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Abstract. A way to predict two-phase liquid-gas flow patterns is presented for horizontal, vertical and inclined
pipes. A set of experimental data (7702 points, distributed among 22 authors) and a set of synthetic data gen-
erated using OLGA Multiphase Toolkit v.7.3.3 (59 674 points) were gathered. A filtering process based on the
experimental void fraction was proposed. Moreover, a classification of the pattern flows based on a supervised
classification and a probabilistic flow pattern map is proposed based on a Bayesian approach using four pattern
flows: Segregated Flow, Annular Flow, Intermittent Flow, and Bubble Flow. A new visualization technique for
flow pattern maps is proposed to understand the transition zones among flow patterns and provide further
information than the flow pattern map boundaries reported in the literature. Following the methodology pro-
posed in this approach, probabilistic flow pattern maps are obtained for oil–water pipes. These maps were
determined using an experimental dataset of 11 071 records distributed among 53 authors and a numerical filter
with the water cut reported by OLGA Multiphase Toolkit v7.3.3.

1 Introduction

Liquid-gas multiphase flows are complex physical processes
that depend on how the interface deforms, the flow direc-
tion, and the compressibility of one of the phases (in some
cases). Given certain operating conditions such as pressure,
temperature, liquid or gas velocity, pipe orientation, and
fluid properties, several interfacial geometric configurations
have been reported in two-phase flow systems. These config-
urations are commonly known as flow patterns or flow
regimes. Some of the reported patterns for vertical flow are
bubble flow, slug flow, churn flow, wispy-annular flow, and
annular. Whereas for horizontal flow, the patterns include
bubble flow, plug flow, stratified flow, wavy flow, slug flow,
and annular [1, 2]. Prediction of these patterns is a matter of
concern for designers and operators considering their rela-
tion to pressure drop and heat transfer calculations [3–7].

Two-dimensional flow pattern maps serve to visualize
the most likely liquid-gas flow pattern found in a section
of constant diameter, inclination, fluid properties, and input
volumetric gas and liquid flow rates. These maps are usually
developed based on measurable parameters along the
pipeline segment instead of dimensionless variables such

as the Weber, Froude, or Lockhart Martinelli numbers
[8, 9]. For instance, Taitel and Dukler [10] proposed a
map using superficial velocities; Baker [2] and Hewitt and
Roberts [11] developed maps using mass velocities; and
Kattan et al. [4–6] and Cheng et al. [3, 12] considered flow
pattern maps based on mass fluxes. Depending on the infor-
mation used to develop these maps, they can be classified
into experimentally or mechanistic-based. The first is
obtained from a significant number of experiments, whereas
the second is built up from the examination of transition
mechanisms using fundamental equations [1]. The com-
monly implemented flow pattern maps for vertical pipes
are those reported by Govier et al. [13], Griffith and Wallis
[14], Hewitt and Roberts [11], Golan and Stenning [15],
Oshinowo and Charles [16], Taitel et al. [17], Spedding
and Nguyen [18], Barnea et al. [19], Spisak [20], Ulbrich
[21], and Dziubinski et al. [22]. For horizontal and near hor-
izontal pipes, the maps of Baker [23], Taitel and Duker [10],
Hashizume [24], and Steiner [25] are often quoted [26].
Finally, for inclined pipes, the maps of Shoham [9], Magrini
[27] and Mukherjee [28] are commonly preferred.

Despite the diversity of experimental flow pattern maps,
different authors have criticized the subjectivity of these
maps due to identification techniques like visual inspection
[29]. Therefore, numerical methods, which discretize and* Corresponding author: r.amaya29@uniandes.edu.co
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solve commonly accepted equations of flow dynamics, have
also been considered to set up approaches like the two-
phase model [29]. Simulation tools like OLGA, LedaFlow,
PeTra, and fluid dynamic simulators such as CFD codes
using Eulerian formulations have been reported in the liter-
ature to simulate the behavior of these multiphase flows
[30–36]. Nevertheless, these simulators are commonly
designed for pipelines with large diameters and risers, so
over-predictions of the void fraction may occur [37].

Although different flow pattern maps are available,
there are still difficulties in defining common boundaries
between flow regimes [29]. Usually, these boundaries differ
significantly among maps reported, and wide transition
areas can be obtained; even flow patterns have been sug-
gested to follow a combination and not standalone regimes
[38]. Therefore, efforts should focus on determining which is
the predominant flow regime, and a probabilistic-based
map can be considered in advance. In this direction, a few
pieces of work using R134a, R410A, and air–water have
been proposed [39–43]. These works evaluate the probabil-
ity of a flow regime under some operating conditions and
flow quality based on a sequence of experimental images.
However, probabilistic flow pattern maps based on exten-
sive experimental and synthetic databanks aiming to assess
transition zones have not been developed yet. Accordingly,
the present work aims to develop a probabilistic-based
approach to identify the more likely flow regime under some
operating conditions. To this end, experimental records
from an extensive literature review and synthetic data from
OLGA v.7.3.3 simulations were implemented. Oil and Gas
Simulator-Schlumberger (OLGA) was selected because is
one of the commonly implemented simulators in the Oil
and Gas industry and its good agreement with experimental
results [32, 33].

This paper is organized as follows: Section 2 contains a
review of flow pattern maps and their classification.
Section 3 describes the experimental and synthetic datasets.
Section 4 presents the flow pattern probabilistic-based
approach. Section 5 summarizes the basic findings and
presents suggestions for future work. Besides, the paper
counts with three appendices associated with the procedure
developed to estimate the posterior probability (Appendix
A.1 in Supplementary Material), the probabilistic flow
pattern maps with several inclinations (Appendix A.2 in
Supplementary Material), and the pattern maps for liquid-
liquid flow following a parallel approach (Appendix A.3 in
Supplementary Material).

2 Review of flow pattern map classification

2.1 Horizontal flow patterns

According to authors like França and Lahey [44], Zhang
et al. [45], and Fan [46], horizontal flow patterns can be
classified as follows: stratified smooth flow, stratified wavy
flow, elongated bubble flow or plug flow, slug flow, annular
flow, and wavy annular flow. These flow patterns can be
grouped based on the following considerations: (i) Intermit-
tent flow patterns cover plug and slug flow, as in vertical
cases, because they are composed of large bubbles (Taylor

bubbles), which are followed by a series of smaller bubbles.
The main difference between the plug and slug flow pat-
terns lies in the shape of the elongated bubble and the tur-
bulence generated behind it; (ii) like in vertical pipes, the
bubbly flow pattern refers to small spherical bubbles; and
(iii) segregated flow patterns, both smooth and wavy, exhi-
bit a clear separation of the liquid and gas phases, which
creates a distinct interface between them. For the wavy
case, increasing the gas velocity destabilizes the interface
and creates waves in the liquid surface [47, 48]. This distinc-
tion, however, is not significant for the current work [49].
The flow patterns found in the literature can be grouped
then as follows (Tab. 1): Segregated Flow, Intermittent
Flow, and Bubbly Flow [49].

This classification discriminates the available flow
regimes clearly, so it will be used to gather experimental
information. Besides, these flow regimes are reported by
OLGA; hence, a direct comparison between synthetic and
experimental data becomes possible. A graphical scheme
of these flow patterns is depicted in Figures 1a–1c.

2.2 Vertical flow patterns

Vertical two-phase flows are commonly classified as bubbly
flow, slug flow, churn flow, wispy annular flow, and annular
flow. This classification has been proposed by different
author and it can be seen in Taitel and Dukler [10], Carey
[50],Ghajar [8] andFalcone et al. [51].Authors suchasKouba
[52], Thomas [53], Omebere-Iyari and Azzopardi [54], and
Rosa et al. [55] have proposed minor changes of the flow
patterns aforementioned. Therefore, a grouping criteria
similar to the reported by Inoue et al. [49] is considered.

The flow patterns are grouped based on the following
considerations: (i) The dispersed bubbles (bubbly flow)
covers isolated bubbles sparsely distributed over the pipe
cross-section, as a cluster of bubbles known as discrete
bubbles. Isolated bubbles refer to uniformly sized bubbles
describing a straight path, which does not interact with
each other. (ii) A cluster of bubbles refers to non-spherical
bubbles with non-uniform size distribution. Factors such
as slipping between phases, which were identified by
Omebere-Iyari and Azzopardi [54], seem to make sense only
for situations where the liquid flows at low velocities. This
situation is not of practical importance; therefore, it is not
considered in the current grouping criteria. (iii) Intermit-
tent flow pattern encompasses slug flow, churn flow, and
unstable churn flow. This grouping criterion is undertaken
considering that authors who identify these patterns
described consistently liquid pistons of considerable length
(large and elongated bubbles) followed by smaller bubbles,
which are usually spherical. The pattern “slug flow” corre-
sponds to Taylor bubbles; these bubbles occupy much of
the cross-section, followed by smaller spherical bubbles.
The pattern churn flow corresponds to the destabilization
of Taylor bubbles, followed by small, destabilized bubbles.
Finally, the unstable churn flow pattern, identified by Rosa
et al. [55], describes coalescence of the Taylor bubbles with
the small bubbles. (iv) Kouba [52] and Rosa et al. [55] used
semi-annular flow to describe the pattern that occurs
between the unstable “churn” and the smooth annular
pattern. Semi-annular flow is regarded as a degenerate form
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of annular flow with high waves in the liquid–gas interface
[12, 28]. For this application, this pattern is grouped as an
annular flow.

Based on these considerations, the different flow pat-
terns found in the literature can be grouped as (Tab. 2):
Bubbly Flow, Intermittent Flow, and Annular Flow [49],
graphically shown in Figures 1d–1f.

For inclined pipes, both the flow patterns presented in
the horizontal and vertical orientations will be used.

3 Experimental and synthetic datasets

3.1 Experimental dataset

The experimental dataset has 7702 records distributed
among 22 authors as shown in Table 3. These authors per-
formed measurements for different liquid-gas combinations
(covering refrigerants to viscous oils), superficial velocities,
pipe lengths, and diameters. However, the water–air system
is the most frequently used combination with about 62% of
all the gathered records. Table 3 also presents pipes orienta-
tion during the experiments, which include vertical, hori-
zontal, and inclined pipes with upward and downward
directions. As expected, a larger number of data points is
reported for horizontal cases and a lower amount of records
for vertical downward pipes (�90�).

Figure 2 depicts other relevant parameters of the
experimental dataset: the distribution for the diameter,
L/D relation, and superficial velocities. Note that the pipe
diameters follow commercial dimensions (i.e., 1 in., 2 in.
and 2.5 in.), and the mean L/D relation is 455, which
ensures flow development for most of the cases. Besides,
the flow patterns were classified as Annular flow in 23%,
Segregated flow in 21%, Bubbly flow in 14% and Intermit-
tent flow in 42%.

Table 2. Flow pattern classification for vertical pipes used in this work. Adapted from Inoue et al. (2013) [49].

Pattern Representation in the literature

Kouba
(1986)

Carey
(1993)

Thomas
(2004)

Omebere-Iyari and
Azzopardi (2007)

Falcone
et al. (2009)

Rosa
et al. (2010)

Bubbly
Flow (BF)

– – – Dispersed bubbles – Spherical caps
Dispersed
bubble flow

Bubbly flow Bubbles Bubble flow Bubble flow Bubbly flow

Intermittent
Flow (IT)

Elongated
bubble flow

Slug flow Slug flow Slug flow Slug flow Stable slug

Slug flow Churn flow Churn flow Churn flow Churn flow Unstable slug

Annular
Flow (AF)

Wavy
annular flow

Wispy
annular flow

Annular flow Annular flow Wispy annular flow Semi annular

Annular flow Annular flow – – Annular flow Annular

Table 1. Flow pattern classification for horizontal pipes used in this work. Adapted from Inoue et al. (2013) [49].

Pattern Representation in the literature

França and Lahey
(1992)

Zhang et al.
(2003)

Thomas
(2004)

Fan (2005)

Segregated
Flow (SG)*

Stratified-smooth flow Stratified flow Stratified smooth Stratified-smooth flow
Stratified-wavy flow – – Stratified-wavy flow

Intermittent
Flow (IT)

Plug flow Slug flow Slug flow Slug flow
Slug flow – – –

Bubbly Flow (BF) – Dispersed
bubble flow

Dispersed bubble
flow

Bubble flow

*Annular flow can be classified as segregated flow.

Fig. 1. Graphical representation of the horizontal and vertical
flow patterns (a) Segregated Flow. (b) Horizontal Intermittent
Flow. (c) Horizontal Bubbly Flow. (d) Vertical Bubbly Flow.
(e) Vertical Intermittent Flow. (f) Annular Flow.
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3.2 Selection of flow pattern map axis

Non-slip void fraction is one of the top parameters used
to characterize two-phase flows, i.e., to obtain two-phase

relative velocity, and to predict flow pattern transitions
[48, 68]. Void fraction depends on different physical param-
eters (e.g., gas/liquid velocities and viscosities) and opera-
tional parameters (e.g., pipeline length and diameter) [69].

Table 3. Experimental data.

Author Data Fluids Diameter
[mm]

L/D VsL [m/s] VsG [m/s] h [�] Void fraction

Abduvayt
et al. [56]

443 Water–nitrogen 54.9–
106.4

939.85–
1821.49

0.009–6.48 0.04–11.10 0–3 NR*

Badie et al.
[57]

66 Oil, water–air 78 474.36 0.001–0.05 14.76–25.27 0 0.89–0.995

Beggs [58] 323 Water–air 25.4–
38.1

720.00–
1080

0.0005–
58.25

0.02–32.11 0–90 0.094–1.00

Carvalho et al.
[59]

59 Water–air 60 23.67 0.506–4.20 0.02–2.84 �90 0.005–0.976

Fan [46] 351 Water–air 50.8–
149.6

748.03–
754.01

0.0003–0.05 4.93–25.70 �2 to 2 0.856–0.998

Felizola [60] 89 Kerosene–air 51 294.12 0.050–1.49 0.39–3.36 0–90 0.323–0.798

França and
Lahey [44]

99 Water–air 19 96.32 0.010–14.85 0.13–23.76 0 0.063–0.944

Ghajar [7] 166 Water–air 12.7 123.94 0.080–1.17 0.19–20.06 0/90 0.036–0.916

Gokcal [61] 356 Oil–air 50.8 372.05 0.010–1.76 0.09–20.30 0 0.01–0.89

Kouba [52] 53 Kerosene–air 76.2 5480.00 0.152–2.14 0.30–7.36 0 NR

Magrini [27] 140 Water–air 76.2 229.66 0.003–0.04 36.63–82.32 0–90 0.976–0.998

Majumder
et al. [62]

99 Amylic alcohol,
glycerin–air

19.05 178.48 0.585–2.34 0.08–0.70 90 0.13–0.52

Manabe et al.
[63]

247 Oil–natural gas 54.9 357.01 0.038–0.95 0.10–7.01 0–90 NR

Meng [47] 203 Oil–air 50.1 377.25 0.001–0.05 4.80–26.60 0 0.786–0.999

Mukherjee [28] 872 Kerosene, lube
oil–air

38.1–
101.6

129.17–
1360

0.009–4.36 0.01–36.26 �70 to 90 0.01–1.00

Omebere-Iyari
and Azzopardi
[54]

98 Naphtha –

nitrogen
189 275.13 0.004–4.34 0.09–15.63 90 NR

Rosa et al. [55] 73 Water–air 26 257.69 0.220–3.08 0.12–28.80 90 0.02–0.87

Roumazeilles
[64]

113 Kerosene–air 51 372.55 0.884–2.44 0.91–9.36 �30 to 0 0.264–0.867

Schmidt et al.
[65]

87 Povidone and
water–nitrogen

54.5 56.88 0–3.42 0.05–29.58 90 0.02–0.96

Shoham [9] 3551 Water–air 25–51 196.08–
400

0.002–25.52 0.004–42.96 �90 to –90 NR

Tanahashi
et al. [66]

11 Water–air 54 92.59 0.258–0.27 0.04–0.16 90 NR

Wilkens [67] 203 Saltwater–CO2 97.2 185.00 0.095–1.57 0.80–13.61 �2 to 5 NR
* NR, non-reported.
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In this work, the void fraction is used to compare the exper-
imental and synthetic records; however, this parameter is
often ignored in experimental works [29]. Therefore, this
approach focused on a flow pattern map in which the axis
features better describe the void fraction.

For this purpose, gas/liquid superficial velocities were
used to build the flow pattern map given to their relevance
in the void fraction prediction. This pattern flow map is one
of the most common coordinates in the literature, given its
physical representation and experimental reproduction
[54–57, 62, 63]. This selection is supported by a feature
selection based on a predictor importance analysis, which
characterizes the general effect of the experimental void
fraction.

3.3 Synthetic dataset

The steady-state synthetic records were generated with
OLGA Multiphase Toolkit v.7.3.3 obtaining 59 574 records
with the main parameters depicted in Table 4. The effect of
pipe inclination on the flow pattern was evaluated by con-
sidering 5� steps from �90� to 90�. The remaining required
parameters, except for the gas and liquid superficial veloci-
ties, were randomly selected based on the ranges obtained
in the experimental database. This procedure aims to per-
form a correct overlap between the experimental and syn-
thetic data by setting the gas velocity from 1e-02 to
40 m/s and the liquid velocity from 1e-03 to 68 m/s. These
ranges were chosen based on the available experimental
data. Transitions between neighboring flow patterns were
represented by a mesh rather than a boundary line. This
mesh was refined with synthetic data in those locations
where transition zones appeared on the available experi-
mental dataset for every inclination, i.e., a higher number
of records of two flow patterns.

3.4 Experimental data processing

A filtering process was used to select the experimental
recordswithin an acceptable error in the void fraction predic-
tion. This acceptable error is determined based on a tolerable
difference between experimental and synthetic predictions of
the void fraction. However, 4407 experimental records did
not report this parameter, and a direct classification is not
possible; therefore, a supervised learning approach was used
to classify those records as acceptable/non-acceptable for the
construction of the flow pattern map. For this purpose,
experimental records already classified as acceptable or
non-acceptable were used as a training set.

For the classification process, two types of supervised
classifiers were considered: (i) Support Vector Machines
(SVM) and (ii) K-Nearest Neighbors (KNN). These
techniques have also been used in multiphase flow data clas-
sification [70, 71]. A SVM classifier maps a given set of bin-
ary labeled training data into a high dimensional feature
space, and it separates the classes with a maximum margin
hyperplane [72]. KNN is a classification based on a majority
vote of its K neighbors [73]. Further details about the
mathematical description of these classifiers are found in
Duda et al. [74], Tarca et al. [70], and Zhang and Wang
[71]. The main features of these processes are described
below.

The SVM classifier was developed following the recom-
mendations reported by Hsu et al. [75]. A Radial Basis
Function (RBF) was implemented because, (i) this kernel
can handle a nonlinear classification, (ii) it has fewer hyper-
parameters comparing with other kernel functions (e.g.,
polynomial), and (iii) it has fewer numerical difficulties.
Moreover, sensibility analyses were implemented to
determine the penalty (C) and the RBF parameters (c) to
minimize the classification error. For this purpose, a Cross-
Validation process with an exponentially growing sequence
(i.e., C 2 (2�1, 20,. . ., 24) and c 2 (2�2, 2�1,. . ., 23)) were
considered obtaining that C = 16 and c = 0.25 achieve
the greater prediction rate. For the KNN classifier, the
number of neighbors for the voting process was evaluated
to obtain an accurate classification rate; therefore, a
sensibility analysis was performed obtaining that a nine-
neighbors classification has the lowest misclassified rate.
The two classifiers (i.e., SVM, and KNN) were imple-
mented following a 10-fold Cross-Validation process to
compare their rates of classification.

Three criteria were considered to determine the tolera-
ble error: (i) acceptable records are included as much as
possible; (ii) tolerable error should be as low as possible;
and (iii) the performance of the classifier should be as good
as possible. Based on these criteria, a performance classifier
was proposed:

CQ ¼ 1� �tolð Þ � CP� AD; ð1Þ
where CQ represents the classifier quality [%], �tol is the
evaluated tolerable error [%], CP is the classifier perfor-
mance [%] (related to the accurate rate), and AD is the
acceptable data [%]. This criterion was evaluated in an
error span from 0% to 50% because more than 90% of
experimental records were included therein (see Fig. 3).
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Equation (1) uses the residual of the tolerable error
because this is the only parameter that is wanted to be
the lowest as possible, in contrast to the classifier perfor-
mance and the acceptable data, where these parameters
are sought to be the highest. Based on the results from this
quality estimator (Fig. 4), the KNN classifier has the best
performance with a tolerable error between 25% and 30%.
Following expert criteria, the tolerable error was set at
25%, i.e., every experimental measurement with an error
percent below 25% was classified as acceptable, otherwise
as not acceptable. The non-acceptable records include
around 75% of the data reported by Majumder (Kerosene,
Lube Oil/Air) and Schmidt (Povidone Water/Nitrogen),
146 records for upward directions between 5� and 90�,
209 of nearly horizontal records (�5� to 5�), and 138 records
of downward experiments (�90� to �5�). These records
correspond to 309 records with a diameter lower than
30 mm, 394 records within 30–60 mm, and only one record

greater to 100 mm. Regarding the fluid velocities and the
void fraction, the VsL and VsG had a greater proportion
between 1e-01 and 1 m/s, and the majority of the records
(63%) had a void fraction lower to 0.5. After the supervised
classification, a total of 5806 over 7702 acceptable records
were obtained, which corresponds now on as the experimen-
tal dataset for the flow pattern map construction.

4 Flow pattern map probabilistic-based
approach

4.1 Experimental-synthetic dataset overlapping

OLGA’s Multiphase Toolkit point model was used to calcu-
late the fully developed steady-state operating conditions in
a straight pipe. It operates with nine gas/liquid flow regimes
[76]: 0. Stratified smooth; 1. Stratified wavy; 2. Annular; 3.

Table 4. Comparison among Experimental and Synthetic Datasets parameters.

Dataset parameter Experimental Synthetic

Minimum Maximum Average Minimum Maximum Average

Diameter [m] 0.0127 0.189 0.046 0.0127 0.18 0.053
Length [m] 1.42 418 23.79 1.5 417 39.19
Liquid superficial velocity [m/s] 0 68.2 0.86 0.001 59.43 8.86
Gas superficial velocity [m/s] 0.00372 82.3 7.18 0.01 39.81 5.94
Liquid density [kg/m3] 49.4 1090 943.57 702.3 1053.9 955.88
Gas density [kg/m3] 0.91 103 4.54 1.1 24.45 15.92
Liquid composition 0 1 0.19 0 1 –

Liquid viscosity [Pa s] 0.000325 6.88 0.03 0.00036 0.05654 0.007
Gas viscosity [Pa s] 0.00001 0.00117 0.000029 0.000013 0.000019 0.000016
Superficial tension [N/m] 0.001 0.929 0.063 0.0028 0.078 0.043
Inclination [�] �90 90 11.53 �90 90 �2.58
Void fraction 0.00516 1 – 0 1 –

Pressure [bar] 0.0667 90 4.04 0.0667 90 13.03
Temperature [K]* 255 373 300.84 – – –

* Temperature was not used for OLGA calculations.
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Slug flow; 4. Bubble flow; 5. Two-phase oil/water; 6. Single
phase gas; 7. Single phase oil; and 8. Single phase water.
For this work, it was not contemplated the flow regimes
5, 6, 7, and 8, whereas the flow regimes 0 and 1 were
coupled as one flow regime (Stratified). For the sake of
simplicity, the flow regimes are denoted in this work as
0 (Segregated Flow) – SG; 2 (Annular Flow) – A; 3 (Inter-
mittent Flow) – IT; and 4 (Bubble Flow) – BF. The OLGA
Multiphase Kit assumes that for vertical or near vertical
(±75� or more) there is not segregated flow, but only annu-
lar flow. This assumption is linked to the gravitational
forces that impede to observe this phase for these inclina-
tions (as in Fig. 1d). In these cases, the annular flow repre-
sents specific types of segregated phases. For horizontal
cases, OLGA does not recognize an annular flow pattern,
and this pattern is grouped with the segregated flow
pattern (0 or SG) [76, 77].

The experimental and synthetic datasets overlapping
for a horizontal pipe are shown in Figure 5a based on super-
ficial velocities and Figure 5b Reynold numbers. These
figures show that the experimental and the synthetic data-
sets mainly agree in their flow regimes, and only an exper-
imental subset was misclassified by predicting an annular
flow, which is a flow pattern that was not obtained in the
synthetic dataset. Nevertheless, it should be pointed out

that it is not possible to generate a grid for the synthetic
dataset using the Reynolds number since the randomization
of the fluid combinations would generate nonphysical super-
ficial velocities to match a certain Reynolds number. This
impossibility is generated mainly by the liquid viscosity,
which varies in several orders of magnitude.

4.2 Probabilistic flow map

The primary location of the flow regimes can be determined
through the distribution depicted in Figure 5; however, this
map cannot assess transition areas yet, and points may be
overlapped. Then, an alternative visualization is proposed
base on the Probability Density Functions (PDF) of each
flow pattern for both liquid and gas velocities. These pdfs
are determined from empirical distributions using his-
tograms and cubic splines to obtain smoother results. The
obtained results are shown in Figure 6, where it can be seen
that an overlapping classification over the transition areas
between two flow patterns exists. For example, it can be
seen that Segregated (SG) and Annular (A) flow regimes
transition area is mostly located in a gas velocity above of
10 m/s and a liquid velocity of 0.01 m/s. Although this
map provides useful information about the overall transi-
tion areas for all possible values of the liquid or gas veloci-

a)

b)

IT SG A BF

Fig. 5. Experimental and synthetic a) superficial velocities and b) Reynolds flow pattern map for horizontal pipes.
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ties, the specific transition area between two flow patterns
could not be assessed, and there is still a great uncertainty
surrounding the classification results. Therefore, an alterna-
tive map was proposed to identify these transition areas
regardless of an overlapping problem. A translucent flow
pattern map with contour lines was suggested for this
purpose.

To obtain the translucent flow pattern map, a refined
mesh of 200 901 elements (matrix of 501 rows and 401 col-
umns) was developed. This mesh determines the number of
points over the entire span of velocities for every flow
regime. Projected surfaces for each flow pattern were devel-
oped – using a specific level of transparency given their

order of appearances –, and contour lines were added to
these surfaces to show the concentration levels of each
regime. The translucent obtained map is shown in Figure 7.
Note that an important number of measurements are
located in two transition areas between different contour
regimes.

A probabilistic approach based on the aforementioned
refined mesh and a Bayesian approach is proposed to deal
with the transition areas. According to the Bayes formula,
a posterior probability could be determined as [74]:

P Y ¼ yjX ¼ xð Þ ¼ P X ¼ x jY ¼ yð ÞPðY ¼ yÞ
P

8i2YP X ¼ x jY � ið ÞPðY ¼ iÞ ;

ð2Þ
where P(Y = y) is the prior probability of belonging to
category y, P(X = x|Y = y) is known as the likelihood
function, P(Y = y|X = x) is the posterior probability,
and

P
8i2YPðX ¼ xjY � iÞPðY ¼ iÞ is known as the
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evidence, however, it can be viewed as a scale factor for
the posterior probability.

The following considerations were implemented to cal-
culate the posterior probability for every flow pattern:

1. The prior probabilities were obtained by the ratio
between the number of points in the category y (Ny)
and the total number of points (NT).

2. The likelihood function is a term chosen to indicate
that the category for which it is large is more “likely”
to be the correct category [74]. Therefore, surfaces

from a refined mesh were obtained for all regimes, as
is depicted in Figure 8. Zy(i, j), denotes the height of
the surface from the flow regime for a given liquid
and gas velocities (i, j).

Appendix A.1 in Supplementary Material describes with
more details the proposed procedure.

The probabilistic flow pattern map was determined for
every flow regime for an inclination of �90� (vertical down-
ward pipe), 0� (horizontal pipe) and 90� (vertical upward
pipe) and depicted in Figure 9. These probabilistic maps
represent encouraging tools for rejecting possible flow

Fig. 9. Probability flow pattern map results for �90�, 0� and 90�.
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patterns under a high level of probability in an experimen-
tal dataset. Note that stratified and annular flow patterns
do not have significant contributions for the same inclina-
tion, which suggest a significant result in the calculation
of the error rate for further experimental assessments.
Besides, there is an interesting behavior in the intermittent
flow pattern, which is favored by upward vertical pipes in
comparison to horizontal pipes; however, for the downward
case (�90�), this is not the case, and an annular flow is
favored due to the gas properties. Figure 9 also shows that
the probabilities of belonging to annular (for 0�) and
intermittent (for �90�) flow patterns seem to be negligible;
nevertheless, these probabilities are 0.25 and 0.05,
respectively.

Finally, the obtained flow pattern map is compared
with two commonly used flow maps used in industry (Baker
[2] and Taitel and Dukler [10]) in Figure 10. The map pro-
posed in this work uses transition zones not as boundaries,
but as a probability area where there may be more than one
pattern at the same time. Besides, maps found in the liter-
ature are generally applicable to experimental conditions
under specific operating and pipe configurations. On the
contrary, the approach proposed in this work was generated
from a significant experimental and synthetic dataset, so a
broader number of cases may be applicable.

5 Conclusion and future perspectives

A probabilistic flow pattern map is proposed for liquid-gas
phase flow pipelines based on a comprehensive experimental

dataset and synthetic records obtained from OLGA. This
map aims to predict probable flow regimes given gas and
liquid superficial velocities and to evaluate possible transi-
tion zones among them, which are sought to replace tradi-
tional transition boundaries. This map was developed for
several inclinations upward and downward from �90� to
90� with steps of 5�.

To build this flow pattern map, acceptable records from
the experimental dataset were selected using a tolerable
error from synthetic records and their reported void
fraction. For those records lacking this parameter, a
supervised learning process was proposed to complete this
classification. For this purpose, two learning techniques
(i.e., SVM and KKN) were considered. Finally, a Bayesian
approach was considered based on the available informa-
tion and the overlapping information from the experimental
and synthetic datasets.

The proposed approach is an alternative to the current
flow pattern maps, which are somehow limited to the con-
figurations under they are developed. The synthetic records
were determined using random properties from OLGA sub-
jected to the ranges obtained from the experimental data-
set. Similar approaches can be proposed using different
simulation software, bearing in mind the uncertainty sur-
rounding the experiments and simulations. In case new
records are added to the current database, a robust tool
can be proposed. For instance, data can be extrapolated
to cover a wider number of tilt angles and not only every 5�.
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