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Fetal heart rate estimation from a single phonocardiogram signal using non-negative matrix factorization

Fetal heart rate (FHR) is an important characteristic in fetal well-being follow-up. It is classically estimated using the cardiotocogram (CTG) non-invasive reference technique. However, this latter presents some significant drawbacks. An alternative non-invasive solution based on the fetal phonocardiogram (fetal PCG) can be used. But most of proposed methods based on the PCG signal need to detect and to label the fetal cardiac S 1 and S 2 sounds, which may be a difficult task in certain conditions. Therefore, in this paper, we propose a new methodology for FHR estimation from fetal PCG with one single cardio-microphone and without the distinction constraint of heart sounds. The method is based on the non-negative matrix factorization (NMF) applied on the spectrogram of fetal PCG considered as a source-filter model. The proposed method provides satisfactory results on a preliminary dataset of abdominal PCG signals. When compared to the reference CTG, correlation on FHR estimations between PCG and CTG is around 90%.

I. INTRODUCTION

The monitoring of fetal well-being during labour and deliverance is based on the analysis of the fetal heart rate (FHR) and its variability, which allows to detect fetal distresses. The non-invasive reference technique used nowadays is the cardiotocogram (CTG) developed since the 60s and based on ultrasounds. However, even if its use is the most common and represents 99% of cases in 2002 [START_REF] Anaes | Intérêt et indications des modes de surveillance du rythme cardiaque ftal au cours de laccouchement normal[END_REF], CTG presents some limitations whose most important are confusion between maternal and fetal rhythms, and signal loss [START_REF] Equy | Confusion between maternal and fetal heart rate during the second stage of labour[END_REF], [START_REF] Bhogal | Maternal and fetal heart rate confusion during labour[END_REF].

There are non-invasive alternative solutions based on physiological cardiac signals [START_REF] Adithya | Trends in fetal monitoring through phonocardiography: Challenges and future directions[END_REF] as the electrocardiogram (ECG) for cardiac electrical activity or the phonocardiogram (PCG) which gives access to mechanical heart information. The sensors are usually placed on the mother abdomen and signal processing is required to reach the fetal signals. Using ECG, heart rate is estimated classically for infants or adults by detecting R peaks, which are the most prominent waves in ECG signals [START_REF] Pan | A real-time qrs detection algorithm[END_REF]. But, on abdominal ECG, the fetal signal is of very low power compared to the maternal one making difficult the R peaks detection. Commonly, source separation is used to overcome this difficulty, based on independent component analysis [START_REF] Lathauwer | Fetal electrocardiogram extraction by blind source subspace separation[END_REF], [START_REF] Zarzoso | Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation[END_REF], [START_REF] Sameni | Extraction of fetal cardiac signals from an array of maternal abdominal recordings[END_REF]. However, this technique requires a lot of sensors placed on the mother thorax and This work is supported by the French National Research Agency, as part of the SurFAO project (ANR-17-CE19-0012).
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Based upon these limitations, we propose a novel methodology for FHR monitoring using one unique PCG sensor placed on the mother abdomen for an optimal ergonomic aspect, and which does not require the specific annotation of S 1 and S 2 patterns during processing. The proposed methodology is based on the non-negative matrix factorization (NMF) [START_REF] Paatero | Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values[END_REF], [START_REF] Lee | Learning the parts of objects by nonnegative matrix factorization[END_REF], [START_REF] Durrieu | Main instrument separation from stereophonic audio signals using a source/filter model[END_REF] algorithm applied on the spectrogram of the fetal PCG. First the methodology will be described, then the obtained FHR estimation will be evaluated on real fetal PCG data and partially compared to CTG reference. 

II. MATERIALS AND FETAL HR ESTIMATION

In this section, the signals database used for the evaluations is described (Section II-A) before introducing the modeling of the PCG signal (Section II-B) and the proposed method to estimate the FHR from PCG (Section II-C).

A. Signals acquisition and description

Four volunteer women participated in the study. They presented a pregnancy with normal progression between 38 and 39 weeks of gestation. They provided informed consent and the study was approved by the relevant ethics committee (CHU Grenoble Alpes). Participants were in supine and comfortable position. For each woman, the position of the fetus was checked, especially the side of the fetal back, by an obstetrical ultrasound scan. This allowed the PCG sensor to be placed in an optimal position. The woman was then equipped with one cardio-microphone (MLT201, ADInstruments) placed and kept by a belt on the abdomen in front of the fetal heart for abdominal PCG acquisition. Abdominal PCG signals were sampled at 1kHz and preprocessed by a 20 -200 Hz band-pass filter. In parallel, a CTG reference for FHR was simultaneously recorded using the Oxford system CTG (Sonicaid Team Duo).

B. Source-filter model of the fetal PCG

Our proposed algorithm is based on NMF applied on the spectrogram of abdominal PCG (Fig. 2). As expected, by computing the spectrogram from the short-time Fourier transform (STFT) using a long enough window (so that several heart beats are considered), the spectrogram highlights an harmonic structure due to quasi-periodic aspect of physiological signals (Fig. 1): note the harmonics occurring of the fundamental frequency and the time-varying value of this later. Indeed, it is classical to model a quasi-periodic signal as a time-varying source-filter model. For each time window of the STFT, the excitation part is a Dirac comb at the rhythm of heart beats repetition (i.e. at the cardiac frequency), convolved by a filter part, representing the shape of the heart beats. Both terms evolve with time since both the cardiac frequency is not constant and the shape of each heart beat can be different.

Let X( f ,t) be the modulus of the STFT of the abdominal PCG at time t and frequency f . It can be expressed, following the (time-varying) source-filter model, as

∀( f ,t), X( f ,t) = X (e) ( f ,t)X (ϕ) ( f ,t), (1) 
where X (e) ( f ,t) (resp. X (ϕ) ( f ,t)) is the modulus of the STFT of the excitation (resp. the filter), which can be recast as

X = X (e) X (ϕ) , (2) 
X ∈ R F×N + , X (e) ∈ R F×N + and X (ϕ) ∈ R F×N + , with F the number of frequency bins and N the number of time windows.

is the Hadamard product (i.e. the element-wise multiplication) and R + is the non-negative real numbers set.

C. FHR estimation based on NMF

In view of the spectrogram structure, it is common to use the NMF for its analysis and interpretation. Indeed, the NMF is a matrix decomposition algorithm that allows to factorize the spectrogram as a product of matrices of lower rank [START_REF] Paatero | Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values[END_REF], [START_REF] Lee | Learning the parts of objects by nonnegative matrix factorization[END_REF]. Applying the NMF on the spectrogram of our sourcefilter model leads to [START_REF] Durrieu | Main instrument separation from stereophonic audio signals using a source/filter model[END_REF], [START_REF] Dia | Heart rate estimation from phonocardiogram signals using non-negative matrix factorization[END_REF] X W (e) H (e)

W (ϕ) H (ϕ) , (3) 
where

W (e) ∈ R F×K e + (resp. W (ϕ) ∈ R F×K ϕ +
) is the spectral matrix of the excitation (resp. the filter) and

H (e) ∈ R K e ×N + and H (ϕ) ∈ R K ϕ ×N +
are their related temporal amplitudes (K e < min(F, N) and K ϕ < min(F, N)). To take into account the harmonic structure, each column of excitation dictionary W (e) is a Dirac comb whose fundamental frequency is chosen in a range of possible fetal HRs, typically between 30 and 300 beats per minutes (bmp). Therefore H (e) has to select, at each instant t, the more consistent cardiac frequency among all found in the dictionary. W (ϕ) allows to estimate the spectral envelop of the fetal PCG and the matrix H (ϕ) contains its temporal evolution. These matrices, except W (e) which is fixed, are iteratively updated thanks to our NMFbased algorithm whose details are given in [START_REF] Dia | Heart rate estimation from phonocardiogram signals using non-negative matrix factorization[END_REF].

The FHR is carried by H (e) and is estimated by extracting the cardiac frequency corresponding to the maximum amplitude in each column of H (e) :

FHR(t) = ν arg max k H (e) k,t , (4) 
where

H (e)
k,t is the (k,t)-th entry of H (e) and ν ∈ R K e is the vector of the K e fundamental frequencies of each Dirac comb of W (e) . Nevertheless, FHR values estimated by ( 4) do not all correspond to the cardiac frequency at each time but can correspond to one of its harmonics or sub harmonics as shown in the results section (Section III-A). To propose a more robust estimation of the FHR, a post-processing is applied on the FHR (4) to detect if it is a (sub-)harmonic of the cardiac frequency and then to correct it. The detection of the (sub-)harmonic FHR estimation from FHR(t) is based on its derivative and the comparison with a average FHR as detailed below. As one can see on Fig. 3, when the FHR is detected as its second harmonic or its half sub-harmonic, the relative derivative of FHR(t) defined as

∆FHR(t) = FHR(t) -FHR(t -1) FHR(t -1) , (5) 
presents some jumps equal to 1 and -0.5 which mark the beginning and the end of each wrong estimation. However, both values can be related to a begin or to an end. To disambiguate them, a reference average FHR FHR re f (t) is computed as the moving median of FHR(t) on the last minute, and is compared to FHR(t) to provide a corrected FHR estimation FHR * (t) by the following scheme: ≤ 0.1. For all the values inside this segment, FHR * (t) = 2 FHR(t).

• if ∆FHR(t) ∈ [.
• else there is no error and FHR * (t) = FHR(t).

III. RESULTS AND DISCUSSIONS

The following paragraphs firstly present the results obtained by our proposed NMF-based algorithm for FHR estimation and then discussions and perspectives that follow.

A. Accuracy of H (e) and fetal heart rate estimation Figure 4 shows an example of FHR estimated by our proposed algorithm. The estimation of H (e) highlights a timevarying fundamental frequency around 140 bpm, corresponding to a classical average value for FHR. The FHR estimation obtained according to (4) is depicted in the second row of Fig. 4: one can observe some outliers around 300 bpm due to selection of the second harmonic instead of fundamental component. FHR estimation after post-processing is presented in the third row of Fig. 4, where we can notice that some cardiac frequencies have been rectified, reducing therefore the number of outliers.

Figure 5 illustrates the behaviour of the proposed approach to estimate the FHR. Three parts are highlighted (white rectangular windows) to show three typical situations. Window a) shows a fetal PCG where S 1 and S 2 sounds are hardly identifiable. Window b) highlights fetal PCG where S 1 and S 2 sounds are recognizable and window c) illustrates andc) with important noise a very noisy fetal PCG. Our proposed algorithm is obviously efficient when S 1 and S 2 sounds are easily recognizable (Fig. 5b) but also when both constitute only one pattern with noise (Fig. 5a). This is valuable compared to some classical methodologies based on PCG envelop detection which need to locate S 1 and S 2 sounds. However, when the signal is really noisy (Fig. 5c), our proposition gets still some difficulties for an accurate estimation of FHR.

B. FHR estimation quantitative evaluations

To quantify the accuracy of the FHR estimation by our proposed method, the post-processed FHR is compared to the one provided by the synchronous CTG (Fig. 6) for two volunteers (V 1 and V 2 ). In both cases, one can notice that the FHR estimation from CTG and from our proposed NMF-based algorithm are very similar and follow the same variations and variability. For these 2 volunteers, correlation between FHR from CTG and FHR from PCG is respectively evaluated at 91% for V 1 and 84% for V 2 . Unfortunately, CTG was not exploitable for volunteer V 3 , due to a problem of synchronization, and acquisition for volunteer V 4 has been made without CTG. In addition, complementary quantitative evaluation has been made for the four volunteers and is depicted on Table I. It reports the ratio of outliers defined as the FHR estimations that differ from the reference average FHR FHR re f (t) by more than 10% divided by the total number of FHR estimations. This ratio is evaluated between 0.6% and 14.3% for the 4 volunteers, which highlights that FHR estimations are consistent in almost 90% of cases. 

C. Discussions and perspectives

These preliminary results on a few volunteers are promising since our proposed approach shows up a good correlation between the FHR estimated from CTG and PCG while the PCG signal may be sometimes complicated. But this has to be confirmed on more volunteers. In that purpose, a complete campaign of evaluation is planned as new acquisitions are considered in the context of larger clinical protocols.

From a methodological point of view, even if the proposed algorithm seems to be of high interest for FHR estimation, there are still some noisy segments of PCG signals where it fails. Some post-processing steps allow to correct some wrong estimations, but there is still tracks of improvements. Therefore, we propose on one hand to enhance the proposed methodology by taking into account detection issue related to the frequency dictionary (i.e. a better estimation of H (e) ). On the other hand, it would also be interesting to combine synchronous abdominal PCG and ECG to take benefits of multimodality either by switching between modalities or by joining the NMF processing of both modalities, as information given by both can be complementary and/or redundant.

IV. CONCLUSION

In this paper, we have proposed a novel approach for FHR estimation based on a source-filter model estimated by a NMF applied on the spectrogram. From a unique abdominal microphone and with a simple band-pass filtering pre-processing step, we are able to estimate a FHR with a certain robustness to noise. Moreover, comparisons with CTG reference recordings show that our estimations are coherent and correspond to the fetal cardiac rhythm. This promising simple procedure to estimate the FHR from a single abdominal microphone can be improved to achieve an even more accurate estimation than the proposed one by improving the estimation of H (e) and the extraction of the FHR from it.
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 1 Fig. 1. Fetal PCG in gray line (abdominal PCG after simple 20 -200 Hz band-pass filtering) and its envelop in black line
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 2 Fig. 2. Spectrogram of a fetal PCG (F s = 1kHz, window = 4s, shift = 32ms, zero-padding ratio = 4)
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 3 Fig. 3. Algorithm of post-processing. Top: FHR estimation (4) (black points) and the average FHR FHR re f (t) (grey line). Bottom: FHR relative derivative (5).
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 45 Fig. 4. Estimation of FHR for volunteer V 4 . From top to bottom: matrix H (e) estimated according to our proposed NMF-based algorithm, FHR estimation (4) extracted from H (e) and FHR after post-processing step.
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 6 Fig.6. Comparison between FHR estimation from fetal PCG (in black points) and FHR estimation from reference CTG (in blue line) for two volunteers V 1 (left) and V 2 (right)