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Fetal heart rate estimation from a single phonocardiogram signal using
non-negative matrix factorization

Nafissa Dia, Julie Fontecave-Jallon, Pierre-Yves Gumery, Bertrand Rivet

Abstract— Fetal heart rate (FHR) is an important character-
istic in fetal well-being follow-up. It is classically estimated using
the cardiotocogram (CTG) non-invasive reference technique.
However, this latter presents some significant drawbacks. An
alternative non-invasive solution based on the fetal phonocar-
diogram (fetal PCG) can be used. But most of proposed methods
based on the PCG signal need to detect and to label the fetal
cardiac S1 and S2 sounds, which may be a difficult task in
certain conditions. Therefore, in this paper, we propose a new
methodology for FHR estimation from fetal PCG with one
single cardio-microphone and without the distinction constraint
of heart sounds. The method is based on the non-negative
matrix factorization (NMF) applied on the spectrogram of
fetal PCG considered as a source-filter model. The proposed
method provides satisfactory results on a preliminary dataset
of abdominal PCG signals. When compared to the reference
CTG, correlation on FHR estimations between PCG and CTG
is around 90%.

I. INTRODUCTION

The monitoring of fetal well-being during labour and de-
liverance is based on the analysis of the fetal heart rate (FHR)
and its variability, which allows to detect fetal distresses.
The non-invasive reference technique used nowadays is the
cardiotocogram (CTG) developed since the 60s and based on
ultrasounds. However, even if its use is the most common and
represents 99% of cases in 2002 [1], CTG presents some
limitations whose most important are confusion between
maternal and fetal rhythms, and signal loss [2], [3].

There are non-invasive alternative solutions based on phys-
iological cardiac signals [4] as the electrocardiogram (ECG)
for cardiac electrical activity or the phonocardiogram (PCG)
which gives access to mechanical heart information. The
sensors are usually placed on the mother abdomen and signal
processing is required to reach the fetal signals. Using ECG,
heart rate is estimated classically for infants or adults by
detecting R peaks, which are the most prominent waves in
ECG signals [5]. But, on abdominal ECG, the fetal signal
is of very low power compared to the maternal one making
difficult the R peaks detection. Commonly, source separation
is used to overcome this difficulty, based on independent
component analysis [6], [7], [8]. However, this technique
requires a lot of sensors placed on the mother thorax and
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Fig. 1. Fetal PCG in gray line (abdominal PCG after simple 20−200 Hz
band-pass filtering) and its envelop in black line

abdomen, non-compatible for a real clinical ergonomic set-
ting, for the mother as well as for the medical staff.

Unlike abdominal ECG, fetal PCG is the most signifi-
cant part recorded by abdominal microphones on pregnant
women. Therefore, it is used increasingly to estimate the
fetal cardiac frequency [9], [10]. Numerous methods of fetal
PCG processing are presented in the state of the art and
classified in different categories [4]. Among them, classi-
cal or conventional filtering methods allow to extract fetal
phonocardiogram signal from abdominal recordings [11] but
are often insufficient. Adaptive filtering technique [12] is also
proposed but it suffers from a lack of robustness. In linear-
decomposition group, one can cite methods based on time-
frequency representation like short-time Fourier transform
(STFT) [13], wavelets transform [14], which are efficient
in signal analysis, and blind source separation (BSS) [15].
In addition, most of the existent PCG-based methods, as
in [16], [17], need to locate and differentiate on the PCG
signal envelop, the instants of S1 and S2 sounds, which
are the most audible cardiac sounds and correspond to the
closure of respectively the atrial-ventricular, and the aortic
and pulmonary valves. But, as illustrated in Fig. 1 with one
example of fetal PCG and its associated envelop, detecting
and identifying S1 and S2 events may not be as easy in
fetal PCG as in adults clean PCG, especially as signals are
interfered by noises (such as gastric or liquid) and may be
then roughly exploitable.

Based upon these limitations, we propose a novel method-
ology for FHR monitoring using one unique PCG sensor
placed on the mother abdomen for an optimal ergonomic
aspect, and which does not require the specific annotation of
S1 and S2 patterns during processing. The proposed method-
ology is based on the non-negative matrix factorization
(NMF) [18], [19], [20] algorithm applied on the spectrogram
of the fetal PCG. First the methodology will be described,
then the obtained FHR estimation will be evaluated on real
fetal PCG data and partially compared to CTG reference.
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Fig. 2. Spectrogram of a fetal PCG (Fs = 1kHz, window = 4s, shift =
32ms, zero-padding ratio = 4)

II. MATERIALS AND FETAL HR ESTIMATION

In this section, the signals database used for the eval-
uations is described (Section II-A) before introducing the
modeling of the PCG signal (Section II-B) and the proposed
method to estimate the FHR from PCG (Section II-C).

A. Signals acquisition and description

Four volunteer women participated in the study. They
presented a pregnancy with normal progression between 38
and 39 weeks of gestation. They provided informed consent
and the study was approved by the relevant ethics committee
(CHU Grenoble Alpes). Participants were in supine and
comfortable position. For each woman, the position of the
fetus was checked, especially the side of the fetal back,
by an obstetrical ultrasound scan. This allowed the PCG
sensor to be placed in an optimal position. The woman
was then equipped with one cardio-microphone (MLT201,
ADInstruments) placed and kept by a belt on the abdomen
in front of the fetal heart for abdominal PCG acquisition.
Abdominal PCG signals were sampled at 1kHz and pre-
processed by a 20− 200 Hz band-pass filter. In parallel, a
CTG reference for FHR was simultaneously recorded using
the Oxford system CTG (Sonicaid Team Duo).

B. Source-filter model of the fetal PCG

Our proposed algorithm is based on NMF applied on
the spectrogram of abdominal PCG (Fig. 2). As expected,
by computing the spectrogram from the short-time Fourier
transform (STFT) using a long enough window (so that
several heart beats are considered), the spectrogram high-
lights an harmonic structure due to quasi-periodic aspect of
physiological signals (Fig. 1): note the harmonics occurring
of the fundamental frequency and the time-varying value of
this later. Indeed, it is classical to model a quasi-periodic
signal as a time-varying source-filter model. For each time
window of the STFT, the excitation part is a Dirac comb
at the rhythm of heart beats repetition (i.e. at the cardiac
frequency), convolved by a filter part, representing the shape
of the heart beats. Both terms evolve with time since both
the cardiac frequency is not constant and the shape of each
heart beat can be different.

Let X( f , t) be the modulus of the STFT of the abdominal
PCG at time t and frequency f . It can be expressed, following
the (time-varying) source-filter model, as

∀( f , t), X( f , t) = X (e)( f , t)X (ϕ)( f , t), (1)

where X (e)( f , t) (resp. X (ϕ)( f , t)) is the modulus of the STFT
of the excitation (resp. the filter), which can be recast as

X = X(e)�X(ϕ), (2)

X ∈ RF×N
+ , X(e) ∈ RF×N

+ and X(ϕ) ∈ RF×N
+ , with F the

number of frequency bins and N the number of time win-
dows. � is the Hadamard product (i.e. the element-wise
multiplication) and R+ is the non-negative real numbers set.

C. FHR estimation based on NMF

In view of the spectrogram structure, it is common to use
the NMF for its analysis and interpretation. Indeed, the NMF
is a matrix decomposition algorithm that allows to factorize
the spectrogram as a product of matrices of lower rank [18],
[19]. Applying the NMF on the spectrogram of our source-
filter model leads to [20], [21]

X'
(
W(e)H(e))� (

W(ϕ)H(ϕ)
)
, (3)

where W(e) ∈ RF×Ke
+ (resp. W(ϕ) ∈ RF×Kϕ

+ ) is the spectral
matrix of the excitation (resp. the filter) and H(e) ∈ RKe×N

+

and H(ϕ) ∈ RKϕ×N
+ are their related temporal amplitudes

(Ke < min(F,N) and Kϕ < min(F,N)). To take into account
the harmonic structure, each column of excitation dictio-
nary W(e) is a Dirac comb whose fundamental frequency
is chosen in a range of possible fetal HRs, typically between
30 and 300 beats per minutes (bmp). Therefore H(e) has to
select, at each instant t, the more consistent cardiac frequency
among all found in the dictionary. W(ϕ) allows to estimate
the spectral envelop of the fetal PCG and the matrix H(ϕ)

contains its temporal evolution. These matrices, except W(e)

which is fixed, are iteratively updated thanks to our NMF-
based algorithm whose details are given in [21].

The FHR is carried by H(e) and is estimated by extracting
the cardiac frequency corresponding to the maximum ampli-
tude in each column of H(e):

FHR(t) = ν

(
argmax

k
H(e)

k,t

)
, (4)

where H(e)
k,t is the (k, t)-th entry of H(e) and ν ∈ RKe is the

vector of the Ke fundamental frequencies of each Dirac comb
of W(e). Nevertheless, FHR values estimated by (4) do not
all correspond to the cardiac frequency at each time but
can correspond to one of its harmonics or sub harmonics
as shown in the results section (Section III-A). To propose
a more robust estimation of the FHR, a post-processing is
applied on the FHR (4) to detect if it is a (sub-)harmonic of
the cardiac frequency and then to correct it. The detection of
the (sub-)harmonic FHR estimation from FHR(t) is based
on its derivative and the comparison with a average FHR as
detailed below. As one can see on Fig. 3, when the FHR is
detected as its second harmonic or its half sub-harmonic, the
relative derivative of FHR(t) defined as

∆FHR(t) =
FHR(t)−FHR(t−1)

FHR(t−1)
, (5)

presents some jumps equal to 1 and -0.5 which mark the
beginning and the end of each wrong estimation. However,
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Fig. 3. Algorithm of post-processing. Top: FHR estimation (4) (black
points) and the average FHR FHRre f (t) (grey line). Bottom: FHR relative
derivative (5).

both values can be related to a begin or to an end. To
disambiguate them, a reference average FHR FHRre f (t) is
computed as the moving median of FHR(t) on the last
minute, and is compared to FHR(t) to provide a corrected
FHR estimation FHR∗(t) by the following scheme:
• if ∆FHR(t)∈ [.8,1.2] and 0.8FHRre f (t)≤FHR(t) then

this jump is classified as the begin of the detection
of the second harmonic of the cardiac frequency. This
segment ends when ∆FHR(t) ∈ [−.6,−.4] and −0.1≤
FHR(t)−FHRre f (t)

FHRre f (t)
≤ 0.1. For all the values inside this

segment, FHR∗(t) = FHR(t)/2.
• else if ∆FHR(t) ∈ [−.6,−.4] and FHR(t) ≤

FHRre f (t)/2, then this jump is classified as the begin
of the detection of the half sub-harmonic of the cardiac
frequency. This segment ends when ∆FHR(t)∈ [.8,1.2]
and −0.1 ≤ FHR(t)−FHRre f (t)

FHRre f (t)
≤ 0.1. For all the values

inside this segment, FHR∗(t) = 2FHR(t).
• else there is no error and FHR∗(t) = FHR(t).

III. RESULTS AND DISCUSSIONS

The following paragraphs firstly present the results ob-
tained by our proposed NMF-based algorithm for FHR
estimation and then discussions and perspectives that follow.

A. Accuracy of H(e) and fetal heart rate estimation

Figure 4 shows an example of FHR estimated by our
proposed algorithm. The estimation of H(e) highlights a time-
varying fundamental frequency around 140 bpm, correspond-
ing to a classical average value for FHR. The FHR estimation
obtained according to (4) is depicted in the second row
of Fig. 4: one can observe some outliers around 300 bpm
due to selection of the second harmonic instead of funda-
mental component. FHR estimation after post-processing is
presented in the third row of Fig. 4, where we can notice
that some cardiac frequencies have been rectified, reducing
therefore the number of outliers.

Figure 5 illustrates the behaviour of the proposed ap-
proach to estimate the FHR. Three parts are highlighted
(white rectangular windows) to show three typical situations.
Window a) shows a fetal PCG where S1 and S2 sounds are
hardly identifiable. Window b) highlights fetal PCG where
S1 and S2 sounds are recognizable and window c) illustrates
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Fig. 4. Estimation of FHR for volunteer V4. From top to bottom: matrix
H(e) estimated according to our proposed NMF-based algorithm, FHR
estimation (4) extracted from H(e) and FHR after post-processing step.
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Fig. 5. H(e) estimated according to our proposed NMF-based algorithm for
volunteer V1 (first row). Illustration of various behaviors of the correspond-
ing temporal fetal PCG signal at different instants (second row) : a) with S1
and S2 sounds hardly identifiable, b) with S1 and S2 sounds recognizable
and c) with important noise

a very noisy fetal PCG. Our proposed algorithm is obviously
efficient when S1 and S2 sounds are easily recognizable
(Fig. 5b) but also when both constitute only one pattern with
noise (Fig. 5a). This is valuable compared to some classical
methodologies based on PCG envelop detection which need
to locate S1 and S2 sounds. However, when the signal is really
noisy (Fig. 5c), our proposition gets still some difficulties for
an accurate estimation of FHR.

B. FHR estimation quantitative evaluations

To quantify the accuracy of the FHR estimation by our
proposed method, the post-processed FHR is compared to
the one provided by the synchronous CTG (Fig. 6) for
two volunteers (V1 and V2). In both cases, one can notice
that the FHR estimation from CTG and from our proposed
NMF-based algorithm are very similar and follow the same
variations and variability. For these 2 volunteers, correlation
between FHR from CTG and FHR from PCG is respectively
evaluated at 91% for V1 and 84% for V2. Unfortunately, CTG
was not exploitable for volunteer V3, due to a problem of
synchronization, and acquisition for volunteer V4 has been
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Fig. 6. Comparison between FHR estimation from fetal PCG (in black
points) and FHR estimation from reference CTG (in blue line) for two
volunteers V1 (left) and V2 (right)

made without CTG. In addition, complementary quantitative
evaluation has been made for the four volunteers and is
depicted on Table I. It reports the ratio of outliers defined as
the FHR estimations that differ from the reference average
FHR FHRre f (t) by more than 10% divided by the total
number of FHR estimations. This ratio is evaluated between
0.6% and 14.3% for the 4 volunteers, which highlights that
FHR estimations are consistent in almost 90% of cases.

TABLE I
RECORDING DURATION AND OUTLIERS’ RATIO FOR THE 4 VOLUNTEERS

No of volunteer V1 V2 V3 V4
Recording duration [s] 865 690 65 168
Ratio of outliers [%] 9 9.6 14.3 0.6

C. Discussions and perspectives

These preliminary results on a few volunteers are promis-
ing since our proposed approach shows up a good correlation
between the FHR estimated from CTG and PCG while the
PCG signal may be sometimes complicated. But this has to
be confirmed on more volunteers. In that purpose, a complete
campaign of evaluation is planned as new acquisitions are
considered in the context of larger clinical protocols.

From a methodological point of view, even if the proposed
algorithm seems to be of high interest for FHR estimation,
there are still some noisy segments of PCG signals where
it fails. Some post-processing steps allow to correct some
wrong estimations, but there is still tracks of improvements.
Therefore, we propose on one hand to enhance the proposed
methodology by taking into account detection issue related
to the frequency dictionary (i.e. a better estimation of H(e)).
On the other hand, it would also be interesting to combine
synchronous abdominal PCG and ECG to take benefits
of multimodality either by switching between modalities
or by joining the NMF processing of both modalities, as
information given by both can be complementary and/or
redundant.

IV. CONCLUSION

In this paper, we have proposed a novel approach for
FHR estimation based on a source-filter model estimated
by a NMF applied on the spectrogram. From a unique
abdominal microphone and with a simple band-pass filtering
pre-processing step, we are able to estimate a FHR with

a certain robustness to noise. Moreover, comparisons with
CTG reference recordings show that our estimations are
coherent and correspond to the fetal cardiac rhythm. This
promising simple procedure to estimate the FHR from a
single abdominal microphone can be improved to achieve
an even more accurate estimation than the proposed one by
improving the estimation of H(e) and the extraction of the
FHR from it.
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