

})
(4.12)

= Ez

[
m∏
n=0

PX
τ−(ε(1+δ)n)

(
τ−(ε(1+δ)n+1

) ≤ t(ε(1+δ)n)
)]

,

where θs : D(R+,R+)→ D(R+,R+) is the shift operator (θsX)(t) = X(s+ t).
There are two possibilities. If

Xτ−(ε(1+δ)
n

) > ε(1+δ)n+1
,

then we can apply (4.11) with ε(1+δ)n instead of ε, and we get

PX
τ−(ε(1+δ)

n
)

(
τ−(ε(1+δ)n+1

) ≤ t(ε(1+δ)n)
)
≥ 1−

(
E[Θ1−a]−1 + 1

) (
ε(δ−1)(1+δ)nXτ−(ε(1+δ)

n
)

)1−a

≥ 1−
(
E[Θ1−a]−1 + 1

) (
ε(δ−1)(1+δ)nε(1+δ)n

)1−a

= 1−
(
E[Θ1−a]−1 + 1

) (
εδ(1+δ)n

)1−a
.

Else if

Xτ−(ε(1+δ)
n

) ≤ ε
(1+δ)n+1

,

then

PX
τ−(ε(1+δ)

n
)

(
τ−(ε(1+δ)n+1

) ≤ t(ε(1+δ)n)
)

= 1 ≥ 1−
(
E[Θ1−a]−1 + 1

) (
εδ(1+δ)n

)1−a
.
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Combining this inequality with (4.12), we thus obtain

Pz

(
m⋂
n=0

{τ−(ε(1+δ)n) <∞, τ−(ε(1+δ)n+1
) ◦ θτ−(ε(1+δ)

n)) ≤ t(ε
(1+δ)n)}

)

≥
m∏
n=0

(
1−

(
E[Θ1−a]−1 + 1

)
ε(1−a)δ(1+δ)n

)
≥

m∏
n=0

e−2(E[Θ1−a]−1+1)ε(1−a)δ(1+δ)
n

= e−2(E[Θ1−a]−1+1)
∑m
n=0 ε

(1−a)δ(1+δ)n
(4.13)

where the last inequality holds for

ε <

(
ln 2

2

)1/δ(1−a)( 1

E[Θ1−a]−1 + 1

)1/δ(1−a)

, (4.14)

because x 7→ 1− x− e−2x is positive for x ≤ ln(2)/2. Next,

m∑
n=0

ε(1−a)δ(1+δ)n = ε(1−a)δ
m∑
n=0

ε(1−a)δ((1+δ)n−1) ≤ ε(1−a)δ
m∑
n=0

ε(1−a)δ2n ≤ ε(1−a)δ

1− ε(1−a)δ2
.

(4.15)

Combining (4.13) and (4.15) and letting m→∞, we get by monotone convergence

Pz

( ∞⋂
n=0

{
τ−(ε(1+δ)n) <∞, τ−(ε(1+δ)n+1

) ◦ θτ−(ε(1+δ)
n)) ≤ t(ε

(1+δ)n)
})

≥ e−2(E[Θ1−a]−1+1)ε(1−a)δ(1−ε(1−a)δ
2
)−1
.

Since under Pz,

τ−(0) =
∞∑
n=0

τ−(ε(1+δ)n+1
) ◦ θτ−(ε(1+δ)

n
),

then

Pz

(
τ−(0)− ≤

∞∑
n=0

t(ε(1+δ)n)

)
≥ e−2(E[Θ1−a]−1+1)ε(1−a)δ(1−ε(1−a)δ

2
)−1
.

Notice that for εn := ε(1+δ)n ,

t(εn) =
(

ln(ln(ε−(1−δ)(1+δ)n))
)−(1+η)

=
(
n ln(1 + δ) + ln(1− δ) + ln(ln(ε−1)

)−(1+η)
.

In particular, for large n,

t(εn) ∼ (n ln(1 + δ))−(1+η) .

This ensures that
∞∑
n=1

t(εn) <∞.

We thus have

Pz
(
τ−(0)− <∞

)
≥ e−2(E[Θ1−a]−1+1)ε(1−a)δ(1−ε(1−a)δ

2
)−1

> 0.

This proves point ii). �
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We now prove that the functions Ga defined in (2.6) satisfy the conditions of Theorem
2.3. Let us first prove that under Assumption E, the part corresponding to positive jumps
(with associated measure π) in the definition of Ga is bounded for small x. Note that by
Taylor’s formula with integral remainder (see Lemma 2.1 in [26]), we have

p(x)

∫
R+

(
(zx−1 + 1)1−a − 1− (1− a)zx−1

)
π(dz)

= a(a− 1)p(x)x−2

∫
R+

z2

(∫ 1

0
(1 + zx−1v)−1−a(1− v)dv

)
π(dz).

To show that this term stays bounded in a neighbourhood of 0, we divide the integral into
two parts. First

lim sup
0+

(
p(x)x−2

∫ x

0
z2

(∫ 1

0
(1 + zx−1v)−1−a(1− v)dv

)
π(dz)

)
≤ lim sup

0+

(
p(x)x−1

∫ x

0

z

x
zπ(dz)

)
≤
(

lim sup
0+

p(x)x−1

)∫
R+

zπ(dz) <∞,

where we used Assumption E. For the second part, we have

lim sup
0+

(
p(x)x−2

∫ ∞
x

z2

(∫ 1

0
(1 + zx−1v)−1−a(1− v)dv

)
π(dz)

)
≤ lim sup

0+

(
p(x)x−2

∫ ∞
x

z2

[(∫ x/z

0
dv

)
+

(∫ 1

x/z
(1 + zx−1v)−1−adv

)]
π(dz)

)

= lim sup
0+

(
p(x)x−2

∫ ∞
x

z2
[x
z
− x

az

[
(1 + zx−1v)−a

]1
x/z

]
π(dz)

)
= lim sup

0+

(
p(x)x−2

∫ ∞
x

z2
[x
z

+
x

az

[
2−a − (1 + zx−1)−a

]]
π(dz)

)
≤
(

lim sup
0+

p(x)x−1

)∫ ∞
0

z

[
1 +

1

a
2−a
]
π(dz) <∞.

This allows us to prove the following Lemma.

Lemma 4.1. Suppose that Assumption C and E hold. Let t ≥ 0. For all b > ε > c > 0, let
T = τ−(c) ∧ τ+(b). Then, for all a ∈ A, the process

Z
(a)
t∧T := (Xt∧T )1−a exp

(∫ t∧T

0
Ga (Xs) ds

)

is a martingale and

Eε
[
X1−a
T exp

(∫ T

0
Ga (Xs) ds

)]
≤ ε1−a. (4.16)



LONG TIME BEHAVIOUR OF BRANCHING MARKOV PROCESSES 21

Proof of Lemma 4.1. We follow the ideas of the proof of [26, Lemma 5.1]. Let a ∈ A.
Applying Itô’s formula with jumps (see for instance [19, Theorem 5.1] , we have for all t ≥ 0

X1−a
t =X1−a

0 +

∫ t

0

[
(1− a)g(Xs)X

1−a
s − (1− a)aX−a−1

s σ2 (Xs)
]
ds

+

∫ t

0

∫
R+

p(Xs)((z +Xs)
1−a −X1−a

s − (1− a)zX−as )π(dz)ds

+

∫ t

0

∫ r(Xs− )

0

∫ 1

0

(
θ1−a − 1

)
X1−a
s− N(ds, du, dθ)

+ (1− a)

∫ t

0
X1−a
s

√
2σ2(Xs)dBs +

∫ t

0

∫ p(Xs− )

0

∫
R+

[
(Xs− + z)1−a −X1−a

s−

]
Q̃(ds, dθ, dz)

= X1−a
0 −

∫ t

0
X1−a
s Ga(Xs)ds+Mt,

where Ga has been defined in (2.6) and (Mt, t ≥ 0) is a local martingale. Next, using inte-
gration by parts we get

Z
(a)
t∧T =X1−a

0 +

∫ t∧T

0
Ga (Xs)Zsds+

∫ t∧T

0
exp

(∫ s

0
Ga (Xr) dr

)
d
[
X1−a]

s
,

so that
(
Z

(a)
t∧T , t ≥ 0

)
is a local martingale. Similarly to [26], we have

Eε
[
sup
s≤t

(Xs∧T )1−a exp

(∫ s∧T

0
Ga (Xr) dr

)]
<∞,

using Assumptions C and E, so that from [34] p. 38,
(
Z

(a)
t∧T , t ≥ 0

)
is a martingale. Finally,

(4.16) follows by Fatou’s lemma as in [26]. �

From Lemma 4.1, we know that the set of functions Ga introduced in (2.6) satisfies
Assumption D. Next, notice that Assumption (2.7) implies (2.4) and (2.8) implies (2.5).
This proves points i) and ii) of Corollary 2.4. We now prove point iii).

Proof of Corollary 2.4 iii). Assume that for any positive x, r(x) + σ(x) > 0. Let x0 ≥ 0 be
such that

Py(τ−(0) <∞) > 0, ∀y ≤ x0.

Let y > x0. If r(y) > 0, there exists η1 > 0 such that r stays positive on [y−η1, y+η1] as it is
a continuous function according to Assumption C. Hence, for η2 > 0 small enough, starting
from y, the intersection of the following events happen with positive probability during the
time interval [0, η2]:

• the sum of the positive jumps is smaller than η1/3:∫ η2

0

∫ p(Xs− )

0
zQ(ds, dx, dz) < η1/3,

due to Assumption E,
• the integral with respect to the compensator of the point process with positive jumps

has an absolute value smaller than η1/3:∫ η2

0
p(Xs−)zdsπ(dz) < η1/3,

due to Assumption E,
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• the continuous variation due to g and σ is smaller than η1/3:∫ η2

0
g(Xs)ds+ sup

s≤η2

∣∣∣∣∫ s

0

√
2σ2(Xs)dBs

∣∣∣∣ ≤ η1/3,

• there is a negative jump whose size θ satisfies θ ≤ x0/(y + η1).

As a consequence,

Py(Xη2 ≤ x0) > 0,

and using the Markov property, we obtain

Py(τ−(0) <∞) > 0.

Now assume that r(y) = 0 but σ(y) > 0. As σ is continuous, if σ(z) > 0 for z ∈ [x0, y] then

Py(Xs ≤ x0) > 0, ∀s > 0

thanks to the diffusion and we end the proof by applying again the Markov property. Else,
if σ is only positive on an interval of the form (x1, y] with x0 < x1 < y, then by continuity of
r and σ given by Assumption A, r(x1) > 0 and we are back to the first case. We thus have
proven that

Py(τ−(0) <∞) > 0, ∀y ≥ 0, (4.17)

as soon as r + σ > 0 on R∗+.
Now, notice that (4.17) implies that for all y > 0, there exists Ky > 0 such that

Py(τ−(0) < Ky) > 0.

Let us define K0 = infy>0Ky. To obtain a contradiction, we suppose that K0 > 0. It implies
in particular that for any y > 0,

Py(X2K0/3 = 0) = 0,

and as a consequence, for any y > 0, the Markov property yields

Py(X4K0/3 = 0) = Ey
[
PX2K0/3

(
X2K0/3 = 0

)]
= 0,

which is a contradiction. Therefore, K0 = 0 so that for any s > 0, we can find xs/2 such that

Pxs/2(τ−(0) < s/2) > 0.

As X cannot reach 0 by a jump, we know that there exists 0 < y ≤ xs/2 such that

Py(τ−(0) < s/2) > 0 and σ(y) > 0.

Now let x > 0. As r + σ > 0 on R∗+ and σ(y) > 0 similar arguments as previously imply

Px(∃v < s/2, Xv = ys/2) > 0.

The strong Markov property allows us to conclude

Px(τ−(0) < s) > 0.

This ends the proof of iii). �

We now turn to the proof of Theorem 2.5. First, we prove that if the division mechanism
of the cells is stronger than the growth of the parasites in the sense of (B0) for some x0 > 0,
then the stopping times Ti(x0), defined in (2.10), are finite a.s. for all i ≥ 0.

Lemma 4.2. Under Assumptions C and E, and if x0 > 0 is such that (B0) is satisfied for
some η > 0, we have E[Ti(x0)] <∞ for all i ≥ 0.



LONG TIME BEHAVIOUR OF BRANCHING MARKOV PROCESSES 23

Proof of Lemma 4.2. To simplify notations, we write Ti = Ti(x0). According to the strong
Markov property, we only have to prove that E(T1) <∞. We consider two cases.

i) If Xt0 ≤ x0 then T1 = t0. Hence E(T11{Xt0≤x0}) ≤ t0 <∞.

ii) Assume Xt0 > x0. By Itô’s formula, we have

ln(Xt∧T1) = ln(Xt0) +

∫ t∧T1

t0

g(Xs)ds−
∫ t∧T1

t0

σ2(Xs)

X2
s

ds+Mt∧T1

+

∫ t∧T1

t0

p(Xs) [ln(Xs + z)− ln(Xs)− z/Xs]π(dz)ds+

∫ t∧T1

t0

r(Xs)E [ln Θ] ds,

where (Ms∧T1 , s ≥ t0) is a martingale with null expectation independent of Ft0 . Notice that
by the Mean Value Theorem, ln(x+ z)− ln(x)− z/x ≤ 0 for all x, z > 0. Therefore, for all
t ≥ t0

ln(Xt∧T1)− ln(Xt0) ≤
∫ t∧T1

t0

(g(Xs) + r(Xs)E [ln(Θ)]) +Mt∧T1

≤ −η (t ∧ T1 − t0) +Mt∧T1 (4.18)

using (B0). But at time T1, X may be equal to x0 if there is no jump, or equal to XT−1
Θ

where XT−1
≥ x0, Θ is distributed according to κ, and is independent of XT−1

and Xt0 . As a
consequence,

ln

(
Xt∧T1
Xt0

)
1{Xt0≥x0} ≥ ln

(
Θx0

Xt0

)
1{Xt0≥x0}.

Thus, combining this last inequality with (4.18), we get that

E[(T1 ∧ t)1{Xt0≥x0}] ≤
1

η
E
[
ln

(
Xt0

Θx0

)
1{Xt0≥x0}

]
+ t0 <∞,

and we obtain the result letting t tend to infinity. �

Proof of Theorem 2.5. Apart from the proof of Equation (2.13), the proof of of Theorem 2.5
follows directly from Lemma 4.2 and [8, Theorem 7.1.4]. It is very similar to the proof of
the second point of [18, Theorem 1] for instance and we refer the reader to this paper for
details. Equality (2.12) is obtained by taking expectation in (2.1).

Let us now prove (2.13). Let x0 > 0 such that (B0) is satisfied for some η > 0 and let
d > 0 be such that inf0≤y≤x0+d r(y) + σ(x) > 0 for all x > 0. In order to control uniformly
the extinction probability for any initial state in the interval [0, x0 + d], we first introduce a

coupling with a process (X̃t, t ≥ 0) defined as follows: X̃ is the unique strong solution to the
SDE

X̃t = X0 + ḡ

∫ t

0
X̃sds+

∫ t

0

√
2σ2(X̃s)dBs +

∫ t

0

∫ p(X̃s− )

0

∫
R+

zQ̃(ds, dx, dz)

+

∫ t

0

∫ r

0

∫ 1

0
(θ − 1)X̃sN(ds, dz, dθ),

where

ḡ := sup
0≤x≤x0+d

g(x), r := inf
0≤x≤x0+d

r(x),

are finite according to Assumption A, and B, Q̃ and N are the same as in (2.1). For y ≥ 0,
let us introduce

Sy := inf{s ≥ 0, Xs > y} and S̃y := inf{s ≥ 0, X̃s > y}.
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Then, using that p is an increasing function (consequence of Assumption E), for any t ≤ S̃x0+d

we have Xt ≤ X̃t. We obtain in particular for any x ≤ x0 and for any t ≥ 0

Px(Sx0+d > t) ≥ Px(S̃x0+d > t).

Finally, notice that if x1 ≤ x2 ≤ x0, for any t ≥ 0,

Px2(S̃x0+d > t) ≤ Px1(S̃x0+d > t)

because the division rate r is independent of the process current value and p is an increasing
function. Hence we deduce that for all t0 ≥ 0,

inf
0≤x≤x0

Px(Xt0 = 0) ≥ Px0(X̃t0 = 0, S̃x0+d > t0). (4.19)

We will now prove that for every t0 > 0, there exists α(t0) > 0 such that

Px0(X̃t0 = 0, S̃x0+d > t0) = α(t0).

First, note that we can apply Corollary 2.4 iii) because by assumption r + σ(x) > 0 on R+.

Therefore, for any x > 0, t0 > 0, Px(X̃t0 = 0) > 0. Next, we have

0 < Px(X̃t0 = 0) = Px0(X̃t0 = 0, S̃x0+d > t0) + Px0(X̃t0 = 0, S̃x0+d ≤ t0).

Suppose, to derive a contradiction, that

{X̃t0 = 0|X0 = x0} = {X̃t0 = 0, S̃x0+d ≤ t0|X0 = x0}.

This implies

Px0(X̃t0 = 0) = Px0(X̃t0 = 0, S̃x0+d ≤ t0)

≤ Px0(X̃
S̃x0+d+t0

= 0, S̃x0+d ≤ t0) ≤ Px0(S̃x0+d ≤ t0)Px0+d(X̃t0 = 0)

using the strong Markov property and that P
X̃
S̃x0+d

(X̃t0 = 0) ≤ Px0+d(X̃t0 = 0). Finally,

using again that X̃ is increasing with its initial value and that its division rate is larger than
a positive constant, we get

Px0(X̃t0 = 0) ≤ Px0(S̃x0+d ≤ t0)Px0(X̃t0 = 0) < Px0(X̃t0 = 0),

which yields a contradiction. Therefore,

Px0(X̃t0 = 0, S̃x0+d > t0) > 0

and we deduce from (4.19) that for any t0 ≥ 0 there exists α(t0) > 0 such that,

inf
0≤x≤x0

Px(Xt0 = 0) ≥ α(t0). (4.20)

By the strong Markov property and (4.20), we get for all x ≥ 0

Px
(
XTi+t0 = 0

∣∣(Xt, t ≤ Ti), Ti <∞
)
≥ α(t0).

Applying Lemma 4.2 and the strong Markov property, we deduce that for any x ≥ 0,

Px (Xt > 0, ∀ t ≥ 0) ≤ Px (∀i ≥ 0, XTi+t0 > 0) = Px (∀i ≥ 0, XTi+t0 > 0, Ti <∞) = 0.

This concludes the proof. �
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4.3. Proofs of Section 2.3.

Proof of Proposition 2.6. Let us introduce the following time change:

Xt = Y∫ t
0 r(Xs)ds

. (4.21)

According to Theorem 1.4 in Section 6 in [11], there is a version of X satisfying (4.21) for a
process Y that is a solution of the martingale problem with associated generator

GY f(x) =
xg(x)

r(x)
f ′(x) +

σ2(x)

r(x)
f ′′(x) +

∫ 1

0
(f(θx)− f(x))κ(dθ)

+
p(x)

r(x)

∫
(f(x+ z)− f(x)− zf ′(x))π(dz),

and is a weak solution to

Yt =

∫ t

0

Ysg(Ys)

r(Ys)
ds+

√
2σ2(Ys)

r(Ys)
dBs +

∫ t

0

∫ 1

0

∫ 1

0
(θ − 1)Ys−N(ds, dz, dθ)

+

∫ t

0

∫ p(Ys− )/r(Ys− )

0

∫
R+

zQ̃(ds, dx, dz), (4.22)

where we choose on purpose the same Poisson Point measures as in the definition of X in
(2.1). In fact, as (4.22) admits a unique strong solution (see the proof of Proposition 2.1), Y
is even pathwise unique. Now let us introduce the processes (Kt, t ≥ 0) and (Zt, t ≥ 0) via

Kt :=

∫ t

0

g(Ys)

r(Ys)
ds+

∫ t

0

∫ 1

0

∫ 1

0
ln θN(ds, dz, dθ)

and

Zt := Yte
−Kt .

Then an application of Itô’s Formula with jumps gives

Zt = Y0 +

∫ t

0
e−Ks

√
2σ2(Ys)

r(Ys)
dBs +

∫ t

0

∫ p(Ys− )/r(Ys− )

0

∫
R+

e−Ks−zQ̃(ds, dx, dz).

Hence (Zt, t ≥ 0) is a non-negative local martingale. In particular it is a non-negative
supermartingale and there exists a finite random variable W such that

Yte
−Kt = W, a.s., (t→∞). (4.23)

Under the assumptions of point i), K is smaller than a Lévy process with drift −η. As a
consequence, e−Kt goes to +∞, and we deduce from (4.23) that Y goes to 0. As by assump-

tion
∫ t

0 r(Xs)ds ≥ rt, we deduce from the time change (4.21) that X goes to 0.

We turn to the proof of ii) and consider the associated assumptions. In this case, K is
smaller than an oscillating Lévy process, and we have lim inft→∞Kt = −∞. This implies
lim inft→∞ Yt = 0. Again, we deduce from the time change (4.21) that lim inft→∞Xt = 0.

Let us now prove iii) as well as point iii) of Corollary 2.7. We use arguments similar
to the ones needed to prove Corollary 2 in [3]. As we are in a more general setting, we
need to adapt several of these arguments. Most adaptations are obtained by couplings with
well-chosen processes.

We denote by M a finite bound of the function x 7→ (σ2(x)+p(x))/(xr(x)). The first step
consists in showing that P(W > 0|K) > 0. To this aim, we look for a function ṽt(s, λ,K, Y ),
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differentiable with respect to the variable s, such that F (s, Zs) is a martingale conditionally
on K = (Ks, s ≥ 0), where

F (s, x) := exp{−xṽt(s, λ,K, Y )}.

By an application of Itô’s Formula with jumps, similarly as in Equation (2.8) in [3], we obtain
that ṽt has to satisfy for every s ≤ t,

∂

∂s
ṽt(s, λ,K, Y ) = eKsψ̃0

(
ṽt(s, λ,K, Y )e−Ks , Ys

)
, ṽt(t, λ,K, Y ) = λ, (4.24)

where

ψ̃0(φ, x) =
σ2(x)

xr(x)
φ2 +

p(x)

xr(x)

∫ ∞
0

(
e−φz − 1 + φz

)
π(dz). (4.25)

In particular

Ey
[
e−λZt

∣∣∣K] = e−yṽt(0,λ,K,Y ). (4.26)

Let us now introduce a function vt(s, λ,K), differentiable with respect to the variable s,
and satisfying.

∂

∂s
vt(s, λ,K) = eKsψ0

(
vt(s, λ,K)e−Ks

)
, vt(t, λ,K) = λ,

where

ψ0(φ) = M

(
φ2 +

∫ ∞
0

(
e−φz − 1 + φz

)
π(dz)

)
.

Then for every λ, x ≥ 0,

ψ̃0(λ, x) ≤ ψ0(λ)

and as a consequence, for all s ≤ t, λ > 0

vt(s, λ,K) ≤ ṽt(s, λ,K, Y ).

Combining this last inequality with (4.26), we obtain that

Ey
[
e−λZt

∣∣∣K] ≤ e−yvt(0,λ,K).

Taking λ = 1 and letting t go to infinity we get

Ey
[
e−W

∣∣∣K] ≤ e−yv∞(0,1,K) < 1,

where the last inequality comes from [3] (see the proof of Corollary 2 on page 7). This allows
us to conclude that

P(W > 0|K) > 0.

Under the assumptions of point iii) K is larger than a Lévy process with drift η and as a
consequence, e−Kt goes to 0. From (4.23) and the previous inequality, we deduce that

lim inf
t→∞

Yt =∞

with positive probability. In particular, this implies that

lim inf
t→∞

Xt = lim inf
t→∞

Y∫ t
0 r(Xs)ds

≥ lim inf
t→∞

Yt > 0

with positive probability. As
∫ t

0 r(Xs)ds ≥ rt, we also obtain (2.14). �
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Proof of Corollary 2.7. Point iii) has been proven with point iii) of Proposition 2.6, we thus
focus on points i) and ii). The idea of the proof is to compare the survival probability of X
with the survival probability of a Feller diffusion with jumps, whose asymptotic behaviour
has been studied in [3].

Let us recall the definitions of ṽ and ψ̃0 in (4.24) and (4.25), respectively. Now, according
to (B1), infx≥0 r(x) > 0 so that by assumption, infx≥0 σ

2(x)/(xr(x)) > 0. Therefore, there
exists a > 0 such that for every φ, x ≥ 0,

ψ̃0(φ, x) ≥ aφ2.

Hence, if we introduce v̄ as the solution to

∂

∂s
v̄t(s, λ,K) = ae−Ks (v̄t(s, λ,K))2 , v̄t(t, λ,K) = λ, (4.27)

we obtain that for all s ≤ t, λ > 0,

v̄t(s, λ,K) ≥ ṽt(s, λ,K, Y ),

implying, using (4.26),

Ey
[
e−λZt

∣∣∣K] ≥ e−yv̄t(0,λ,K).

Letting λ go to infinity yields

Py (Yt = 0|K) = Py (Zt = 0|K) ≥ e−yv̄t(0,∞,K).

But (4.27) has an explicit solution, and

v̄t(0,∞,K) =

(
a

∫ t

0
e−Kudu

)−1

.

We thus deduce that for any t ≥ 0,

Py (Yt > 0) ≤ 1− E
[
e−y(a

∫ t
0 e
−Kudu)−1

]
.

A direct application of [3, Theorem 7] with F (x) = 1−e−y(ax)−1
gives the long time behaviour

of the right hand side of the previous inequality. Finally,

Py (Xt > 0) = Py
(
Y∫ t

0 r(Xs)ds
> 0
)
≤ Py

(
Yrt > 0

)
≤ 1− E

[
e−y(a

∫ rt
0 e−Ksds)−1

]
.

�

4.4. Proofs of Section 3.1.

Proof of Proposition 3.1. In this section, we provide the proof of the proposition in the case
g 6= β and we refer the reader to Appendix A for the proof in the case g = β. The proof is
a direct application of [30, Proposition 1]. Notice that in the statement of [30, Proposition
1], the functions b, g and h do not depend on time, whereas it is the case of our process.
However this additional dependence does not bring any modification to the proofs (which
are mostly derived in the earlier paper [13]). First according to their conditions (i) to (iv)
on page 60, our parameters are admissible. Second, we need to check that conditions (a),
(b) and (c) are fulfilled.

In our case, condition (a) writes as follows: for any n ∈ N, there exists An <∞ such that
for any 0 ≤ x ≤ n, ∫ 1

0

∫ ∞
0

∣∣(θ − 1)x1{z≤f2(x,s,θ)}
∣∣ dzκ(dθ) ≤ An(1 + x).

We have for any 0 ≤ x ≤ n∫ 1

0

∫ ∞
0

∣∣(θ − 1)x1{z≤f2(x,s,θ)}
∣∣ dzκ(dθ) =

∫ 1

0
2(1− θ)x(αx+ β)κ(dθ) ≤ n(αn+ β),
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and thus (a) holds. Now, to satisfy condition (b), it is enough to check that for any n ∈ N,
there exists Bn(t) <∞ such that for 0 ≤ s ≤ t and 0 ≤ x ≤ y ≤ n,

|xf1(x, s)− yf1(y, s)|+
∫ ∞

0

∫ 1

0
(1− θ)

∣∣x1{u≤f2(x,s)} − y1{u≤f2(y,s)}
∣∣ duκ(dθ) ≤ Bn(t)|y − x|.

First, we have

xf1(x, s) = gx+ F (x)
α
(
e(g−β)s − 1

)
g − β + αx

(
e(g−β)s − 1

) ,
where F (x) := 2σ2(x) + E

[
Z2
]
p(x). For 0 ≤ x, y ≤ n,∣∣∣∣∣ F (x)

g − β + αx
(
e(g−β)s − 1

) − F (y)

g − β + αy
(
e(g−β)s − 1

)∣∣∣∣∣
≤

∣∣∣∣∣(F (x)− F (y))(g − β) + α
(
e(g−β)s − 1

)
(F (x)y − F (y)x)(

g − β + αy
(
e(g−β)s − 1

)) (
g − β + αx

(
e(g−β)s − 1

)) ∣∣∣∣∣
≤ 2
|σ(x)− σ(y)|2

|g − β|
+ E

[
Z2
] |p(x)− p(y)|
|g − β|

+

∣∣∣∣∣α
(
e(g−β)s − 1

)
(g − β)2

∣∣∣∣∣ |F (x)y − F (y)x|

≤ 2
|σ(x)− σ(y)|2

|g − β|
+E

[
Z2
] |p(x)− p(y)|
|g − β|

+
α
(
e(g−β)t + 1

)
(g − β)2

(F (x)|y−x|+ |F (x)− F (y)|x).

Therefore, using Assumption A, there exists Bn,1(t) > 0 such that∣∣∣∣∣F (x)
α
(
e(g−β)s − 1

)
g − β + αx

(
e(g−β)s − 1

) − F (y)
α
(
e(g−β)s − 1

)
g − β + αy

(
e(g−β)s − 1

)∣∣∣∣∣ ≤ Bn,1(t)|x− y|.

To prove that (b) holds, it remains to prove that for any n ∈ N, there exists Bn,2(t) < ∞
such that for all 0 ≤ x ≤ y ≤ n, and 0 ≤ s ≤ t,∫ 1

0

∫ ∞
0

(1− θ)
∣∣x1{u≤f2(x,s,θ)} − y1{u≤f2(y,s,θ)}

∣∣ duκ(dθ) ≤ Bn,2(t)|y − x|.

But for any |x|, |y| ≤ n,∣∣x1u≤f2(x,s,θ) − y1u≤f2(y,s,θ)

∣∣ ≤ n ∣∣1u≤f2(x,s,θ) − 1u≤f2(y,s,θ)

∣∣+ |x− y|1u≤f2(y,s,θ).

Hence∫ ∞
0

∣∣x1u≤f2(x,s,θ) − y1u≤f2(y,s,θ)

∣∣ du ≤ n|f2(x, s, θ)− f2(y, s, θ))|+ |x− y|f2(y, s, θ).

Next,

|f2(x, s, θ)− f2(y, s, θ))|

≤ 2

∣∣∣∣∣(αx+ β)
g − β + αθx

(
e(g−β)s − 1

)
g − β + αx

(
e(g−β)s − 1

) − (αy + β)
g − β + αθy

(
e(g−β)s − 1

)
g − β + αy

(
e(g−β)s − 1

) ∣∣∣∣∣
≤ 2α|x− y|+ 2αβ

(
e|g−β|t − 1

)
|x− y|,

and ∫ ∞
0

∣∣x1u≤f2(x,s,θ) − y1u≤f2(y,s,θ)

∣∣ ≤ Bn,2(t)|x− y|,

where Bn,2(t) = 2α + 2αβ
(
e|g−β|t − 1

)
+ 2(αn + β) and condition (b) holds with Bn(t) =

g +Bn,1(t) + 1/2Bn,2(t).
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It remains to check that (c) is satisfied i.e. for all 0 ≤ s ≤ t, z ≥ 0 and u ≥ 0 that
x 7→ x + h(x, s, z, u) is nondecreasing, where h(x, s, z, u) = z1{u≤f3(x,s,z)} and that there
exists Cn(t) such that for all 0 ≤ x, y,≤ n and 0 ≤ s ≤ t,

|σ(x)− σ(y)|2 +

∫ ∞
0

∫ ∞
0

(
|l(x, y, s, z, u)| ∧ (l(x, y, s, z, u))2

)
duπ(dz) ≤ Cn(t)|x− y|,

where l(x, y, s, z, u) = h(x, s, z, u) − h(y, s, z, u). First, notice that for all 0 ≤ s ≤ t and
z ≥ 0, x 7→ f3(x, s, z) is nondecreasing thanks to Assumption G so that x 7→ x+ h(x, s, z, u)
is nondecreasing. Next,∫ ∞

0

(
|l(x, y, s, z, u)| ∧ (l(x, y, s, z, u))2

)
du =

∫ ∞
0

(
z ∧ z2

) ∣∣1{u≤f3(x,s,z)} − 1{u≤f3(y,s,z)}
∣∣ du

=
(
z ∧ z2

)
|f3(x, s, z)− f3(y, s, z)| .

Moreover,

|f3(x, s, z)− f3(y, s, z)|

≤ |p(x)− p(y)|+ αz
∣∣∣e(g−β)s − 1

∣∣∣ ∣∣∣∣∣ p(x)

g − β + αx
(
e(g−β)s − 1

) − p(y)

g − β + αy
(
e(g−β)s − 1

)∣∣∣∣∣
≤ |p(x)− p(y)|+ αz

(
e|g−β|t + 1

)(∣∣∣∣p(x)− p(y)

g − β

∣∣∣∣+ α
(
e|g−β|t + 1

)
|xp(x)− yp(y)|

)
.

Finally, we get the desired inequality using that p is locally Lipschitz,
∫∞

0 z2π(dz) <∞ and
that σ is 1/2-Hölderian. �

4.5. Proofs of Section 3.2.

Proof of Proposition 3.3. This proof is very similar to the proof of Theorem 2.3 and Corollary
2.4. The only modifications are due to the time-inhomogeneity of the auxiliary process, and
to the fact that the time interval is restricted to [0, t]. We proceed by coupling to overcome
these two difficulties.

First, we prove that Theorem 2.3 and Corollary 2.4 still hold if the rate of positive jumps
depends on time and jump size. Let t > 0 and consider a process X solution of the SDE
(2.1) with the difference that the rate at which a jump of size z > 0 occurs, when the time
s is smaller than t is denoted by pt(Xs− , s, z) and satisfies for x ≥ 0

p(x) ≤ pt(x, s, z) ≤ p(x)(1 + ctz), (4.28)

where ct is a finite and positive constant depending on t. As before, we define

G(s)
a (x) :=(a− 1)g(x)− a(a− 1)

σ2(x)

x2
− r(x)

∫ 1

0

(
θ1−a − 1

)
κ(dθ)

− pt(x, s, z)
∫
R+

(
(zx−1 + 1)1−a − 1− (1− a)zx−1

)
π(dz)

Using the upper bound in (4.28) we can show as in page 20 that under (3.2)

lim sup
0+

(
x−2

∫ ∞
0

pt(x, s, z)z
2

(∫ 1

0
(1 + zx−1v)−1−a(1− v)dv

)
π(dz)

)
<∞.

Then, applying Itô’s Formula with jumps we can check that Lemma 4.1 still holds with

G
(s)
a (Xs) instead of Ga(Xs). The proofs of Theorem 2.3 and Corollary 2.4 are thus un-

changed and the results hold also for processes whose rate of positive jumps satisfy (4.28).
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Let us first consider point i) and introduce Ỹ the unique strong solution to

Ỹt =Ỹ0 +

∫ t

0
gỸsds+

∫ t

0

√
2σ2(Ỹs)dBs +

∫ t

0

∫ f3(Ỹs− ,t−s,z)

0

∫
R+

zQ̃(ds, dx, dz)

+

∫ t

0

∫ 2(αỸs−+β)

0

∫ 1

0
(θ − 1)Ỹs−N(ds, dz, dθ),

where the Brownian motion and the Poisson random measures are the same as in (3.4), and
by convention we decide for instance that f3(x, u, z) = 0 if u ≤ 0. Notice that for all y ≥ 0,
0 ≤ s ≤ t, 0 ≤ θ ≤ 1, and z ≥ 0,

f1(y, s) ≥ g, f2(y, s, θ) ≤ 2(αy + β),

and f3(x, t−s, z) is increasing in x (thanks to Assumption G). In particular this implies that

if Ỹ is a solution with Ỹ0 = Y
(t)

0 , then Ỹs ≤ Y
(t)
s for any s smaller than t. But Ỹ satisfies

assumptions of point i) of Corollary 2.4, and thus does not reach 0 in finite time. We deduce

that Y (t) does not reach 0 before time t.

Now, let us prove point ii). First notice that there exist two positive constants At and Bt
depending on t and such that for any x > 0 and s ≤ t, the function f1 defined on page 11
satisfies

f1(x, s) ≤ g +
(
2σ2(x)/x+ E

[
Z2
]
p(x)/x

) At
Bt + xAt

=: ḡt(x).

Now, introduce (Ȳs, s ≥ 0) as the unique strong solution to

Ȳs =Y
(t)

0 +

∫ s

0
ḡt
(
Ȳu
)
Ȳudu+

∫ s

0

√
2σ2

(
Ȳu
)
dBu +

∫ s

0

∫ r̄(θ)

0

∫ 1

0
(θ − 1)Ȳu−N(du, dz, dθ)

+

∫ s

0

∫ ∞
0

∫ f3(Ȳs− ,t−s,z)

0
zQ̃(du, dz, dx), (4.29)

with again f3(x, u, z) = 0 if u ≤ 0, and where B, N and Q̃ are the same as in (3.4) and for
all x ≥ 0, s ≥ 0 and θ ∈ [0, 1],

r̄(θ) := 2θβ ≤ f2(x, s, θ).

Then, for all 0 ≤ s ≤ t, Ȳs ≥ Y (t)
s . As a consequence, if we introduce

τ̄−(0) := inf{s ≥ 0 : Ȳs = 0},

and prove that for any 0 < v ≤ t,

P(τ̄−(0) < v) > 0, (4.30)

it will end the proof. Indeed (4.30) implies that

P(τ−t (0) < v) ≥ P(τ̄−(0) < v) > 0.

To prove (4.30), we apply point iii) of Corollary 2.4 to the process Ȳ . Notice that here,
unlike in Corollary 2.4, the division rate r̄ depends on θ. However, according to Lemma 2.2
the dependence in θ in the division rate can be removed by considering a new Poisson point
measure N ′ with a modified fragmentation kernel so that all the results derived above still
hold. It ends the proof. �
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Proof of Proposition 3.4. We prove the convergence of the auxiliary process by verifying
a Foster-Lyapunov inequality and a minoration condition, both stated in Lemma 4.3 be-
low. Those standard conditions were exhibited in [29] as an extension of [15] to time-
inhomogeneous processes. The Foster-Lyapunov inequality (Condition i) in Lemma 4.3)
ensures that

Ex
[
V
(
Y (t)
s

)]
≤ e−asV (x) +

d

a

(
1− e−as

)
,

where a and d are positive constants, so that the process is brought back to the sublevel
sets of V . The minoration condition (Condition ii) in Lemma 4.3) ensures some type of
irreducibility of the process on those sublevel sets. Combining those two conditions yields
the convergence of the auxiliary process (see Proposition 3.2 in [29]).

Let
V (x) = x for x ∈ R+.

Lemma 4.3. Under the assumptions of Proposition 3.4, we have the following:

i) There exist a, d > 0 such that for all 0 ≤ s ≤ t and x ∈ R∗+,

A(t)
s V (x) ≤ −aV (x) + d.

ii) There exists R > 2da−1 such that for all r < s ≤ t, there exist αs−r > 0 and a
probability measure ν on R+ such that for all Borel set A of R+,

inf
x≤R

P
(
Y (t)
s ∈ A

∣∣Y (t)
r = x

)
≥ αs−rν(A).

Proof. i) We have

A(t)
s V (x) = f1(x, t− s)x−

∫ 1

0
f2(x, t− s, θ)x(1− θ)κ(dθ)

≤ gx+

(
2
σ(x)2

x3
+ E

[
Z2
] p(x)

x3
− 2αE [Θ(1−Θ)]

)
x2.

According to (3.5), there exists A > 0 and a > 0 such that for all x > A,(
2
σ(x)2

x3
+ E

[
Z2
] p(x)

x3
− 2αE [Θ(1−Θ)]

)
x < −(a+ g),

where we have used the inequality

E
[
Θ(1−Θ5)

]
= E

[
Θ(1−Θ)(1 + Θ + Θ2 + Θ3 + Θ4)

]
≤ 5E [Θ(1−Θ)] .

Hence, there exists d > 0 such that for every x ≥ 0,

A(t)
s V (x) ≤ −ax+ d.

ii) Let R > 2da−1, where a, d are given in i). We will prove the minoration condition with
νs = δ0, where δ0 is the Dirac mass at 0. Consider again Ȳ , defined as the unique strong

solution to the SDE (4.29). We recall that Ȳs ≥ Y (t)
s , for all s ≤ t. Therefore for all r < s ≤ t

and all Borel set A of R+,

P
(
Y (t)
s ∈ A

∣∣Y (t)
r = x

)
≥ P

(
Y (t)
s = 0

∣∣Y (t)
r = x

)
δ0(A) ≥ P

(
Ȳs = 0

∣∣Ȳr = x
)
δ0(A).

Next, notice that if Ȳ 1, Ȳ 2 are two solutions to (4.29) with respective initial conditions at
time r satisfying Ȳ 1

r ≤ Ȳ 2
r , then Ȳ 1

s ≤ Ȳ 2
s for all r ≤ s ≤ t. Hence, for all x ≤ R,

P
(
Ȳs = 0

∣∣Ȳr = x
)

= P
(
Ȳs−r = 0

∣∣Ȳ0 = x
)
≥ P

(
Ȳs−r = 0

∣∣Ȳ0 = R
)
.

Finally, using point iii) of Corollary 2.4 on Ȳ , there exists αs−r > 0 such that

P
(
Ȳs−r = 0

∣∣Ȳ0 = R
)
> αs−r,
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which ends the proof. �

4.5.1. Proof of Theorem 3.5. We now prove the convergence of the process corresponding
to the trait of a sampling to the limit of the auxiliary process as t goes to infinity. It is a
direct application of [29, Corollary 3.4]. Assumptions A, B, C in [29] are satisfied thanks
to Assumptions B, H and (3.3). We proved that Assumption D in [29] is verified in Lemma
4.3. It remains to check that Assumptions E and F in [29] are satisfied. Note that in our
case, the function c(x) defined in [29, Equation 3.3] is equal to max(g, β) and the first point
of Assumption E in [29] is satisfied because g + β 6= 0.

Next, we set some notations, introduced in [29]. For all x, y ≥ 0 and s ≥ 0, we define

ϕs(x, y) = sup
t≥s

m(x, 0, s)m(y, s, t)

m(x, 0, t)
,

and for all measurable functions f : R+ → R and x ≥ 0,

Jf(x) = 2

∫ 1

0
f (θx) f ((1− θ)x)κ(dθ).

The next lemma amounts to check the second point of Assumption E in [29].

Lemma 4.4. For all x ≥ 0,

sup
t≥0

Ex
[
r
(
Y

(t)
t

)
J ((1 ∨ V (·))ϕt (x, ·))

(
Y

(t)
t

)]
<∞.

Proof. Note that if x = 0, Y
(t)
t = 0 almost surely for all t ≥ 0. Therefore, we only need to

consider x > 0. First, notice that for all t ≥ 0 x > 0, and y ≥ 0,

ϕt(x, y) ≤

(
1 + αx

|g−β|

)(
1 + αy

|g−β|

)
min

(
αx
|g−β| , 1

) .

Next, for all x > 0,

Ex
[
r
(
Y

(t)
t

)
J ((1 ∨ V (·))ϕt (x, ·))

(
Y

(t)
t

)]
≤
(
|g − β|+ αx

min (αx, |g − β|)

)2

Ex

(αY (t)
t + β

)
2

∫ 1

0

(
1 ∨ θY (t)

t

)(
1 ∨ (1− θ)Y (t)

t

)(
1 +

αY
(t)
t

|g − β|

)2

κ(dθ)

 .
For all k ≥ 0, we define

f
(t)
k (x, s) = Ex

[(
Y (t)
s

)k]
and we end the proof of the lemma by showing that,

sup
t≥0

sup
s≤t

f
(t)
5 (x, s) <∞.

According to Itô’s formula, we have for k ≥ 2,

f
(t)
k (x, s) =k

∫ s

0
Ex
[(
Y (t)
u

)k
f1

(
Y (t)
u , t− u

)]
du+ k(k − 1)

∫ s

0
Ex
[
σ2
(
Y (t)
u

)(
Y (t)
u

)k−2
]
du

+

∫ s

0

∫
R+

Ex
[
f2

(
Y (t)
u , t− u, θ

)(
Y (t)
u

)k
(θk − 1)

]
κ(dθ)du

+

∫ s

0

∫
R+

Ex
[
f3

(
Y (t)
u , t− u, z

)((
Y (t)
u + z

)k
−
(
Y (t)
u

)k
− kz

(
Y (t)
u

)k−1
)]

π(dz)du.
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Differentiating with respect to s and using that for all x ≥ 0 and s ≥ 0, xkf1(x, s) ≤ gxk +
2σ(x)2xk−2+E[Z2]p(x)xk−2, f2(x, s, θ) ≥ 2θαx for all θ ∈ [0, 1] and f3(x, s, z) ≤ (x+z)p(x)/x
for all z ≥ 0, and applying Taylor’s formula with integral remainder, we obtain

∂sf
(t)
k (x, s) ≤gkEx

[(
Y (t)
s

)k]
+ kEx

[(
(k + 1)σ2

(
Y (t)
s

)
+ E[Z2]p

(
Y (t)
s

))(
Y (t)
s

)k−2
]

−
∫
R+

Ex
[
2α
(
Y (t)
s

)k+1
θ(1− θk)

]
κ(dθ)

+ k(k − 1)

∫
R+

∫ z

0
(z − u)Ex

p
(
Y

(t)
s

)
Y

(t)
s

(
Y (t)
s + u

)k−2 (
Y (t)
s + z

) duπ(dz).

Moreover, for all y ≥ 0,∫
R+

∫ z

0
(z − u)

p (y)

y
(y + u)k−2 (y + z) duπ(dz)

≤
∫
R+

z2 p(y)

y
(y + z)k−1 π(dz) =

p(y)

y3

∫
R+

y2z2
k−1∑
l=0

(
k − 1

l

)
ylzk−1−lπ(dz)

=
p(y)

y

∫
R+

z2
k−2∑
l=0

(
k − 1

l

)
ylzk−1−lπ(dz) +

p(y)

y3
E
[
Z2
]
yk+1.

Combining the last two inequalities, we get

∂sf
(t)
k (x, s) ≤k(A

(k)
t +B

(k)
t + C

(k)
t ),

with

A
(k)
t = gEx

[
(Y (t)
s )k

]
, B

(k)
t = Ex

[
H(k, Y (t)

s )(Y (t)
s )k+1

]
,

C
(k)
t = (k − 1)

∫
R+

Ex

[
p(Y

(t)
s )

Y
(t)
s

k−2∑
l=0

(
k − 1

l

)
(Y (t)
s )lzk+1−l

]
π(dz),

where

H(k, y) = (k + 1)
σ2(y)

y3
+ kE[Z2]

p(y)

y3
− 2α

k
E
[
Θ(1−Θk)

]
.

To end the proof we consider the case k = 5. According to (3.5) and using that σ and p are
continuous (Assumption A), there exist C1, C2 > 0 and A > 0 such that for all y ≥ 0,

H(5, y)y6 = H(5, y)y61{y>A} +H(5, y)y61{y≤A} ≤ −C1y
61{y>A} + C21{y≤A}

≤ −C1y
6 + C1A

6 + C2.

Moreover, lim sup0+ p(x)/x <∞ according to Assumption E, lim sup∞ p(x)/x3 <∞ thanks
to (3.5) and E

[
Z6
]
<∞, which yields

Ct ≤ C3(f
(t)
5 (x, s) + 1),

for some C3 ≥ 0. Combining the last two inequalities, there exist D1, D2 > 0 such that

∂sf
(t)
5 (x, s) ≤ D1(f

(t)
5 (x, s) + 1)−D2f

(t)
6 (x, s).

Applying Jensen inequality, we have f
(t)
6 (x, s) ≥ f (t)

5 (x, s)6/5. Finally, we obtain

∂sf
(t)
5 (x, s) ≤ F

(
f

(t)
5 (x, s)

)
,
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with F (y) = D1(y + 1) −D2y
1+1/5. Any solution to the equation y′ = F (y) is bounded by

y(0) ∨ x0, where x0 = (5D1/6D2)5 and so is f
(t)
5 (x, ·). It ends the proof. �

Finally, we need to control the value of the second moment of the population size relatively
to the square of its mean. It corresponds to Assumption F in [29].

Lemma 4.5. Suppose that Assumptions B, C, E, F hold. Then for all x > 0,

Eδx
[
N2
t

]
∼ m2(x, 0, t)

(
1{β<g} + 1{g≤β}

(g − β − αx)2 + (g − β)2(1− 2αx/(g − 2β))

(g − β − αx)2

)
, (t→∞).

Proof. According to Itô’s formula, we have for all t ≥ 0 and x > 0,

Eδx
[
N2
t

]
= 1 +

∫ t

0
Eδx [(αxegs + βNs) (1 + 2Ns)] ds

= 1 +
αx

g

(
egt − 1

)
+ 2αx

∫ t

0
egsEδx [Ns]ds+ β

∫ t

0
Eδx [Ns]ds+ 2β

∫ t

0
Eδx

[
N2
s

]
ds.

Using (3.3), we get

Eδx
[
N2
t

]
=e2βt +

2αx

g − β

(
1− αx

g − β

)(
e(g+β)t − e2βt

)
+

α2x2

(g − β)2

(
e2gt − e2βt

)
+

αx

g − 2β

g

g − β

(
egt − e2βt

)
+

(
1− αx

g − β

)(
e2βt − eβt

)
. (4.31)

Moreover,

m(x, 0, t)2 = e2βt +
2xα

g − β

(
e(g+β)t − e2βt

)
+

x2α2

(g − β)2

(
e2gt − 2e(g+β)t + e2βt

)
.

We end the proof by letting t go to infinity. �

We checked that all required assumptions to apply [29, Corollary 3.4] are satisfied. This
ends the proof of Theorem 3.5.

4.6. Proofs of Section 3.3.

Proof of Proposition 3.6. We first prove point ii) and assume that lim sup0+ σ
2(y)/y < ∞.

The first step consists in proving that (2.13) holds for Y , but a direct application of Theorem
2.5 is not possible because of the time-inhomogeneity of the process Y . Therefore, we couple
Y with a process (Ŷs, s ≥ 0) defined as the unique strong solution to

Ŷs =Y
(t)

0 +

∫ s

0
ĝ(Ŷu)Ŷudu+

∫ s

0

√
2σ2(Ŷu)dBu +

∫ s

0

∫ r̂(Ŷu,θ)

0

∫ 1

0
(θ − 1)ŶuN(du, dz, dθ)

+

∫ s

0

∫ ∞
0

∫ f3(Ŷu,t−s,z)

0
zQ̃(du, dz, dx), (4.32)

where f3(y, t − s, z) = 0 for s ≥ t, B, N and Q̃ are the same as in (3.4) and for x, s ≥ 0,
0 ≤ θ ≤ 1,

ĝ(x) := g +
α

β − g + αx

(
2
σ2(x)

x
+ E

[
Z2
] p(x)

x

)
≥ f1(x, s), r̂(x, θ) := 2θ(αx+ β) ≤ f2(x, s, θ),

where the first inequality holds because β > g. Then, for all t ≥ 0 and 0 ≤ s ≤ t, Y (t)
s ≤ Ŷs.

In particular, for all t ≥ 0,

Y
(t)
t ≤ Ŷt. (4.33)
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According to Lemma 2.2, there exists a Poisson point measure N ′ on R+ × [0, 1]× R+ with

intensity du⊗ κ̂(dθ)⊗ dx such that Ŷ is also a strong pathwise solution to

Ŷs = Y
(t)

0 +

∫ s

0
ĝ
(
Ŷu

)
Ŷudu+

∫ s

0

√
2σ2

(
Ŷu

)
dBu +

∫ s

0

∫ r(Ŷu)

0

∫ 1

0
(θ − 1)ŶuN

′(du, dz, dθ)

+

∫ s

0

∫ ∞
0

∫ f3(Ŷu,t−s,z)

0
zQ̃(du, dz, dx). (4.34)

As the jump rate f3 in the integral with respect to Q̃ depends on z and time, we need to
prove that Lemma 4.2 still holds under these modifications. Following the same steps as in
the proof of this lemma for Ŷ instead of X we have, when T1 > t0,

ln(Ŷt∧T1) = ln(Ŷt0) +

∫ t∧T1

t0

ĝ(Ŷs)ds−
∫ t∧T1

t0

σ2(Ŷs)

Ŷ 2
s

ds+Mt∧T1 +

∫ t∧T1

t0

r(Ŷs)

(∫ 1

0
ln θκ̂(dθ)

)
ds

+

∫ t∧T1

t0

f3(Ŷs, t− s, z)
[
ln(Ŷs + z)− ln(Ŷs)− z/Ŷs

]
(1 + z/Ŷs)π(dz)ds, (4.35)

where (Ms∧T1 , s ≥ 0) is a martingale. Let us check that (B0) is satisfied. Let Θ̂ be a random
variable with law κ̂. We have

ĝ(x) + r(x)E
[
ln Θ̂

]
= g +

α

β − g + αx

(
2σ2(x)/x+ E

[
Z2
]
p(x)/x

)
+ 2(αx+ β)E [Θ ln Θ] ,

and (B0) is satisfied using (3.5) and the fact that the function

x ∈ (0, 1] 7→ 5 ln 1/x− (1− x5)

is nonnegative (which is obtained by the study of the function’s derivative). Moreover, notice

that the dependence on z and on time for the jump rate in the integral with respect to Q̃
does not modify the proof of Lemma 4.2, as the last term in (4.35) is still negative. If we

look at the proof of (2.13) for Ŷ , we see that we only need to check that there exists d > 0
such that

0 < inf
0≤x≤x0+d

(ĝ(x) + r(x)) ≤ sup
0≤x≤x0+d

(ĝ(x) + r(x)) <∞

which is true under our assumptions. Hence (2.13) holds for Ŷ . Applying Theorem 3.5 to
the function F (Xu

t+s, s ≤ T ) = 1{Xu
t+T=0} concludes the proof of point ii).

Let us now prove point i). If g < β and lim sup0+ σ
2(y)/y <∞, Ŷ is still well-defined as

a strong solution of (4.34) and satisfies (B0) according to (3.5). Then, from Theorem 2.5,

Ŷt converges in law to Ŷ∞ with distribution given by (2.11) and using (4.33) we obtain for
all K > 0

P(Ŷ∞ > K) ≥ lim
t→∞

P
(
Y

(t)
t > K

)
.

By Markov inequality,

Pδx
(∑

u∈Vt 1{Xu
t >K}

Nt
> ε

)
≤ ε−1

Eδx
[∑

u∈Vt 1{Xu
t >K}

]
m(x, 0, t)

= ε−1P
(
Y

(t)
t > K

)
, (4.36)

where the last equality comes from (3.1) applied to the function

F ((Xu
s , s ≤ t)) = 1{Xu

t >K}.

Finally, taking the limit in (4.36) in t and K yields the result. In the case where the assump-

tions of Proposition 3.4 are satisfied, according to this latter proposition, Y
(t)
t converges to
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a nondegenerate random variable, which implies

lim
K→∞

lim
t→∞

P(Y
(t)
t > K) = 0.

We conclude as before using (4.36). �

4.7. Proofs of Section 3.4.

Proof of Proposition 3.7. Let us begin with the proof of point ii). From Proposition 2.6i),
we have

Yt → 0 a.s.

and combining Equation (3.1) and the fact that Eδx [Nt] = eβt, we obtain that

Eδx
[∑

u∈Vt 1{Xu
t >ε}

eβt

]
→ 0, (t→∞).

Moreover, the fact that (Nt, t ≥ 0) is a Yule process also entails that Nte
−βt converges in

probability to W (1), exponential random variable with parameter 1, when t goes to infinity
(see [1] Chap.III Section 5). Hence, we have∑

u∈Vt 1{Xu
t >ε}

Nt
=

∑
u∈Vt 1{Xu

t >ε}

eβt
× 1

Nte−βt
P−→ 0,

when t tends to infinity. It ends the proof of point ii).

We now prove point iii). Applying Equation (2.13) in Theorem 2.5 to the process Y , we
obtain that

P (Yt 6= 0)→ 0, (t→∞).

From this, similarly as for the proof of point ii) we obtain∑
u∈Vt 1{Xu

t =0}

Nt
→ 1 in probability, (t→∞).

To prove that the convergence of iii) holds almost surely we follow the proof of Theorem
4.2.(i) in [6] where the authors prove that the convergence in probability implies the almost
sure convergence by using a technical result on Yule processes (see [6, Lemma 4.3]).

We end with the proof of point i). Applying Corollary 2.7.iii) to Y , we obtain that

lim inf
t→∞

Yte
−Λρ(t) = W,

with P(W > 0) > 0 and where Λ is a Lévy process with drift η and ρ(t) ≥ t. Writing, for
ε > 0,

Yte
−(η−ε)t = Yte

−Λρ(t)eΛρ(t)−(η−ε)t,

and noticing that Λρ(t) − (η − ε)t goes to ∞ when t goes to ∞, we get

Px
(

lim inf
t→∞

Yte
−(η−ε)t > 0

)
> 0,

and thus by Fatou Lemma

lim inf
t→∞

Px
(
Yte
−(η−ε)t > 0

)
> 0.

Hence, using Equation (3.1) we obtain

lim inf
t→∞

Eδx

[∑
u∈Vt 1{Xu

t e
−(η−ε)t>0}

eβt

]
> 0.
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Now notice that Cauchy-Schwarz inequality yields

E2
δx

[∑
u∈Vt 1{Xu

t e
−(η−ε)t>0}

eβt

]
≤ Eδx

(∑u∈Vt 1{Xu
t e
−(η−ε)t>0}

Nt

)2
Eδx

[(
Nt

eβt

)2
]

≤ Eδx

[∑
u∈Vt 1{Xu

t e
−(η−ε)t>0}

Nt

]
Eδx

[(
Nt

eβt

)2
]
,

where the last inequality comes from the fact that the term in the first expectation in the
right-hand side is smaller than one. Noticing that the last expectation converges to 1 as t
goes to infinity we obtain

0 < lim inf
t→∞

E2
δx

[∑
u∈Vt 1{Xu

t e
−(η−ε)t>0}

eβt

]
≤ lim inf

t→∞
Eδx

[∑
u∈Vt 1{Xu

t e
−(η−ε)t>0}

Nt

]
.

This ends the proof of the first part of point i). The proof of the second point of point i)
follows the proof of Theorem 4.2.(ii) in [6]. �

Appendix A. Auxiliary process, case g = β

In the case g = β, the mean number of individuals takes the form

m(x, s, t) = (1 + αx(t− s))eg(t−s).
As a consequence,

Ĝ(t)
s f(x) =

(
gx+

(
2σ2(x) + xE

[
Z2
]) α(t− s)

1 + xα(t− s)

)
f ′(x) + σ2(x)f ′′(x)

+ x

∫
R+

(f(x+ z)− f(x)− zf ′(x))

(
1 +

αz(t− s)
1 + αx(t− s)

)
π(dz),

r̂(t)
s (x) = (αx+ β)

(
1 +

1

1 + xα(t− s)

)
and κ̂(t)

s (x, dθ) = 1{0≤θ≤1}
2 + 2αθx(t− s)
2 + αx(t− s)

κ(dθ).

Moreover, the functions (fi, 1 ≤ i ≤ 3) take the form

f1(y, s) := g +

(
2
σ2(y)

y
+ E

[
Z2
]) αs

1 + αys
, f2(y, s, θ) := 2(αy + β)

1 + αθys

1 + αys
,

and

f3(y, s, z) := p(y)

(
1 +

αzs

1 + αys

)
.

Proof of Proposition 3.1. We keep the notation of the proof in the case g 6= β and only
provide the computations which differ from this case.∣∣∣∣σ2(x)

αs

1 + αxs
− σ2(y)

αs

1 + αys

∣∣∣∣ ≤ B̃n,1(t)|x− y|,

with B̃n,1(t) = αt
(
1 + αt

(
sup1≤x≤n σ

2(x) + n
))
,

E
[
Z2
]
αs

∣∣∣∣ x

1 + αxs
− y

1 + αys

∣∣∣∣ ≤ B̃n,2(t)|x− y|,

with B̃n,2(t) = E
[
Z2
]
αt and∫ ∞

0

∣∣x1u≤f2(x,s,θ) − y1u≤f2(y,s,θ)

∣∣ du ≤ B̃n,3(t)|x− y|,
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with B̃n,3(t) = 2α + 4(αn + β)αt + 2(αn + β) and condition (b) holds with B̃n(t) = g +

2B̃n,1(t) + B̃n,2(t) + 1/2B̃n,3(t).
Moreover,

|f3(x, s, z)− f3(y, s, z)| ≤ |p(x)− p(y)|+ αzt|xp(x)− yp(y)|,

which ends the proof. �

Acknowledgments

The authors are grateful to V. Bansaye for his advice and comments and to B. Cloez for
fruitful discussions. This work was partially funded by the Chair ”Modélisation Mathématique
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