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ABSTRACT. We analyse two probabilistic methods for the proof of the conjecture and we provide a comparison of
the proofs, using the Reliability Integral Theory and the SPQR Principle.
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1. Introduction

A problem posed by L. Collatz in 1937 (also called the 3x+1 mapping), states that the system of
the two difference equations, involving natural numbers,
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�

� � �

� �

(1)

given the initial condition y0 (any integer positive number) arrives after some (n is a number not
known in advance) “continued” iterations to the value yn=1.
Numerical experiments confirmed the validity of the conjecture for extraordinarily large values of
the starting integer y0: it always reached 1 for all numbers up to 5.48 1018. (Oliveira e Silva 2008)
The system (1) can be reduced to a non-linear difference equation, as the following one

� � � �
� �

� (2)
The numbers yk+1 of the sequence provided by the previous (Collatz) equations are sometimes
named hailstone numbers.
It is considered a very difficult problem to be solved, in spite of its very simple definition; they say
that Erdős commented that "mathematics is not yet ready for such problems".
In this document we compare two approaches, the 1st based on the paper Quantifying the degree
of average contraction of Collatz orbits. [1], and the 2nd based on the document Proof of the
Syracuse_Collatz Conjecture. [2]; both of them use a Markov approach to make the proof
“plausible”.
We will use excerpts of them to make clear the difference.
Before that we provide a little of matrix algebra.
Let u(k) an infinite dimensional row vector, with all entries ui(k)=0, but one entry uy(k)=1: it is a unit
vector of vector space. The vector u(k) refers to the k-th iteration of a mapping T: the result of the
mapping T to the vector u(k) is denoted u(k+1)=u(k)T. The vector u(k+1) is unit vector with all
entries uj(k+1)=0, but one entry uy*(k+1)=1, where we have the subindexes y*y. The subindexes
are according to (1): if uy(k)=1, then y=yk and the index y* of entry uy*(k+1)=1 of the vector u(k+1)
has index y*=yk/2 IF yk is even, and y*=3yk+1 IF yk is odd.
The mapping T is provided by an infinite-dimensional matrix P=[aij], named transition matrix (with
infinite rows and columns); rows and columns are indexed by the natural numbers 1, 2, 3, 4, ..., n,
n+1, ...; every aij entry is 0, except

� � ,� � � �
�

�
........(3)

where the indexes i and j are given by (1).
Accordingly we have

u(k+1)=u(k)P (4)



In the figure 1 we show the transition matrix; the 3 by 3 matrix with rows and columns indexed by
the numbers 1, 2, 4, is highlighted due to its importance:

 when the system is in the state 1, the next transition is to state 4: 1  4
 when the system is in the state 2, the next transition is to state 1: 2  1
 when the system is in the state 4, the next transition is to state 2: 4  2

All this means that when the system enters one of those 3 states [1, 2, 4] it never leaves out of
them, the system (or the process) circulates in the set [1, 2, 4] forever. It is a “periodic process”.

state 1 2 4 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ………………………………

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ………………………………

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ………………………………

6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

12 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

14 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

18 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ………………………………

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

20 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ………………………………

… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

… 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ………………………………

… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

… 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ………………………………

… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

… 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ………………………………

… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

… 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ………………………………

… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ………………………………

… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ………………………………

… 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ………………………………

Figure 1. The transition matrix P [only a part is shown]

The matrix P can be partitioned into 4 submatrices, written simply as

where P11 and P22 are square matrices, given more explicitly by (notice that P11 refers to the
states 1, 2, 4)
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It is important to notice that P3, the 3rd power of the matrix P, is such that the submatrix

� �
� (5)

is the identity matrix; when the system reaches the set 1, 2, 4 of the states it remains there
forever. It follows that � � �

� � = � � �
� .

2. The ideas in Quantifying the degree of average contraction of
Collatz orbits. arXiv:1612.07820.v1

The paper is very interesting.
We use various excerpts from the paper. The authors say:
In this paper, we provide a novel argument to support the validity of the Collatz conjecture. To anticipate our
findings, we shall demonstrate that the third iterate T°3 of the Collatz map admits three fixed points, 1, 2 and 4. These
latter elements define the, supposedly unique, attracting cycle conjectured by Collatz. The third iterate map is
naturally defined on the mod8 congruence classes of positive integers. We thus quantify the factor of relative
compression or expansion, as follows the application of T°3, on each of the eight congruence classes obtained under
the mod8 operation. In the second part of the paper, we show that orbits are on average bound to asymptotically
shrink in size so heading towards the deputed equilibrium. We will further enhance the resolution of the measure by
reducing to an arbitrary extent the degree of imposed coarse graining, i.e. working on the congruence classes mod8m

for any chosen m. Working in this generalised setting, we will prove that the average Collatz dynamics is contracting,
for m large as sought, namely shrinking the congruence classes arbitrarily close to the singletons corresponding to
each integer.
Markov processes based on congruence classes invariant under application of T have been previously considered in
[…] and revisited by Lagarias in his comprehensive survey on the (3x + 1) problem […]. It is however the combined
usage of (i) the third iterate map T°3, (ii) the representation of numbers in mod8 , (iii) the idea of employing a Markov
chain constructed from T°3 via a suitably defined measure, that allows us to draw a rigorous bound for the
contraction factor, which is not just heuristically guessed.
To guide the reader through the text we shall hereafter provide a schematic outline of the main steps involved in the
analysis, by making explicit reference to specific key results.

 We will begin by defining the third iterate of the Collatz map hereby named S = T°3.
 We will determine the action of S on integers expressed in mod8. We will obtain class-dependent, B(i; 8) (i =

0; : : : ; 7), expansion/contraction factors that exemplify the action of S, see Eqs. (3). Working in this setting
we will also show that 1; 2; 4 are the only fixed points of the deterministic map S. The subsequent analysis is
targeted to showing that the trajectories of S are bound to converge on average to one of the above fixed
points.

 To this end we first introduce a finite states Markov chain which runs on the eight congruence classes B(i; 8)
(i = 0; : : : ; 7). The transition probabilities are given by equation (8) and have been obtained using the S-
invariant measure inv on the classes B(j; 8m), m 1 and j = 0; : : : ; 8m -1.

 The measure inv is defined by equation (12) (or equivalently equation (14)). The invariance of the measure
under S is proved in Theorem 5.

 Since the transition probabilities are computed from the S-invariant measure, it is possible to draw conclusion
on the iterates of S (namely its restriction in mod8) by iterating forward the Markov process. This observation



follows from a straightforward application of the Chapman-Kolmogorov equation, as discussed in
Proposition 9. The explicit form of the stochastic matrix Q* that characterises the introduced Markov chain is
given in Proposition 10. The stochastic chain does not account for the specificity of 1; 2; 4, the equilibria of S.
It will hence allow us to elaborate on the out-of-equilibrium dynamics of S, prior (possible) convergence to
the asymptotic Collatz equilibrium.

 The stationary distribution of the Markov chain is computed and given by formula (29). Recall that by
iterating forward the Markov chain one can inspect the equilibrium dynamics of S, in its mod8 representation,
see Proposition 9.

 By using the expansion/contraction factors associated to each of the classes B(i; 8) (i = 0; : : : ; 7) one can
show that the deterministic trajectories are on average contracting. This is substantiated by formula (30).

 The analysis is generalised by working on the congruence classes mod8m, for any m. By operating in this
setting, we will proof that the average Collatz dynamics is contracting, for arbitrarily large m, i.e. shrinking
the size of the congruence classes as sought. Remarkably, the estimated upper bound for the contraction
factor is shown to be independent on m.

Excerpt 1. From the paper “Quantifying … of Collatz orbits. arXiv:1612.07820.v1”

We give the information connecting excerpt 1 with the Introduction:
The mentioned mapping T is represented (in the Introduction) by the Matrix P.
The mentioned third iterate of the Collatz map hereby named S = T°3 is represented (in the
Introduction) by the Matrix P3.
The infinite matrix P3 is reduced to a matrix 8 by 8 Q*, using a congruence mod8 on the integer
numbers. 8 equivalence classes are obtained B(i, 8) and indicated as B(0, 8), B(1, 8), B(2, 8), B(3,
8), B(4, 8), B(5, 8), B(6, 8), B(7, 8). The matrix Q* is stochastic as given in the excerpt 2 [rows and
columns are indexed by the classes B(i, 8)]

Excerpt 2. From the paper “Quantifying … of Collatz orbits. arXiv:1612.07820.v1”

The authors show that there is a steady state probability vector, named Pstat, of being in the
equivalence classes B(i, 8)

Pstat=(1/6; 1/12; 1/6; 1/12; 1/6; 1/12; 1/6; 1/12) (29)

Excerpt 3. From the paper “Quantifying … of Collatz orbits. arXiv:1612.07820.v1”

From Pstat it is clear that the process does arrive into the set B(1, 8), B(2, 8), B(4, 8) BUT it does
not stay there “forever” after its arrival. The process does not end in the set 1, 2, 4, that is,
process does not end in the three fixed points, 1, 2 and 4. (as the authors say)! Therefore the
authors are forced to prove that that the deterministic trajectories are on average contracting.

Eventually they write in the Conclusion
In this paper we have provided an analytical argument to support the validity of the so called Collatz conjecture, a
long standing problem in mathematics which dates back to 1937. The analysis builds on three main pillars. In short,
we (i) introduced the (forward) third iterate of the Collatz map (so to reduce the analysis of the period 3 cycle to a
search for a fixed point) and considered the equivalence classes of integer numbers modulo 8; (ii) defined a Markov
chain (based on a suitable non trivial measure) which runs on a set of finite states and whose transition probabilities
reflect the deterministic map; (iii) showed that orbits are on average contracting, as follows strict bound that
combines the visiting frequencies, as derived in the framework of the aforementioned stochastic picture, and the



contraction/expansion factors associated to each transition among classes. Notice that the conclusion reached holds
for any level of imposed coarse graining, i.e. by computing the visiting frequencies on the partition in mod8m classes,
with m large as wished. Despite the measure introduced cannot be extended to weight individual singletons, we can
proof that the Collatz dynamics is contracting on uniform partitions of the natural numbers in classes. These
partitions can be refined to approximate singletons with suited accuracy, without eventually converging to them.

Excerpt 4. From the paper “Quantifying … of Collatz orbits. arXiv:1612.07820.v1”

3. The ideas in Proof of the Syracuse_Collatz Conjecture. 2019.
<hal-02048821> and Academia.Edu

Some of them have been given in the Introduction, in order to make comparable the ideas of T.
Carletti, D. Fanelli [1] with the ones of Galetto, F. [2].
Please see them there: the transition stochastic matrix P of figure 1, partitioned into 4 submatrices,

� = �
� � � 0
� � � � � �

� where P11 and P22 are square matrices (noticing that P11 refers to the set 1, 2,

4 of the states), given more explicitly by the following matrix in the introduction.
The process is a “periodic” with period 3: when the system enters one of the 3 states [1, 2, 4] it
never leaves the set 1, 2, 4, the system (or the process) circulates in the set 1, 2, 4 forever.
P3, the 3rd power of the matrix P, is such that the submatrix � � �

� [see formula (5)] is the identity
matrix; when the system reaches the set 1, 2, 4 of the states it remains there forever because
the rectangular submatrix � � � in the upper right corner has only 0 entries.
The process is bound to enter the set S1=1, 2, 4 because the rectangular submatrix � � � in the
lower left corner has only one 1 entry [the other entries are all 0]. The “periodic process” circulating
in the set S1=1, 2, 4 is ruled by the submatrix P11. The infinite set S2=3, 5, 6, 7, …. comprises
all the other states. The transitions are given in figure 2.

Figure 2. The two disjoint sets S1 and S2

By using the theory given in the books [3, 4] related to Reliability Integral Theory [RIT] one can find
two vectors z1 and z2 defined, as follows,

 z1 is the vector of the (steady state) probabilities of entering into one of the states 1, 2,
4 [S1], when there is a transition S2=3, 5, 6, ..., n, n+1, ....  S1=1, 2, 4.

 z2 is the vector of the (steady state) probabilities of entering into one of the states 3, 5, 6,
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and transitions
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..., n, n+1, .... [S2], when there is a transition from S1=1, 2, 4  S2=3, 5, 6, ..., n, n+1,

.....
z1 is by definition a three-dimensional row vector [0, 0, 1] related to the set S1; see the figure 2.
The system enters into the set S1 only through the state 4.

4. Comparison of the findings by the ideas …

We rearrange the states [8 equivalence classes are obtained B(i, 8)] of the finite process described
by the previous stochastic matrix Q* (given in the excerpt 2) as follows

Matrix QG
State->state

B(1, 8) B(2, 8) B(4, 8) B(5, 8) B(6, 8) B(0, 8) B(3, 8) B(7, 8)

B(1, 8) 0.25 0.00 0.00 0.25 0.00 0.00 0.25 0.25

B(2. 8) 0.00 0.25 0.25 0.00 0.25 0.25 0.00 0.00

B(4. 8) 0.00 0.25 0.25 0.00 0.25 0.25 0.00 0.00

B(5. 8) 0.00 0.25 0.25 0.00 0.25 0.25 0.00 0.00

B(6. 8) 0.25 0.00 0.00 0.25 0.00 0.00 0.25 0.25

B(0. 8) 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

B(3. 8) 0.00 0.00 0.50 0.00 0.00 0.50 0.00 0.00

B(7. 8) 0.00 0.50 0.00 0.00 0.50 0.00 0.00 0.00

where the states B(1, 8), B(2, 8), B(4, 8) are in the left top corner.
The new Pstat is consequently

State B(1, 8) B(2, 8) B(4, 8) B(5, 8) B(6, 8) B(0, 8) B(3, 8) B(7, 8)

Pstat_QG 0.0833 0.1667 0.1667 0.0833 0.1667 0.1667 0.0833 0.0833

Figure 3. The two disjoint sets UP and Down (re-entering into the states are not shown)

The MTTF (Mean Time To Forward, from each UP state to the Down set) is a 3-dimensional
column vector

B(1,8)

States partitioned

and transitions (reentering into the states are not shown)

UP

Down

B(2,8)

B(3,8) B(5,8)

B(6,8) B(7,8)

B(0,8)

B(4,8)



1.333
2.000

2.000
while the MTTR (Mean Time To Return, from each Down state to the UP set) is a 5-dimensional
column vector

2.316
2.737
2.526
2.263

2.368
MTTF and MTTR provide the mean number of transitions from each state of a set tot the disjoint
set.
By using the theory given in the books [3, 4] related to Reliability Integral Theory [RIT] one can find
two vectors z1 and z2 defined, as follows,

 z1 is the vector of the (steady state) probabilities of entering into one of the UP, when
there is a transition Down  UP.

 z2 is the vector of the (steady state) probabilities of entering into one of the Down states,
when there is a transition from UP  Down.

z1 is a three-dimensional row vector related to the UP set (see the figure 3):
z1 0.27273 0.36364 0.36364

so that the MUT (Mean Up Time) is MUT=1.818182
z2 is a five-dimensional row vector related to the Down set (see the figure 3):

z2 0.09091 0.36364 0.36364 0.09091 0.09091
so that the MDT (Mean Down Time) is MDT=2.545455
The MCT (Mean Cycle Time) is MCT=4.363636
The probability that the process is in the set UP=B(1, 8), B(2, 8), B(4, 8) is ASS=0.42=MUT/MCT
(as it must be).
Each state has its own recurrence time [with the fraction of time spent in each state (one of the 8
equivalent classes)]:

state B(1, 8) B(2, 8) B(4, 8) B(5, 8) B(6, 8) B(0, 8) B(3, 8) B(7, 8)

recurrence time 12 6 6 12 6 6 12 12

Time spent in state 0.0833 0.1667 0.1667 0.0833 0.1667 0.1667 0.0833 0.0833

So we see that to “prove” the Collatz Conjecture one should prove that ASS1,2,4=1 and
MUT1,2,4=, from the above ideas ...
The two authors (ideas of T. Carletti, D. Fanelli [1]) write

Excerpt 5. From the paper “Quantifying … of Collatz orbits. arXiv:1612.07820.v1”



Excerpt 6. From the paper “Quantifying … of Collatz orbits. arXiv:1612.07820.v1”

The two authors (T. Carletti, D. Fanelli [1]) then write

Carrying out the calculation yields fQ*=3/4<1, thus implying in turn that the average approach to
the absorbing equilibrium is contracting. … Notice that this preliminary estimate fQ*=3/4 has been
obtained by just retaining the terms proportional to n in the definition of S(n), see Eqs. (3), or, equivalently,
working with a sufficiently large n. Accounting for the constant (n independent) contributions in (3) does not
modify the conclusion that we have reached: the generic orbit is always contracting, as it is proved
hereafter. Consider in fact Eqs. (3) which define the map S on the classes B(i; 8). … Since 1; 2; 4 belong
to the Collatz cycle, and because we are solely focusing on the dynamics that precedes the possible
convergence to the Collatz cycle… Performing the calculation yields fQ*0.8926. The dynamics of S is
therefore contracting and trajectories are on average attracted towards the three fixed points as identified
above, namely the entries of the Collatz cycle 1; 2; 4.

Excerpt 7. From the paper “Quantifying … of Collatz orbits. arXiv:1612.07820.v1”

The two authors (T. Carletti, D. Fanelli [1]) then consider a number 8m of equivalent classes B(i,
8m), generated by the congruence mod8m. By increasing m, one generates more and more classes
[process states], always with the Collatz cycle 1; 2; 4.
The two authors prove that there is a stochastic matrix Q(m) [a 8m by 8m matrix] which provides a
stationary row vector Pstat(m)=[a, b, a, b, …, a, b] solution of the equation Pstat(m)=Pstat(m)Q(m),
where a=0.1667/8m-1 and b=0.0833/8m-1. Each state has its own recurrence time [with the fraction
of time spent in each state (one of the 8m equivalent classes)]:

state B(1, 8m) B(2, 8m) B(4, 8m) B(5, 8m) B(6, 8m)

recurrence time 12*8m-1 6*8m-1 6*8m-1 12*8m-1 6*8m-1

Time spent in state 0.0833/8m-1 0.1667/8m-1 0.1667/8m-1 0.0833/8m-1 0.1667/8m-1

state B(0, 8m) B(3, 8m) B(7, 8m) …… B(8m-1, 8m)

recurrence time 6*8m-1 12*8m-1 12*8m-1 … ……

Time spent in state 0.1667/8m-1 0.0833/8m-1 0.0833/8m-1 … ……

Again we see that to “prove” the Collatz Conjecture one should prove that ASS1,2,4=1 and
MUT1,2,4=, from the above ideas ...
In F. Galetto opinion, the Collatz Conjecture is not made plausible by T. Carletti and D. Fanelli [1],
because as m the probability that the process is in the Collatz cycle 1; 2; 4 tends to 0 and
not to 1… Perhaps F. Galetto did not understand…
Then the following remarkable conclusion … is in doubt …

The remarkable conclusion is therefore that the third iterate of the Collatz map is always contracting, when
seen on the equivalence classes B(i; 8m), for m large as sought, and that the estimated bound for the
contraction factor is independent on the classes index m. In other words, we can make the number of classes
as large as wished (and consequently reduce their size so to approach the singletons with arbitrary accuracy),
while still detecting a contracting deterministic dynamics, with a constant (independent on m.) bound for the
rate of contraction. As previously remarked when the limit for m that goes to infinity is performed, the
measure of the classes, and hence the singletons, converges to zero. Despite the fact the contracting factors
stays constant for any, arbitrarily large m, it seems that we cannot rule out the existence of zero measure



orbits that violate this constraint.

Excerpt 8. From the paper “Quantifying … of Collatz orbits. arXiv:1612.07820.v1”

Now let’s go the F. Galetto method [2], as sketched in the section 3. See the figure 2, as well.
The reader is asked to see the transition stochastic matrix P of figure 1, partitioned into 4

submatrices, � = �
� � � 0
� � � � � �

� where P11 refers to the set 1, 2, 4 of the states (named Collatz

cycle by T. Carletti, D. Fanelli [1]). The process is a “periodic” with period 3: when the system
enters one of the 3 states of set 1, 2, 4 it never leaves the set, the system (or the process)
circulates in the set 1, 2, 4 forever. P3, the 3rd power of the matrix P, is such that the submatrix

� � �
� [see formula (5)] is the identity matrix; when the system reaches the set 1, 2, 4 of the states

it remains there forever because the rectangular submatrix � � � in the upper right corner has only 0
entries. The process is bound to enter the set S1=1, 2, 4 because the rectangular submatrix
� � � in the lower left corner has only one 1 entry [the other entries are all 0]. The “periodic process”
circulating in the set S1=1, 2, 4 is ruled by the submatrix P11. The infinite set S2=3, 5, 6, 7, ….
comprises all the other states. The transitions are given in figure 2.
After entering S1 the probability of being in the states 1, 2, 4 is given by a vector =[1/3, 1/3, 1/3]
solution of the relationship =P11, which means that the mean recurrence time in each state is 3.
z2 is by definition an infinite dimensional row null vector [0, 0, 0, ...., 0, ...] related to the set S2;
see the figure 2. The system never enters into the set S2 from S1.
This means that
 IF a person choose a number y0  S2=3, 5, 6, ..., n, n+1, ....

 and applies the rules � � �

�

� � �

� �
 then the Markov system enters the state y0  S2 for the first time,
 it makes all the needed transitions within the set S2 (figure 2)
 until it goes into the set S1=1, 2, 4 (figure 2)
 and it remains there, with probability vector : periodic process

5. Conclusion

Having applied the SPQR («Semper Paratus ad Qualitatem et Rationem») Principle, the author
thinks that his probabilistic method is able to show the (probabilistic) proof of the Syracuse_Collatz
Conjecture.
On the contrary, the Collatz Conjecture (in spite of an interesting paper) is not made plausible by
T. Carletti and D. Fanelli [1], because as m the probability that the process is in the Collatz
cycle 1; 2; 4 tends to 0 and not to 1… Therefore the mean recurrence time in each state is
infinite. As a matter of fact to “prove” the Collatz Conjecture one should prove that ASS1,2,4=1 and
MUT1,2,4= ...
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