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Abstract

Mouse tracking promises to be an efficient method to investigate the dynamics of cognitive

processes: it is easier to deploy than eye-tracking, and yet it is in principle much more fine-

grained than looking at response times. We investigate its claimed benefits directly, asking how

features of decision processes, and notably decision changes, may be captured in mouse move-

ments. We ran two experiments, one in which we explicitly manipulate whether our stimuli

trigger a flip in decision, and one in which we replicate more ecological, classical mouse tracking

results on linguistic negation (Dale & Duran, 2011). We conclude, first, that spatial information

(mouse path) is more important than temporal information (speed and acceleration) for detect-

ing decision changes, and we offer a comparison of the sensitivity of various typical measures

used in analyses of mouse tracking (area under the trajectory, direction-flips, and others). We

do so using an ‘optimal’ analysis of our data (a linear discriminant analysis) explicitly trained

to classify trajectories), and see what type of data (position, speed, acceleration) it capitalizes

on. We quantify how its results compare with those based on more standard measures.

1 Introduction

In the past ten years, mouse tracking has become a popular method for studying the dynamics of

cognitive processes in different domains, ranging from general decision making (Koop, 2013; Koop

& Johnson, 2013; McKinstry, Dale, & Spivey, 2008) and social cognition (Freeman & Ambady,

2010; Freeman, Dale, & Farmer, 2011; Freeman & Johnson, 2016; Freeman, Pauker, & Sanchez,

2016), to phonetic competition (Cranford & Moss, 2017; Spivey, Grosjean, & Knoblich, 2005), and

syntactic, semantic and pragmatic processing (Dale & Duran, 2011; Farmer, Cargill, Hindy, Dale,

& Spivey, 2007; Sauerland, Tamura, Koizumi, & Tomlinson, 2015; Tomlinson, Bailey, & Bott, 2013;

Xiao & Yamauchi, 2014, 2017, among others).

While response times can reveal whether a decision process is fast or slow (Donders, 1969),

and analyses of response time distributions can give insight into how the decision process unfolds

(Ratcliff & McKoon, 2008; Usher & McClelland, 2001, among others), mouse movements promise a
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more direct window onto the dynamics of cognitive processes, under the assumption that motor re-

sponses are planned and executed in parallel to the decisions they reflect (Freeman & Ambady, 2010;

Hehman, Stolier, & Freeman, 2014; Resulaj, Kiani, Wolpert, & Shadlen, 2009; Song & Nakayama,

2006, 2009; Spivey & Dale, 2006; Spivey, Dale, Knoblich, & Grosjean, 2010; Wojnowicz et al., 2009).

Concretely, if a response is entered by clicking on a button, one may measure the time needed to

click on that button and use it as a reflection for the complexity of the decision, roughly. But de-

pending on whether participants are decided from the start, hesitate, or undergo a radical change

of decision, the path to that button may take different trajectories (see Figure 1, Wojnowicz et al.,

2009).

Accordingly, researchers have studied the shape and dynamics of mouse paths to document

aspects of numerous types of decision processes (see review in Freeman, 2018). Dale and Duran’s

(2011) approach to negation processing is an example of this. Linguistic negation has been tra-

ditionally understood as an operator that reverses sentence truth conditions, inducing an extra

“step,” or “mental operation,” in online processing (Wason, 1965; Wason & Johnson-Laird, 1972;

see review in Tian & Breheny, 2016). Dale and Duran tracked mouse trajectories as participants

performed a truth-value judgment task, where they had to verify the truth of general statements

such as Cars have (no) wings. The authors found that mouse trajectories gave rise to more shifts

towards the alternative response when evaluating negative than affirmative true sentences out of

context. This was interpreted as evidence for a “two-step” processing of negation, where truth

conditions for the positive content are initially derived and negated only later, as a second step (see

?.1

More generally, one can extract several measures from the mouse paths (e.g., maximal deviation

point, number of direction changes, etc.) and argue, for instance, that the deviation of these

measures from what they would be for an optimal, straight trajectory reflects the relevant decision

change.

This raises a fundamental question: what exactly does it mean for a mouse path to be deviated?

That is the main topic of this paper.

Our goal is to explicitly document the mouse-tracking method and the connection between

cognition (decision making) and action (mouse trajectories): what in a decision process is reflected

1In line with Dale and Duran (2011), several studies have shown that, at an early processing stage, negation is

often ignored and the positive argument of a negative sentence (e.g. ‘the door is open’ for The door is not open)

is represented (Hasson & Glucksberg, 2006; Kaup, Yaxley, Madden, Zwaan, & Lüdtke, 2007; Lüdtke, Friedrich,

De Filippis, & Kaup, 2008, among others). This pattern of results, however, depends on a number of factors, such

as the amount of contextual support given for the sentence and the availability and type of alternatives at play.

Indeed, the “two-step” processing of negation seems to occur specifically for sentences presented out-of-the-blue,

whereas no difference between negative and positive sentences arises when the right contextual support is provided

(Dale & Duran, 2011; Nieuwland & Kuperberg, 2008; Tian, Breheny, & Ferguson, 2010). Similarly, the positive

argument seems to only play a role for negation processing when the positive alternative is fully available (e.g. binary

predicates). When there is more than one alternative, or the alternative(s) are not available, negative sentences

are processed straightforwardly (Orenes, Beltrán, & Santamaŕıa, 2014). How to interpret these different processing

patterns has been at the center of the debate in the negation literature (see Tian & Breheny, 2016 for review), where

the “two-step” strategy is often considered to be rather marginal. In the present paper, however, we will precisely

focus on cases that are predicted to trigger a “two-step” derivation, without discussing further examples.
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Figure 1: Shape of trajectories underlying distinct decision processes. One single cognitive

process is expected to be mapped onto one smooth trajectory (blue line), whereas a change of mind

would be reflected by a two-step path (red line). Intermediate cases are represented in gray.

in mouse movements—decision changes, hesitations, or other properties?— and how —in changes in

acceleration, changes in direction, or other aspects of the trajectory? We will tackle this question by

asking what features of mouse trajectories distinguish straightforward decisions, based on a single

initial commitment, and switched decisions, which involve a change of mind in the course of the

process.2

The distinction made here between switched and straightforward decisions should not be taken

to rely on any specific account of decision making (e.g. serial vs. parallel). Originally, the idea of a

‘deviated’ or ‘switched’ mouse path came from an intuition about serial processing: the mouse path

goes to one alternative, then switches to the other, because a hard decision is taken, and then a hard

change of mind is made. Indeed, this is the kind of claim traditionally made about how linguistic

negation is processed (Clark & Chase, 1972). There are, however, many other ways to interpret

deviated mouse paths, both in general and in the specific case of negation. Decisions could, for

instance, involve parallel competition between alternatives, with different degree of commitment

2We have not been able to access the full details of the method but a reviewer has suggested that Wulff et al.

(2018,A Handbook of Process Tracing Methods) provides a related method to ours. Indeed, the Mousetrap package

developed by Kieslich and Henninger (2017) also provides a method to perform a classification of trajectories based

on the distance to prototypical trajectories. This approach conceptually differs from the approach we take here:

while it is possible to use the LDA measure we train to do classification, we are interested primarily in extracting a

continuous measure of the degree of deviation in mouse paths.
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towards each option (Spivey et al., 2010). In the specific case of negation, the deviation in mouse

trajectories might be driven by task effects that might not tell us anything about negation processing

per se (see fn. 1, Orenes et al., 2014; Tian & Breheny, 2016).

In the present study, we just aim to identify how these two ends of the decision spectrum

are reflected in mouse trajectories, without discussing the underlying mechanisms in the decision

making process. Although we will not examine the many interpretations for our experiments, we

do think some of these bigger issues can be addressed with a methodology similar to the one we

use here. We will come back to this in the discussion.

This paper is organized as follows: first, we present a validation experiment where we directly

manipulate whether the stimuli trigger a flip in what the appropriate response is in the course

of a trial (see Study 3 in Farmer et al., 2007 for a similar validation experiment). We show that

the mouse paths do indeed reflect these changes (Section 2). An analysis of this data using linear

discriminant analysis (henceforth, LDA), confirms that the two types of decision, straightforward

and switched, can be distinguished objectively (Section 3). We then compare the performance of

the LDA classifier trained on the results of the validation experiment to traditionally used mouse

tracking measures (Section 4). Finally, the LDA classifier trained on the validation data is further

tested with new, more “ecological” data, obtained from a replication of Dale and Duran’s (2011)

experiment on the processing of negation mentioned above (Section 5). If there is a change of

decision triggered by negation, trajectories corresponding to negative trials should be classified

together with trajectories underlying changes of decision in the validation experiment.3

2 Validation experiment: Presentation and qualitative analysis

Participants were asked to perform a two-alternative forced choice task. Each trial was triggered by

clicking on a start button at the bottom of the screen. A frame surrounding the screen would then

appear and the participants’ task was to indicate whether the frame was blue or red by clicking

on the appropriate “blue” or “red” buttons at the top left or top right of the screen, respectively.

On most trials, the color of the frame remained stable throughout the trials, but in crucial cases it

changed during the trial. In the first case, the initial choice was the correct response (straightforward

trials. In the second case, participants were forced to change their answer (switched trials). The

switched trials are meant to mimic natural decision changes. We take these to be a reasonable

stand-in for changes of decision, even though there are obvious differences: in natural changes of

decision, alternative responses are weighted as the pieces of information are integrated, whereas

in our experiment the sensory information changes in time. We return to the question of how

ecological these decisions are in Section 5. The procedure is illustrated in Figure 2.

3Data and code for all the analyses developed in this paper are provided at https://osf.io/rbx3m/?view only=

7d557aa8931c4a0886e7ce2442a77895.

https://osf.io/rbx3m/?view_only=7d557aa8931c4a0886e7ce2442a77895
https://osf.io/rbx3m/?view_only=7d557aa8931c4a0886e7ce2442a77895
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after “Start”

STRAIGHTFORWARD 
TRIALS 

SWITCHED
TRIALS 

Figure 2: Procedure in Validation Experiment. Subjects were instructed to click the “start”

button in order to see the colored frame. Response boxes were on the top left or top right. De-

pending on the trial condition, the frame color either did, or did not, change (once) during the

trial.

2.1 Participants

We recruited 54 participants (27 female participants) using Amazon Mechanical Turk. Two subjects

were excluded from the analyses because they did not use a mouse to perform the experiment. All of

them were compensated with 0.5 USD for their participation, which took approximately 5 minutes.

2.2 Design

Each trial instantiated one of two possible Decision patterns. In straightforward trials, the frame

color remained stable, and the decision made at the beginning of the trial did not need to be revised.

In switched trials, the color switched once (from red to blue or from blue to red) during the trial,

forcing a revision of the initial choice. The change on switched trials was triggered by the cursor

reaching a certain position on the y-axis, which could be at various relative heights (point of

change: early, at 40% of the screen, middle, at 70%, or late, at 90%). The design is schematized

in Table 1.

To prevent participants from developing a strategy whereby they simply drag the cursor along

the center line rather than moving the mouse toward their current choice of answer, the proportion
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Decision Pattern Frame color Point of change

Straightforward
Blue

Red
never

Switched
Blue → Red

Red → Blue

early (y=40%)

middle (y=70%)

late (y=90%)

Table 1: Design in Validation Experiment

of trials was adjusted so that there were a majority of 64 straightforward trials (32 repetitions per

frame color), while there was only 24 switched trials (4 repetitions per final frame color and change

point).

2.3 Interface

The web interface was programmed using JavaScript. Mouse movements triggered the extraction

of (x, y)-pixel coordinates (there was thus no constant sample rate). Three buttons were displayed

during the experiment (“start” and response buttons). The “start” button was placed at the

bottom center of the screen. The two response boxes were located at the top left (“blue”) and top

right (“red”) corners. On each trial, between start-clicks and response-clicks, mouse movements

triggered the recording of the (x, y)-pixel coordinates of the cursor together with the time.

2.4 Data treatment

To allow comparisons between participants, the (x, y)-coordinates were normalized according to

participants’ window size: the center of the start button was mapped onto (0, 0) point, the “blue”

button onto (−1, 1) and the “red” button onto (1, 1). Variations both in response times and

in the sensitivity and sampling rate of our participants’ input devices imply that different trials

have different numbers of (x, y) positions per trial, making comparisons difficult. We therefore

normalized the time course into 101 proportional time steps by linear interpolation. That is, we

reduced all time points to 101 equally distant time steps, including the first and the last positions.

2.5 Overall performance

Inaccurate responses (4% of the data) were removed from the analyses. Mean trajectories for each

decision pattern and point of change are illustrated in Figure 3. These trajectories suggest

that participants made a decision as soon as they were presented with the color frame, and revised

this decision if needed. When they were forced to change their choice, this switch was reflected in

mouse trajectories.

*
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Figure 3: Mean trajectories for different decision patterns in the validation experiment.

Error bars represent the standard error of x-coordinates.
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3 Validation Experiment: Classifying decision processes

with LDA

Different decisions (that is, Decision patterns) have a different impact on mouse trajectories

(Figure 3). To identify the features characteristic of each class (switched vs. straightforward), we

use a linear discriminant analysis for classification.

3.1 Description of LDA classifier

The LDA is a supervised algorithm that finds a linear function projecting the predictors onto a

line, giving a single real number, where that zero represents the midpoint between the two classes

to be learned, and the separation between the two classes on this dimension is maximal. This linear

combination of predictors can thus be used to form a decision rule to classify objects of one class

(negative) or the other (positive).

The two classes here were the multi-dimensional data coming from switched and straightfor-

ward trials. The dimensions taken into account were: all the x,y coordinates, the Euclidean-distance

based velocity and the Euclidean-distance based acceleration (both of which are non-linear with

respect to the original (x, y) coordinates). The coordinates provide absolute spatiotemporal infor-

mation about where the cursor was at what point, and velocity and acceleration provide information

about how it arrived there. To avoid collinearity (which causes problems for LDA), we applied a

principal component analysis (PCA) to identify 13 principal components for these predictors, and

fitted and applied the LDA to these principal components. We thus obtained an LDA measure

for each trial, the single number giving the position of the trial on the LDA classification axis.

Negative LDA values correspond to trajectories than can be classified as straightforward, whereas

positive values are associated with switched trials. The procedure is schematized in Figure 4.

3.2 Performance of the LDA classifier

Figure 5 illustrates the result of applying the procedure in Figure 4 to the trajectories. To evaluate

the overall performance of the classifier, we calculated the area under the ROC curve (AUC), a

standard method for evaluating classifiers (Hastie, Tibshirani, & Friedman, 2009). Intuitively, the

AUC gives the degree to which the histograms resulting from the classifier’s continuous output

(for example, Figure 5) are non-overlapping in the correct direction (in this case, switched more

systematically in the positive direction on the classification axis than straightforward).

To properly evaluate the classifier’s performance at separating trials following the distribution

in the experiments, the AUC measure was cross-validated. That is, validation data were partitioned

into 10 bins that kept the proportion of straightforward and switched trajectories constant (75/25

proportion). For each bin, we took the complementary set of data (the remaining 90%) to train

the classifier. The data contained in the bin were used as a test set to diagnose the classifier

performance. We thus obtained one AUC score for each of the ten test bins. The performance

of the LDA classifier was compared to a baseline, equivalent to the worst possible outcome, and

a topline, which was what we would expect from a LDA under the best possible conditions. For

the baseline, we used a random classifier that assigned labels by sampling from a beta distribution
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13 Principal Components

(PCA: Maximize variance)

Predictors

(x, y) coordinates

Euclidean-speed

Euclidean-acceleration

Fitting LDA

coefficients (training)

LDA Measure

Position of the trial on

the LDA classification axis.

Figure 4: Diagram of classification procedure.

centered at the probability of straightforward trials; the topline was computed by testing and

training the original LDA classifier on the same set of data. The mean AUC values for the LDA,

the baseline and the topline in each bin are given in Figure 6a.

To assess whether the performance of the LDA classifier was statistically different from baseline

(or topline) performance, we tested the groups of ten scores with regard to how likely it would

be to obtain the attested differences in scores under the null hypothesis that the LDA classifier

performance was the same as baseline (or topline) performance. The difference in the mean AUC

between each of these two pairs of classifiers was calculated as a test statistic. The sampling

distribution under the null hypothesis was estimated by randomly shuffling the labels indicating

which classifier the score came from.

In Table 2a, we report the results of performing a one-tailed test on the mean AUC differences.

As expected, our original LDA is significantly better than a random classifier at categorizing trajec-

tories into straightforward and switched. Conversely, there is no significant difference between the

performance of our LDA and the topline; the classifier’s performance is not significantly different

from the best an LDA could possibly give on this data.

3.3 Meaningful features and optimal predictors

Our original LDA classifier takes as predictors both absolute and relative spatio-temporal features

(coordinates, speed, and acceleration). Some of these features, however, might not be relevant for
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Figure 5: Distribution and mean LDA-based measure for each class. Classifier performance

when applied to the whole validation data set. Error bars represent the mean standard error.
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Figure 6: Mean Area Under the ROC Curve values obtained from cross-validation. A.

Cross-validation on 10 bins for original LDA, baseline and topline. B. Comparison with values

obtained for five additional classifiers obtained by subsetting the original set of predictors.

the classification. By comparing classifiers trained with different predictors, we gather information

about which features of mouse trajectories are most relevant to decision processes.

We trained five additional LDA classifiers obtained by subsetting the three original LDA pre-

dictors. If both absolute and relative features are required to predict the decision type, we would

expect our “full” original LDA classifier to be better than any other classifier that takes only a

subset of these original predictors. The performance of these additional classifiers was diagnosed in

the same way as before, by computing the AUC for each of the 10 test bins. Figure 6b illustrates

the mean AUC values for each of these classifiers, together with the original LDA, the baseline

and the topline. Pairwise comparisons with the original LDA were done by testing whether the

observed mean differences would be expected under the null hypothesis of no difference in perfor-

mance between classifiers. Table 2b summarises the comparisons between each of these classifiers

and our original LDA.

The original LDA does not significantly differ from other LDA classifiers that contain the coordi-

nates among their predictors, suggesting that the distinction between straightforward and switched

decisions might be solely explained by the information contained in the (x, y) coordinates. Con-

versely, the original LDA is significantly better than classifiers that use only speed and acceleration
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(a) (b)

Original

LDA
Baseline Topline

LDA with different predictors

(coords,

speed,

acc)

coords,

vel

vel, acc coords vel acc

AUC

(mean)

.87 .52 .87 .87 .83 .87 .82 .67

Mean

Difference

– .35 -.002 -.0004 .04 -.006 .04 .2

p value – <.001 0.58 .5 <.001 .68 <.001 <.001

Table 2: Cross-validation results for the LDA classifier. The performance of the LDA was

compared to the one of (a) baseline and topline classifiers and (b) LDA classifiers with different

predictors.

as predictors. These comparisons therefore reveal that, for classifying our validation data, absolute

spatio-temporal features ((x, y) coordinates) are generally better predictors than relative features

(speed and acceleration). That is, it seems to be more relevant to know where the mouse pointer

was at a given time than to know how it got there.

We caution that effects of true decisions, rather than the simulated decisions tested here, may

indeed have an impact on speed and acceleration. It has been suggested that speed and acceleration

components can capture the level of commitment towards the response, such that a change of

decision (swiched trajectories) might have associated with it a specific speed/acceleration pattern

(Hehman et al., 2014). This is not visible, however, in our data.

4 Validation Experiment: LDA versus traditional mouse tracking

analyses

The LDA classifier derives a solution to the problem of separating two kinds of mouse trajectories

that is in a certain sense optimal. Previous studies have used alternative techniques to analyze

mouse trajectories. In what follows, we compare the performance of our LDA to other measures

commonly used in mouse tracking studies. We focus on measures that assess the spatial disorder

in trajectories, typically taken to be indicative of unpredictability and complexity in response

dynamics (Hehman et al., 2014).

Two of the most commonly used methods of mouse tracking spatial analysis are the Area under

the trajectory and the Maximal deviation (henceforth, AUT and MD respectively) (see Freeman &

Ambady, 2010). The AUT is the geometric area between the observed trajectory and an idealized

straight-line trajectory drawn from the start to the end points, whereas the MD is the point

that maximizes the perpendicular distance between this ideal trajectory and the observed path

(Figure 7). For both measures, higher values are associated with higher trajectory deviation towards

the alternative; values close to or below zero suggest a trajectory close to ideal. Another frequently

used measure counts the number of times a trajectory crosses the x−axis (horizontal flips, Dale &

Duran, 2011, as illustrated in Figure 7).
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(a) Area Under the Trajectory (b) Maximal Deviation (c) Maximal Log Ratio

(d) X-coordinate Flips∑
H[(xt − xt−1)(xt−1 − xt−2)]

(e) Acceleration flips

(
∑
H[(at − at−1)(at−1 − at−2)])− 1

Figure 7: Description of commonly used mouse tracking measures.

While all these measures aim to evaluate the degree of complexity of the path, they may fail

to distinguish paths straight to the correct answer from “two step” (deviation to the alternative)

and from “uncertain” (centered on the middle of the screen) trajectories.4 To assess more directly

whether mouse trajectories have a meaningful deviation towards the alternative, the distance to

both target and alternative responses should be taken into account. For instance, the ratio of the

target distance to the alternative distance can be calculated for each (x, y) position. While ratio

values closer to one suggest a position near the middle, higher values indicate a deviation towards

the alternative response.

AUT, MD, x-coordinate flips, and the point that maximizes the log distance ratio (henceforth

Maximal Log Ratio) were calculated for the validation data. Following Dale and Duran (2011, and

other studies on error corrections), we also analyzed the acceleration component (AC) as a function

of the number of changes in acceleration. Since stronger competition between alternative responses

is typically translated into steeper acceleration peaks, changes in acceleration can be interpreted

as decision points (Hehman et al., 2014). Figure 8 illustrates the distribution and mean values for

each decision pattern.

The same cross-validation procedure described in the previous section was used to diagnose the

performance of each of these measures.5 The mean AUC values for each of these measures are

illustrated in Figure 9. Table 3 summarizes the result of comparing the LDA performance to each

of the alternative measures.

Overall, these comparisons reveal that the LDA trained on the validation data is significantly

better at classifying this type of decisions than other commonly used measures. The difference with

the classifier is in all the cases significant. Mean AUC values suggest that MD and the Maximal Log

4A late medium-size deviation towards the alternative might underlie a “two-step” decision, whereas an early, but

large, deviation towards the alternative might very well be considered noise. Measures such as the AUT might not

be able to make a distinction between these.

5Note that these measures do not need training; we simply applied the measure to the same ten test subsets as

before to make the results comparable.
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(a) Area Under the Trajectory (b) Maximal Deviation

(c) Maximal Log Ratio (d) X-coordinates Flips

(e) Acceleration Component

Figure 8: Distribution and means obtained from applying different mouse tracking

measures to validation data. Error bars represent the mean standard error.
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Figure 9: Mean Area Under the ROC Curve values obtained from cross-validation. A.

Cross-validation on 10 bins for original LDA, baseline and topline. B. Comparison with values

obtained for other commonly used mouse tracking measures.
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Original

LDA

AUT MD Maximal

LogRatio

X-

Coord.

Flips

AC

AUC

(mean)

.87 .62 .81 .81 .73 .53

Mean

Difference

– .24 .06 .06 .14 .34

p value – <.001 <.001 <.001 <.001 <.001

Table 3: Cross-validation results for the LDA classifier. The performance of LDA was

compared to each of five commonly used measures in mouse tracking studies.

Ratio are better at distinguishing decision processes than the other alternative measures. These two

measures are the only ones calculated based on coordinates, and therefore give more importance to

spatio-temporal information than the others. In other words, the MD and the Maximal Log Ratio

are not only sensitive to whether or not there was a deviation from the ideal trajectory (as the other

measures), but weight this deviation as a function of the moment at which it occurred, assigning

higher values to late deviations. This information seems to be essential for the classification, as

observed in Section 3.

Finally, we had previously observed that acceleration and, to a significantly minor extent, veloc-

ity, were not helpful predictors for the LDA classifier. Indeed, the performance of the Acceleration

Component overlaps here with that of the Baseline, suggesting that this type of information is not

helpful.

To summarize, in this section, we have shown that (i) a rough manipulation of decision making

processes has a direct impact on mouse trajectories; (ii) a LDA using absolute temporal informa-

tion is enough to accurately distinguish these decision patterns; and (iii) this LDA does a better

classification than other traditional mouse tracking measures.

5 Extension to linguistic data

Mouse paths obtained from the validation experiment, where we explicitly induced “decision

changes”, were used to construct a a transformation that takes mouse trajectories as input and

transforms them into a single ”degree of change of decision” measure (i.e. the LDA measure). This

transformation can in principle be applied to new mouse trajectories in order to detect changes of

decision. Can our LDA then help characterize more complex decision processes, such as the ones

involved in sentence verification tasks?

To address this question, we test our classifier on data obtained from a replication of Dale and

Duran’s experiment (2011). This experiment found differences in the processing of true positive

and negative sentences when people performed a truth-value judgment task. These results were

interpreted as indicating that negation gives rise to an abrupt shift in cognitive dynamics (an

unconscious change of decision). If this is indeed the case, we would expect mouse trajectories
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corresponding to the verification of negative sentences to pattern with switched trajectories from the

validation experiment. This pattern of results would provide additional support to the hypothesis

that, at least in out-of-the-blue contexts, processing negation does involve two steps, in which the

positive value is initially derived and negated only as a second step. On the other hand, if negation

does not involve a change in decision—or if subjects’ behavior in the validation experiment is simply

too different from natural changes of decision—then the LDA measure trained on validation data

will not reveal systematic differences between positive and negative sentences.

5.1 Experiment

Participants had to perform a truth-value judgment task in which they had to decide whether a

sentence (for example, Cars have wheels) is true or false, based on common world knowledge. Each

sentence could either be a negated form or a non-negated form, and could either be a true or a

false statement. Unlike Dale and Duran’s experiment, the complete statement was presented in

the middle of the screen after participants pressed “start” (that is, no self-paced reading). The

response buttons appeared at the top left or top right corners of the screen, as in our validation

experiment. Materials and design are exemplified in Table 4.

5.1.1 Participants

53 English native speakers (29 female participants) were tested using Amazon Mechanical Turk.

They were compensated for their participation (1 USD). The experiment lasted approximately 10

minutes.

5.1.2 Design

The experimental design consisted of two fully crossed factors: Truth value (true, false) and

Polarity (negative, positive). We had a total of 4 conditions, and each participant saw 4 instances

of each condition (16 sentences).

Truth value Polarity Example

True
Positive Cars have wheels.

Negative Cars have no wings.

False
Positive Cars have wings.

Negative Cars have no wheels.

Table 4: Design of Dale and Duran’s replication.

5.1.3 Interface and data treatment

The interface and data treatment were the same as those used in the validation experiment. The

time course of mouse trajectories was normalized into 101 time steps.
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Figure 10: Illustration of a trial in the replication of Dale & Duran.

5.2 Results and discussion

5.2.1 Replicating Dale and Duran (2011)

All participants responded correctly more than 75% of the time. No participant was discarded

based on accuracy. Only accurate trials were analyzed. Figure 11 illustrates mean trajectories for

the four conditions.

To assess whether we replicate Dale and Duran’s results, we calculated the x-coordinate flips

(see Section 4) and analyzed them with a linear mixed-effects model, taking Truth, Polarity

and their interaction as predictors. We included random intercepts per subject and a random slope

with the interaction of both factors. P -values were obtained by comparing the omnibus model to

a reduced model where the relevant factor was removed. This is the analysis done by Dale and

Duran. Unlike Dale and Duran, we did not perform statistical analyses based on the acceleration

component, since this quantitative measure was unable to distinguish mouse trajectories underlying

different decision patterns in the validation experiment.

The model for x-coordinate flips revealed a main effect of Polarity, such that negation in-

creased the number of flips by an estimated of 0.76 (χ2 = 21.7; p < .001), and a significant inter-

action Truth × Polarity (χ2 = 24.7; p < .001), such that the difference between negative and

positive sentences is bigger for the true than for the false statements. There was no significant

effect of Truth (χ2 < 1; p = .5). Table 5 summarizes our and of Dale and Duran’s results.

We seem to replicate Dale and Duran’s findings: verifying true negated sentences produces

less straightforward trajectories than true positive sentences. The values obtained in the two
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Figure 11: Mean trajectories for accurate trials

Condition x-flips x-flips in D&D

T/no negation 2.22 1.13

T/negation 3.67 1.71

F/no negation 2.82 1.24

F/negation 2.9 1.34

Estimate Polarity .76 .35

Estimate Truth .07 .13

Estimate Truth×Polarity 1.35 .47

Table 5: Mean and effect estimates for Dale & Duran original experiment and our

replication.

experiments are slightly different; our results present a higher range of values (see Table 5). In our

experiments, the mouse position was not sampled at a fixed rate, creating additional noise which

could be responsible for the range difference. Moreover, Dale and Duran used a smoothing method

over their trajectories, whereas we did not. This probably causes our estimates to be higher.

5.2.2 Classifier performance

How well does our LDA classify new trajectories underlain by cognitive processes that might, or

might not, involve different decision patterns across conditions? We tested this new data using two

different LDA classifiers, both of them trained on mouse trajectories from the validation experiment.

In other words, switched and straightforward trials from the validation were used to train the LDA

algorithms, which we then used to test new trajectories. The first classifier was our original LDA,
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(a) LDA (coordinates, speed, and acceleration) (b) LDA only with coordinates

Figure 12: Two LDA classifiers applied to true trials (negative vs. affirmative). Error

bars represent the mean standard error.

which had as predictors (x, y) coordinates as well as distance-based velocity and acceleration. The

second LDA had only (x, y) coordinates as predictors. Validation results (see Section 3) suggest

that the simpler model, which only relies on absolute information, might be sufficient to classify

the two basic kinds of decision-making processes. That is to say, the simple model fits the data

just as well as a more complex model, and can be interpreted more straightforwardly.

The relevant difference in processing between positive and negative sentences is expected to

arise specifically for true statements. Consequently, we analyze the performance of both classifiers

when applied to true trials. Figure 12 illustrates the distribution and means of the resulting LDA

measure.

To assess how well these classifiers separate positive from negative trials, we bootstrapped 1000

new samples of various different sample sizes from the data from the replication experiment and

calculated the area under the ROC curve for the classification of each one. Figure 13A shows the

mean AUC values obtained after applying the classification procedure across these various samples

of different sizes. The values are generally lower that the ones obtained in the validation experiment.

This could be due to the fact that the tasks were different; or it could simply reveal idiosyncrasies

of the original validation experiment data, or of this replication experiment.

Might the observed performance be expected, even if negative and positive trials were actually

not systematically different? Are these AUC values significantly different from the ones one would

have obtained from applying the LDA to a set of data where there is no difference between ex-

perimental conditions? We calculated the AUC values for a set of data where experimental labels

(positive, negative) were scrambled (once per sample). The distribution of AUC values under this

null hypothesis was compared to the performance observed for the original set of data. Figure 13B

illustrates the separability of the two classifications for each sample size.

The LDA classifier trained with validation data seems to make a distinction between experi-

mental conditions. This finding suggests that the contrast between negative and positive trials is

similar to the contrast in the validation experiment. The fact that negation has similar proper-

ties to switched decisions indicates that verifying negative sentences might give rise to a change
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Figure 13: Performance of LDA classifiers. A. Mean AUC values over bootstrapped data

(iterations=1000) for different sample sizes; B. Difference of classifier performance when applied to

scrambled vs. original set of data.

of decision, as proposed by Dale & Duran (2011), among others. However, while mouse trajec-

tories corresponding to negative and to switched trials do share basic properties, they seem to

differ on how they are placed on the “change of decision” spectrum: they occupy different parts

of the decision-based LDA continuum (compare Figure 5 and Figure 12). This is not surprising,

given that we are dealing with different cognitive processes—simulated decisions versus sentence

verification—but, as discussed above, could easily also be an idiosyncrasy of these two data sets.

Finally, while the classifiers’ comparison in Figure 6 indicated that relative spatio-temporal

features, such as acceleration and speed, were not essential for the classification of simple decisions,

these features do seem to play a role in the classification of sentence verification data. Indeed,

Figure 13 reveals that the full classifier—which takes all features as predictors— gives a better

separation between the two experimental conditions than the simplified one.

5.3 Other mouse tracking measures

Does the difference in performance between the LDA and other mouse tracking measures remain

when these are applied to the new experimental data? Figure 14 illustrates the distribution of

each measure. The question of whether different measures differ in their ability to separate the

experimental conditions was addressed by applying the same procedure as before: we calculated the

mean area under the ROC curve for different sample sizes (see Figure 15A), and contrasted these

values against a null hypothesis of no difference between experimental conditions (see Figure 15B).
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(a) Area Under the Trajectory (b) Maximal Deviation

(c) Maximal Log Ratio (d) X-coordinate flips

Figure 14: Distribution and means of negative and positive true trials obtained from

applying different mouse tracking measures to negation data. Error bars represent the

mean standard error.

Figure 15: Performance of other mouse tracking measures. A. Mean AUC values over boot-

strapped data (iterations=1000) for different sample sizes; B. Difference of measure performance

when applied to scrambled vs. original set of data.
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(a) Mean Trajectories

(b) Mean and distribution of LDA-based mea-

sure. Error bars represent the mean standard

error.

Figure 16: Analyses performed on Baseline data set (early vs. late decision).

The results in Figure 15A suggest that most measures perform less well here than on the

validation data (cf. Figure 9). Since a decrease in performance is attested across the board and not

only for the classifiers trained with validation data, this difference must be driven by properties of

the new data set. The sentence verification data might be more variable, such that both negative

and positive trials may underlie instances of different decision processes.

The LDA classifier seems here to be roughly as powerful as other traditional mouse tracking

measures, such as the Maximal Deviation and the Maximal Log Ratio. In contrast with the

validation results, this opens the possibility of using these alternative measures to analyze mouse

tracking data from sentence verification tasks. The classifier is still a better choice from a conceptual

point of view, as it does not make any specific assumptions about how the change of decision should

be reflected by mouse trajectories beyond the observed.

5.3.1 Baseline

A linear classifier trained on simulated decisions can separate the two experimental conditions of

the replication of a previous study by Dale & Duran’s. We have interpreted this result as suggesting

that the key features being extracted reflect two different decision processes. It could instead be

argued that the classification is not based on properties related to decision processes, but on some

other feature of mouse paths which happen to be partially shared between conditions in both

experiments. For example, the LDA might be sensitive not to decision shift but to differences in

cognitive cost, something both experiments might have in common.

To disentangle these possibilities, we asked how the classifier trained on simulated decisions

classifies trajectories that have different shapes but ought not to be related to differing decision

processes. We constructed a set of baseline data which contained only positive trials from the

replication of the experiment by Dale and Duran. The trials were classified as to whether their

response time was above or below the subject mean. We reasoned that shorter response times

would correspond to early commitment towards the response, whereas longer response times would
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reflect a late commitment. As illustrated by in Figure 16a, the two classes in the baseline data

have slightly different trajectory shapes. Importantly, however, nothing about this split implies

that these shapes correspond to a change of decision. Thus, the classifier trained on straightforward

versus switched trials was expected to perform poorly.

The distribution of the LDA measure after testing the classifier on the new data set is shown in

Figure 16b. The performance was evaluated following the same procedure applied above (see blue

line in Figure 15).

The classification on early versus late categories is less accurate than the one performed on

separate negative and positive trials. Differences in trajectories that are not due to the experimental

manipulation are poorly captured by the LDA measure: even trajectories that look similar to

switched and negation trials are not taken to be underlying a change of decision. Thus, despite the

differences between the experimental conditions in the validation experiment and in the replication

experiment, the similarities appear to be more than accidental.

6 Conclusion

We investigated the correspondence between some types of decision processes and mouse move-

ments. By manipulating whether a stimulus triggered, or did not trigger, a rough change of decision,

we showed directly, for the first time, how mouse trajectories are impacted by decision processes: a

forced switch in decision has an impact on mouse movements, which is for the most part observable

in the spatial information (the path), and not so much in the timing of the trajectory.

We trained a classifier on the mouse trajectories underlying these simulated decisions to predict

whether or not a given trial involved this sort of decision shift. This classifier, freely available online,

accurately classifies not only paths corresponding to quasi-decisions, but also paths underlying a

more complex cognitive process, such as the verification of negative sentences.

The approach developed here makes in that sense an important contribution to all lines of

research that may rely on mouse-tracking data to investigate cognitive processing. Our results not

only replicate previous findings but, more importantly, show that the LDA classifier performs at

least as well as the best of the other commonly used mouse tracking measures. This comparison of

performance raises the question of whether we should abandon traditional mouse tracking measures,

adopting our LDA classifier instead.

On the one hand, we have established the Maximal Deviation and Maximal LogRatio measures

as comparable alternatives to the LDA analysis in terms of performance. These measures are in

principle easier to deploy than our classifier, and have been successfully used in a number of studies.

However, unlike these other measures, the performance of the LDA classifier is contingent to

the characteristics of the training data set, in our case, coming from the validation experiment.

While, as it is now, our validation experiment is just a first, very simple approximation to decision

switch, it can potentially be refined and adapted to test new hypotheses. That is, if one has clearer

hypotheses about the mechanisms at play during decision making or sentence verification, one could

built more representative validation experiments. This would in turn serve to identify prototypical

mouse path patterns for different types of cognitive processes. Indeed, we believe this refinement
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is a necessary step, and it is only made possible by our classifier, making it conceptually more

powerful than alternative measures.

Moreover, the LDA classifier has the unique advantage of not relying on any specific assumption

about what switched trajectories should look like. By being assumption-free, our approach can be

applied to other processing measures to perform a classification of decisions that goes beyond the

specific mouse-tracking methodology.
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