
HAL Id: hal-02274498
https://hal.science/hal-02274498

Submitted on 16 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

RNNs Implicitly Implement Tensor Product
Representations

R. Thomas Mccoy, Tal Linzen, Ewan Dunbar, Paul Smolensky

To cite this version:
R. Thomas Mccoy, Tal Linzen, Ewan Dunbar, Paul Smolensky. RNNs Implicitly Implement Tensor
Product Representations. ICLR 2019 - International Conference on Learning Representations, May
2019, New Orleans, United States. �hal-02274498�

https://hal.science/hal-02274498
https://hal.archives-ouvertes.fr

Published as a conference paper at ICLR 2019

RNNS IMPLICITLY IMPLEMENT
TENSOR-PRODUCT REPRESENTATIONS

R. Thomas McCoy,1 Tal Linzen,1 Ewan Dunbar,2 & Paul Smolensky3,1

1Department of Cognitive Science, Johns Hopkins University
2Laboratoire de Linguistique Formelle, CNRS - Université Paris Diderot - Sorbonne Paris Cité
3Microsoft Research AI, Redmond, WA USA
tom.mccoy@jhu.edu, tal.linzen@jhu.edu,
ewan.dunbar@univ-paris-diderot.fr, smolensky@jhu.edu

ABSTRACT

Recurrent neural networks (RNNs) can learn continuous vector representations of
symbolic structures such as sequences and sentences; these representations often
exhibit linear regularities (analogies). Such regularities motivate our hypothesis
that RNNs that show such regularities implicitly compile symbolic structures into
tensor product representations (TPRs; Smolensky, 1990), which additively com-
bine tensor products of vectors representing roles (e.g., sequence positions) and
vectors representing fillers (e.g., particular words). To test this hypothesis, we in-
troduce Tensor Product Decomposition Networks (TPDNs), which use TPRs to
approximate existing vector representations. We demonstrate using synthetic data
that TPDNs can successfully approximate linear and tree-based RNN autoencoder
representations, suggesting that these representations exhibit interpretable compo-
sitional structure; we explore the settings that lead RNNs to induce such structure-
sensitive representations. By contrast, further TPDN experiments show that the
representations of four models trained to encode naturally-occurring sentences can
be largely approximated with a bag of words, with only marginal improvements
from more sophisticated structures. We conclude that TPDNs provide a powerful
method for interpreting vector representations, and that standard RNNs can induce
compositional sequence representations that are remarkably well approximated by
TPRs; at the same time, existing training tasks for sentence representation learning
may not be sufficient for inducing robust structural representations.

1 INTRODUCTION

Compositional symbolic representations are widely held to be necessary for intelligence (Newell,
1980; Fodor & Pylyshyn, 1988), particularly in the domain of language (Montague, 1974). However,
neural networks have shown great success in natural language processing despite using continuous
vector representations rather than explicit symbolic structures. How can these continuous represen-
tations yield such success in a domain traditionally believed to require symbol manipulation?

One possible answer is that neural network representations implicitly encode compositional struc-
ture. This hypothesis is supported by the spatial relationships between such vector representations,
which have been argued to display geometric regularities that parallel plausible symbolic structures
of the elements being represented (Mikolov et al. 2013; see Figure 1).

Analogical relationships such as those in Figure 1 are special cases of linearity properties shared by
several methods developed in the 1990s for designing compositional vector embeddings of symbolic
structures. The most general of these is tensor product representations (TPRs; Smolensky 1990).
Symbolic structures are first decomposed into filler-role bindings; for example, to represent the
sequence [5, 2, 4], the filler 5 may be bound to the role of first element, the filler 2 may be bound
to the role of second element, and so on. Each filler fi and — crucially — each role ri has a
vector embedding; these two vectors are combined using their tensor product fi ⊗ ri, and these
tensor products are summed to produce the representation of the sequence:

∑
fi ⊗ ri. This linear

combination can predict the linear relations between sequence representations illustrated in Figure 1.

1

Published as a conference paper at ICLR 2019

(a) (b) (c)

Figure 1: Plots of the first two principal components of (a) word embeddings (Pennington et al.,
2014), (b) digit-sequence embeddings learned by an autoencoder (Section 2), and (c) sentences
(InferSent: Conneau et al. 2017). All demonstrate systematicity in the learned vector spaces.

In this article, we test the hypothesis that vector representations of sequences can be approximated as
a sum of filler-role bindings, as in TPRs. We introduce the Tensor Product Decomposition Network
(TPDN) which takes a set of continuous vector representations to be analyzed and learns filler and
role embeddings that best predict those vectors, given a particular hypothesis for the relevant set of
roles (e.g., sequence indexes or structural positions in a parse tree).

To derive structure-sensitive representations, in Section 2 we look at a task driven by structure, not
content: autoencoding of sequences of meaningless symbols, denoted by digits. The focus here is
on sequential structure, although we also devise a version of the task that uses tree structure. For the
representations learned by these autoencoders, TPDNs find excellent approximations that are TPRs.

In Section 3, we turn to sentence-embedding models from the contemporary literature. It is an
open question how structure-sensitive these representations are; to the degree that they are structure-
sensitive, our hypothesis is that they can be approximated by TPRs. Here, TPDNs find less accurate
approximations, but they also show that a TPR equivalent to a bag-of-words already provides a
reasonable approximation; these results suggest that these sentence representations are not robustly
structure-sensitive. We therefore return to synthetic data in Section 4, exploring which architectures
and training tasks are likely to lead RNNs to induce structure-sensitive representations.

To summarize the contributions of this work, TPDNs provide a powerful method for interpreting
vector representations, shedding light on hard-to-understand neural architectures. We show that
standard RNNs can induce compositional representations that are remarkably well approximated by
TPRs and that the nature of these representations depends, in intrepretable ways, on the architecture
and training task. Combined with our finding that standard sentence encoders do not seem to learn
robust representations of structure, these findings suggest that more structured architectures or more
structure-dependent training tasks could improve the compositional capabilities of existing models.

1.1 THE TENSOR PRODUCT DECOMPOSITION NETWORK

The Tensor Product Decomposition Network (TPDN), depicted in Figure 2c, learns a TPR that best
approximates an existing set of vector encodings. While TPDNs can be applied to any structured
space, including embeddings of images or words, this work focuses on applying TPDNs to se-
quences. The model is given a hypothesized role scheme and the dimensionalities of the filler and
role embeddings. The elements of each sequence are assumed to be the fillers in that sequence’s rep-
resentation; for example, if the hypothesized roles are indexes counting from the end of the sequence,
then the hypothesized filler-role pairs for [5, 2, 4] would be (4:last, 2:second-to-last, 5:third-to-last).

The model then learns embeddings for these fillers and roles that minimize the distance between
the TPRs generated from these embeddings and the existing encodings of the sequences. Before the
comparison is performed, the tensor product (which is a matrix) is flattened into a vector, and a linear
transformation M is applied (see Appendix B for an ablation study showing that this transformation,
which was not a part of the original TPR proposal, is necessary). The overall function computed by
the architecture is thus M(flatten(

∑
i ri ⊗ fi)).

PyTorch code for the TPDN model is available on GitHub,1 along with an interactive demo.2

1https://github.com/tommccoy1/tpdn
2https://tommccoy1.github.io/tpdn/tpr_demo.html

2

https://github.com/tommccoy1/tpdn
https://tommccoy1.github.io/tpdn/tpr_demo.html

Published as a conference paper at ICLR 2019

E

3 6

3 7 6

7

(a)

3

5

-4 -1 7

-12 -3 21

-20 -5 35

(b)

+

3 r1 7 r2 6 r3
(1)

(2)

(3)

(4)

(5)
E

(c)

+

3 r1 7 r2 6 r3

E

3 7 6

(d)

Figure 2: (a) A unidirectional sequence-to-sequence autoencoder. (b) The tensor product operation.
(c) A TPDN trained to approximate the encoding E from the autoencoder: (1) The fillers and roles
are embedded. (2) The fillers and roles are bound together using the tensor product. (3) The tensor
products are summed. (4) The sum is flattened into a vector by concatenating the rows. (5) A linear
transformation is applied to get the final encoding. (d) The architecture for evaluation: using the
original autoencoder’s decoder with the trained TPDN as the encoder.

2 APPROXIMATING RNN AUTOENCODER REPRESENTATIONS

To establish the effectiveness of the TPDN at uncovering the structural representations used by
RNNs, we first apply the TPDN to sequence-to-sequence networks trained on an autoencoding ob-
jective: they are expected to encode a sequence of digits and then decode that encoding to reproduce
the same sequence (Figure 2a). In addition to testing the TPDN, this experiment also addresses a sci-
entific question: do different architectures (specifically, unidirectional, bidirectional, and tree-based
sequence-to-sequence models) induce different representations?

2.1 EXPERIMENTAL SETUP

Digit sequences: The sequences consisted of the digits from 0 to 9. We randomly generated 50,000
unique sequences with lengths ranging from 1 to 6 inclusive and averaging 5.2; these sequences were
divided into 40,000 training sequences, 5,000 development sequences, and 5,000 test sequences.

Architectures: For all sequence-to-sequence networks, we used gated recurrent units (GRUs, Cho
et al. (2014)) as the recurrent units. We considered three encoder-decoder architectures: unidirec-
tional, bidirectional, and tree-based.3 The unidirectional encoders and decoders follow the setup of
Sutskever et al. (2014): the encoder is fed the input elements one at a time, left to right, updating
its hidden state after each element. The decoder then produces the output sequence using the final
hidden state of the encoder as its input. The bidirectional encoder combines left-to-right and right-to-
left unidirectional encoders (Schuster & Paliwal, 1997); for symmetry, we also create a bidirectional
decoder, which has both a left-to-right and a right-to-left unidirectional decoder whose hidden states
are concatenated to form bidirectional hidden states from which output predictions are made. Our
final topology is tree-based RNNs (Pollack, 1990; Socher et al., 2010), specifically the Tree-GRU
encoder of Chen et al. (2017) and the tree decoder of Chen et al. (2018). These architectures require
a tree structure as part of their input; we generated a tree for each sequence using a deterministic
algorithm that groups digits based on their values (see Appendix C). To control for initialization
effects, we trained five instances of each architecture with different random initializations.

Role schemes: We consider 6 possible methods that networks might use to represent the roles of
specific digits within a sequence; see Figure 3a for examples of these role schemes.

1. Left-to-right: Each digit’s role is its index in the sequence, counting from left to right.
2. Right-to-left: Each digit’s role is its index in the sequence, counting from right to left.
3. Bidirectional: Each digit’s role is an ordered pair containing its left-to-right index and its

right-to-left index (compare human representations of spelling, Fischer-Baum et al. 2010).
4. Wickelroles: Each digit’s role is the digit before it and the digit after it (Wickelgren, 1969).

3For this experiment, the encoder and decoder always matched in type.

3

Published as a conference paper at ICLR 2019

5. Tree positions: Each digit’s role is its position in a tree, such as RRL (left child of right
child of right child of root). The tree structures are given by the algorithm in Appendix C.

6. Bag-of-words: All digits have the same role. We call this a bag-of-words because it repre-
sents which digits (“words”) are present and in what quantities, but ignores their positions.

Hypothesis: We hypothesize that RNN autoencoders will learn to use role representations that
parallel their architectures: left-to-right roles for a unidirectional network, bidirectional roles for a
bidirectional network, and tree-position roles for a tree-based network.

Evaluation: We evaluate how well a given sequence-to-sequence network can be approximated by
a TPR with a particular role scheme as follows. First, we train a TPDN with the role scheme in
question (Section 1.1). Then, we take the original encoder/decoder network and substitute the fit-
ted TPDN for its encoder (Figure 2d). We do not conduct any additional training upon this hybrid
network; the decoder retains exactly the weights it learned in association with the original encoder,
while the TPDN retains exactly the weights it learned for approximating the original encoder (in-
cluding the weights on the final linear layer). We then compute the accuracy of the resulting hybrid
network; we call this metric the substitution accuracy. High substitution accuracy indicates that
the TPDN has approximated the encoder well enough for the decoder to handle the resulting vectors.

2.2 RESULTS

Performance of seq2seq networks: The unidirectional and tree-based architectures both performed
the training task nearly perfectly, with accuracies of 0.999 and 0.989 (averaged across five runs).
Accuracy was lower (0.834) for the bidirectional architecture; this might mean that the hidden size
of 60 becomes too small when divided into two 30-dimensional halves, one half for each direction.

Quality of TPDN approximation: For each of the six role schemes, we fitted a TPDN to the
vectors generated by the trained encoder, and evaluated it using substitution accuracy (Section 2.1).
The results, in Figure 3c, show that different architectures do use different representations to solve
the task. The tree-based autoencoder can be well-approximated using tree-position roles but not
using any of the other role schemes. By contrast, the unidirectional architecture is approximated
very closely (with a substitution accuracy of over 0.99 averaged across five runs) by bidirectional
roles. Left-to-right roles are also fairly successful (accuracy = 0.87), and right-to-left roles are
decidedly unsuccessful (accuracy = 0.11). This asymmetry suggests that the unidirectional network

3 1 1 6 5 2 3 1 9 7

Left-to-right 0 1 2 3 0 1 2 3 4 5
Right-to-left 3 2 1 0 5 4 3 2 1 0
Bidirectional (0, 3) (1, 2) (2, 1) (3, 0) (0, 5) (1, 4) (2, 3) (3, 2) (4, 1) (5, 0)
Wickelroles # 1 3 1 1 6 1 # # 2 5 3 2 1 3 9 1 7 9 #
Tree L RLL RLR RR LL LRLL LRLR LRRL LRRR R
Bag of words r0 r0 r0 r0 r0 r0 r0 r0 r0 r0

(a)

3
1 1 6

5
2 3 1 9

7

(b)

(c)

Figure 3: (a) The filler-role bindings assigned by the six role schemes to two sequences, 3116 and
523197. Roles not shown are assigned the null filler. (b) The trees used to assign tree roles to these
sequences. (c) Substitution accuracy for three architectures at the autoencoding task with six role
schemes. Each bar represents an average across five random initializations.

4

Published as a conference paper at ICLR 2019

uses mildly bidirectional roles: while it is best approximated by bidirectional roles, it strongly favors
one direction over the other. Though the model uses bidirectional roles, then, roles with the same
left-to-right position (e.g. (2,3), (2,4), and (2,5)) can be collapsed without much loss of accuracy.

Finally, the bidirectional architecture is not approximated well by any of the role schemes we inves-
tigated. It may be implementing a role scheme we did not consider, or a structure-encoding scheme
other than TPR. Alternately, it might simply not have adopted any robust method for representing
sequence structure; this could explain why its accuracy on the training task was relatively low (0.83).

3 ENCODINGS OF NATURALLY-OCCURRING SENTENCES

Will the TPDN’s success with digit-sequence autoencoders extend to models trained on naturally
occurring data? We explore this question using sentence representations from four models: InferSent
(Conneau et al., 2017), a BiLSTM trained on the Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015); Skip-thought (Kiros et al., 2015), an LSTM trained to predict the
sentence before or after a given sentence; the Stanford sentiment model (SST) (Socher et al., 2013),
a tree-based recursive neural tensor network trained to predict movie review sentiment; and SPINN
(Bowman et al., 2016), a tree-based RNN trained on SNLI. More model details are in Appendix E.

3.1 TPDN APPROXIMATION

We now fit TPDNs to these four sentence encoding models. We experiment with all of the role
schemes used in Section 2 except for Wickelroles; for sentence representations, the vocabulary size
|V | is so large that the Wickelrole scheme, which requires |V |2 distinct roles, becomes intractable.

Preliminary experiments showed that the TPDN performed poorly when learning the filler embed-
dings from scratch, so we used pretrained word embeddings; for each model, we use the word
embeddings used by that model. We fine-tuned the embeddings with a linear transformation on top
of the word embedding layer (though the embeddings themselves remain fixed). Thus, what the
model has to learn are: the role embeddings, the linear transformation to apply to the fixed filler
embeddings, and the final linear transformation applied to the sum of the filler/role bindings.

We train TPDNs on the sentence embeddings that each model generates for all SNLI premise sen-
tences (Bowman et al., 2015). For other training details see Appendix E. Table 1a shows the mean
squared errors (MSEs) for various role schemes. In general, the MSEs show only small differences
between role schemes, except that tree-position roles do noticeably outperform other role schemes
for SST. Notably, bag-of-words roles perform nearly as well as the other role schemes, in stark
contrast to the poor performance of bag-of-words roles in Section 2. MSE is useful for comparing
models but is less useful for assessing absolute performance since the exact value of this error is not
very interpretable. In the next section, we use downstream tasks for a more interpretable evaluation.

3.2 PERFORMANCE ON DOWNSTREAM TASKS

Tasks: We assess how the tensor product approximations compare to the models they approximate
at four tasks that are widely accepted for evaluating sentence embeddings: (1) Stanford Sentiment
Treebank (SST), rating the sentiment of movie reviews (Socher et al., 2013); (2) Microsoft Research

(a)

LTR RTL Bi Tree BOW

InferSent 0.17 0.18 0.17 0.16 0.19
Skip-thought 0.45 0.46 0.47 0.42 0.45
SST 0.24 0.26 0.26 0.17 0.27
SPINN 0.22 0.23 0.21 0.18 0.25

(b)

LTR RTL Bi Tree BOW

InferSent 0.35 0.34 0.29 0.35 0.40
Skip-thought 0.34 0.37 0.24 0.34 0.51
SST 0.27 0.32 0.25 0.26 0.34
SPINN 0.49 0.53 0.44 0.49 0.56

Table 1: (a) MSEs of TPDN approximations of sentence encodings (normalized by dividing by
the MSE from training the TPDN on random vectors, to allow comparisons across models). (b)
Performance of the sentence encoding models on our role-diagnostic analogies. Numbers indicate
Euclidean distances (normalized by dividing by the average distance between vectors in the analogy
set). Each column contains the average over all analogies diagnostic of the role heading that column.

5

Published as a conference paper at ICLR 2019

(a)

Model LTR RTL Bi Tree BOW

InferSent 0.79 0.79 0.78 0.78 0.77
Skip-thought 0.53 0.52 0.46 0.50 0.58
SST 0.83 0.82 0.82 0.82 0.81
SPINN 0.73 0.75 0.75 0.76 0.74

(b)

Model LTR RTL Bi Tree BOW

InferSent 0.77 0.74 0.77 0.77 0.71
Skip-thought 0.37 0.37 0.36 0.36 0.37
SST 0.48 0.51 0.49 0.67 0.49
SPINN 0.72 0.72 0.73 0.76 0.58

Table 2: The proportion of test examples on which a classifier trained on sentence encodings gave
the same predictions for the original encodings and for their TPDN approximations. (a) shows
the average of these proportions across SST, MRPC, and STS-B, while (b) shows only SNLI. (For
including STS-B in (a), we linearly shift its values to be in the same range as the other tasks’ results).

Paraphrase Corpus (MRPC), classifying whether two sentences paraphrase each other (Dolan et al.,
2004); (3) Semantic Textual Similarity Benchmark (STS-B), labeling how similar two sentences are
(Cer et al., 2017); and (4) Stanford Natural Language Inference (SNLI), determining if one sentence
entails a second sentence, contradicts the second sentence, or neither (Bowman et al., 2015).

Evaluation: We use SentEval (Conneau & Kiela, 2018) to train a classifier for each task on the
original encodings produced by the sentence encoding model. We freeze this classifier and use it
to classify the vectors generated by the TPDN. We then measure what proportion of the classifier’s
predictions for the approximation match its predictions for the original sentence encodings.4

Results: For all tasks besides SNLI, we found no marked difference between bag-of-words roles
and other role schemes (Table 2a). For SNLI, we did see instances where other role schemes out-
performed bag-of-words (Table 2b). Within the SNLI results, both tree-based models (SST and
SPINN) are best approximated with tree-based roles. InferSent is better approximated with struc-
tural roles than with bag-of-words roles, but all structural role schemes perform similarly. Finally,
Skip-thought cannot be approximated well with any role scheme we considered. It is unclear why
Skip-thought has lower results than the other models. Overall, even for SNLI, bag-of-words roles
provide a fairly good approximation, with structured roles yielding rather modest improvements.

Based on these results, we hypothesize that these models’ representations can be characterized as a
bag-of-words representation plus some incomplete structural information that is not always encoded.
This explanation is consistent with the fact that bag-of-words roles yield a strong but imperfect ap-
proximation for the sentence embedding models. However, this is simply a conjecture; it is possible
that these models do use a robust, systematic structural representation that either involves a role
scheme we did not test or that cannot be characterized as a tensor product representation at all.

3.3 ANALOGIES

We now complement the TPDN tests with sentence analogies. By comparing pairs of minimally
different sentences, analogies might illuminate representational details that are difficult to discern
in individual sentences. We construct sentence-based analogies that should hold only under certain
role schemes, such as the following analogy (expressed as an equation as in Mikolov et al. 2013):

I see now− I see = you know now− you know (1)

A left-to-right role scheme makes (1) equivalent to (2) (f :r denotes the binding of filler f to role r):

(I:0 + see:1 + now:2) – (I:0 + see:1) = (you:0 + know:1 + now:2) – (you:0 + know:1) (2)

In (2), both sides reduce to now:2, so (1) holds for representations using left-to-right roles. However,
if (2) instead used right-to-left roles, it would not reduce in any clean way, so (1) would not hold.
We construct a dataset of such role-diagnostic analogies, where each analogy should only hold for
certain role schemes. For example, (1) works for left-to-right roles or bag-of-words roles, but not
the other role schemes. The analogies use a vocabulary based on Ettinger et al. (2018) to ensure
plausibility of the constructed sentences. For each analogy, we create 4 equations, one isolating

4We also train SentEval classifiers on top of the TPDN instead of the original model; see Appendix F for
these results. In general, for all models besides Skip-thought, the TPDN approximations perform nearly as well
as the original models, and in some cases the approximations even outperform the originals.

6

Published as a conference paper at ICLR 2019

each of the four terms (e.g. I see = I see now – you know now + you know). We then compute the
Euclidean distance between the two sides of each equation using each model’s encodings.

The results are in Table 1b. InferSent, Skip-thought, and SPINN all show results most consistent
with bidirectional roles, while SST shows results most consistent with tree-based or bidirectional
roles. The bag-of-words column shows poor performance by all models, indicating that in controlled
enough settings these models can be shown to have some more structured behavior even though
evaluation on examples from applied tasks does not clearly bring out that structure. These analogies
thus provide independent evidence for our conclusions from the TPDN analysis: these models have
a weak notion of structure, but that structure is largely drowned out by the non-structure-sensitive,
bag-of-words aspects of their representations. However, the other possible explanations mentioned
above−namely, the possibilities that the models use alternate role schemes that we did not test or
that they use some structural encoding other than tensor product representation−still remain.

4 WHEN DO RNNS LEARN COMPOSITIONAL REPRESENTATIONS?

The previous section suggested that all sentence models surveyed did not robustly encode structure
and could even be approximated fairly well with a bag of words. Motivated by this finding, we
now investigate how aspects of training can encourage or discourage compositionality in learned
representations. To increase interpretability, we return to the setting (from Section 2) of operating
over digit sequences. We investigate two aspects of training: the architecture and the training task.

Teasing apart the contribution of the encoder and decoder: In Section 2, we investigated au-
toencoders whose encoder and decoder had the same topology (unidirectional, bidirectional, or tree-
based). To test how each of the two components contributes to the learned representation, we now
expand the investigation to include networks where the encoder and decoder differ. We crossed
all three encoder types with all three decoder types (nine architectures in total). The results are in
Table 7 in Appendix D. The decoder largely dictates what roles are learned: models with unidi-
rectional decoders prefer mildly bidirectional roles, models with bidirectional decoders fail to be
well-approximated by any role scheme, and models with tree-based decoders are best approximated
by tree-based roles. However, the encoder still has some effect: in the tree/uni and tree/bi models, the
tree-position roles perform better than they do for the other models with the same decoders. Though
work on novel architectures often focuses on the encoder, this finding suggests that focusing on the
decoder may be more fruitful for getting neural networks to learn specific types of representations.

The contribution of the training task: We next explore how the training task affects the rep-
resentations that are learned. We test four tasks, illustrated in Table 3a: autoencoding (returning
the input sequence unchanged), reversal (reversing the input), sorting (returning the input digits in
ascending order), and interleaving (alternating digits from the left and right edges of the input).

Table 3b gives the substitution accuracy for a TPDN trained to approximate a unidirectional encoder
that was trained with a unidirectional decoder on each task. Training task noticeably influences the
learned representations. First, though the model has learned mildly bidirectional roles favoring the
left-to-right direction for autoencoding, for reversal the right-to-left direction is far preferred over
left-to-right. For interleaving, the model is approximated best with strongly bidirectional roles: that
is, bidirectional roles work nearly perfectly, while neither unidirectional scheme works well. Finally,
for sorting, bag-of-words roles work nearly as well as all other schemes, suggesting that the model

(a)

Input 3,4,0 4,3,6,5,1,3

Autoencode 3,4,0 4,3,6,5,1,3
Reverse 0,4,3 3,1,5,6,3,4
Sort 0,3,4 1,3,3,4,5,6
Interleave 3,0,4 4,3,3,1,6,5

(b)

LTR RTL Bi Wickel Tree BOW

Autoencode 0.87 0.11 0.99 0.28 0.25 0.00
Reverse 0.06 0.99 1.00 0.18 0.20 0.00
Sort 0.90 0.90 0.92 0.88 0.89 0.89
Interleave 0.27 0.18 0.99 0.63 0.36 0.00

Table 3: (a) Tasks used to test for the effect of task on learned roles (Section 4). (b) Accuracy of
the TPDN applied to models trained on these tasks with a unidirectional encoder and decoder. All
numbers are averages across five random initializations.

7

Published as a conference paper at ICLR 2019

has learned to discard most structural information since sorting does not depend on structure. These
experiments suggest that RNNs only learn compositional representations when the task requires
them. This result might explain why the sentence embedding models do not seem to robustly encode
structure: perhaps the training tasks for these models do not heavily rely on sentence structure (e.g.
Parikh et al. (2016) achieved high accuracy on SNLI using a model that ignores word order), such
that the models learn to ignore structural information, as was the case with models trained on sorting.

5 RELATED WORK

There are several approaches for interpreting neural network representations. One approach is to
infer the information encoded in the representations from the system’s behavior on examples target-
ing specific representational components, such as semantics (Pavlick, 2017; Dasgupta et al., 2018;
Poliak et al., 2018) or syntax (Linzen et al., 2016). Another approach is based on probing tasks,
which assess what information can be easily decoded from a vector representation (Shi et al. 2016;
Belinkov et al. 2017; Kádár et al. 2017; Ettinger et al. 2018; compare work in cognitive neuro-
science, e.g. Norman et al. 2006). Our method is wider-reaching than the probing task approach,
or the Mikolov et al. (2013) analogy approach: instead of decoding a single feature, we attempt to
exhaustively decompose the vector space into a linear combination of filler-role bindings.

The TPDN’s successful decomposition of sequence representations in our experiments shows that
RNNs can sometimes be approximated with no nonlinearities or recurrence. This finding is related to
the conclusions of Levy et al. (2018), who argued that LSTMs dynamically compute weighted sums
of their inputs; TPRs replace the weights of the sum with the role vectors. Levy et al. (2018) also
showed that recurrence is largely unnecessary for practical applications. Vaswani et al. (2017) report
very good performance for a sequence model without recurrence; importantly, they find it necessary
to incorporate sequence position embeddings, which are similar to the left-to-right roles discussed
in Section 2. Methods for interpreting neural networks using more interpretable architectures have
been proposed before based on rules and automata (Omlin & Giles, 1996; Weiss et al., 2018).

Our decomposition of vector representations into independent fillers and roles is related to work on
separating latent variables using singular value decomposition and other factorizations (Tenenbaum
& Freeman, 2000; Anandkumar et al., 2014). For example, in face recognition, eigenfaces (Sirovich
& Kirby, 1987; Turk & Pentland, 1991) and TensorFaces (Vasilescu & Terzopoulos, 2002; 2005)
use such techniques to disentangle facial features, camera angle, and lighting.

Finally, there is a large body of work on incorporating explicit symbolic representations into neural
networks (for a recent review, see Battaglia et al. 2018); indeed, tree-shaped RNNs are an example
of this approach. While our work is orthogonal to this line of work, we note that TPRs and other
filler-role representations can profitably be used as an explicit component of neural models (Koniusz
et al., 2017; Palangi et al., 2018; Huang et al., 2018; Tang et al., 2018; Schlag & Schmidhuber, 2018).

6 CONCLUSION

What kind of internal representations could allow simple sequence-to-sequence models to perform
the remarkable feats they do, including tasks previously thought to require compositional, symbolic
representations (e.g., translation)? Our experiments show that, in heavily structure-sensitive tasks,
sequence-to-sequence models learn representations that are extremely well approximated by tensor-
product representations (TPRs), distributed embeddings of symbol structures that enable powerful
symbolic computation to be performed with neural operations (Smolensky, 2012). We demonstrated
this by approximating learned representations via TPRs using the proposed tensor-product decom-
position network (TPDN). Variations in architecture and task were shown to induce different types
and degrees of structure-sensitivity in representations, with the decoder playing a greater role than
the encoder in determining the structure of the learned representation. TPDNs applied to mainstream
sentence-embedding models reveal that unstructured bag-of-words models provide a respectable ap-
proximation; nonetheless, this experiment also provides evidence for a moderate degree of structure-
sensitivity. The presence of structure-sensitivity is corroborated by targeted analogy tests motivated
by the linearity of TPRs. A limitation of the current TPDN architecture is that it requires a hypothe-
sis about the representations to be selected in advance. A fruitful future research direction would be
to automatically explore hypotheses about the nature of the TPR encoded by a network.

8

Published as a conference paper at ICLR 2019

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship Program under Grant No. 1746891 and NSF INSPIRE grant BCS-1344269. This work
was also supported by ERC grant ERC-2011-AdG-295810 (BOOTPHON), and ANR grants ANR-
10-LABX-0087 (IEC) and ANR-10-IDEX-0001-02 (PSL*), ANR-17-CE28-0009 (GEOMPHON),
ANR-11-IDEX-0005 (USPC), and ANR-10-LABX-0083 (EFL). Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation or the other supporting agencies.

For helpful comments, we are grateful to Colin Wilson, John Hale, Marten van Schijndel, Jan Hůla,
the members of the Johns Hopkins Gradient Symbolic Computation research group, and the mem-
bers of the Deep Learning Group at Microsoft Research, Redmond. Any errors remain our own.

REFERENCES

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. The Journal of Machine Learning Research,
15(1):2773–2832, 2014.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass. What do neu-
ral machine translation models learn about morphology? In Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
861–872, Vancouver, Canada, 2017. Association for Computational Linguistics. URL http:
//aclweb.org/anthology/P17-1080.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large an-
notated corpus for learning natural language inference. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 632–642, Lisbon, Portugal,
September 2015. Association for Computational Linguistics. URL http://aclweb.org/
anthology/D15-1075.

Samuel R. Bowman, Jon Gauthier, Abhinav Rastogi, Raghav Gupta, Christopher D. Manning,
and Christopher Potts. A fast unified model for parsing and sentence understanding. In Pro-
ceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 1466–1477. Association for Computational Linguistics, 2016. URL
http://aclweb.org/anthology/P16-1139.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017
task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Pro-
ceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 1–
14. Association for Computational Linguistics, 2017. doi: 10.18653/v1/S17-2001. URL
http://www.aclweb.org/anthology/S17-2001.

Huadong Chen, Shujian Huang, David Chiang, and Jiajun Chen. Improved neural machine trans-
lation with a syntax-aware encoder and decoder. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1936–
1945. Association for Computational Linguistics, 2017. doi: 10.18653/v1/P17-1177. URL
http://www.aclweb.org/anthology/P17-1177.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation.
arXiv preprint arXiv:1802.03691, 2018.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 1724–1734, 2014.

9

http://aclweb.org/anthology/P17-1080
http://aclweb.org/anthology/P17-1080
http://aclweb.org/anthology/D15-1075
http://aclweb.org/anthology/D15-1075
http://aclweb.org/anthology/P16-1139
http://www.aclweb.org/anthology/S17-2001
http://www.aclweb.org/anthology/P17-1177

Published as a conference paper at ICLR 2019

Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence represen-
tations. In International Conference on Language Resources and Evaluation, 2018.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data. In Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
670–680. Association for Computational Linguistics, 2017. URL http://aclweb.org/
anthology/D17-1070.

Ishita Dasgupta, Demi Guo, Andreas Stuhlmüller, Samuel J. Gershman, and Noah D. Goodman.
Evaluating compositionality in sentence embeddings. In Proceedings of the 40th Annual Con-
ference of the Cognitive Science Society, 2018. URL https://arxiv.org/abs/1802.
04302.

Bill Dolan, Chris Quirk, and Chris Brockett. Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources. In COLING 2004: Proceedings of the 20th
International Conference on Computational Linguistics, 2004. URL http://www.aclweb.
org/anthology/C04-1051.

Allyson Ettinger, Ahmed Elgohary, Colin Phillips, and Philip Resnik. Assessing composition in
sentence vector representations. In Proceedings of the 27th International Conference on Com-
putational Linguistics, pp. 1790–1801. Association for Computational Linguistics, 2018. URL
http://aclweb.org/anthology/C18-1152.

Simon Fischer-Baum, Michael McCloskey, and Brenda Rapp. Representation of letter position in
spelling: Evidence from acquired dysgraphia. Cognition, 115(3):466–490, 2010.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1-2):3–71, 1988.

Qiuyuan Huang, Paul Smolensky, Xiaodong He, Li Deng, and Dapeng Wu. Tensor product gen-
eration networks for deep nlp modeling. In Proceedings of NAACL, 2018. URL https:
//arxiv.org/abs/1709.09118.

Ákos Kádár, Grzegorz Chrupała, and Afra Alishahi. Representation of linguistic form and function
in recurrent neural networks. Computational Linguistics, 43(4):761–780, 2017. URL http:
//aclweb.org/anthology/J17-4003.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference for Learning Representations, 2015.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. Skip-thought vectors. In Advances in Neural Information Processing
Systems, pp. 3294–3302, 2015.

Piotr Koniusz, Fei Yan, Philippe-Henri Gosselin, and Krystian Mikolajczyk. Higher-order occur-
rence pooling for bags-of-words: Visual concept detection. IEEE transactions on pattern analysis
and machine intelligence, 39(2):313–326, 2017.

Omer Levy, Kenton Lee, Nicholas FitzGerald, and Luke Zettlemoyer. Long short-term memory as a
dynamically computed element-wise weighted sum. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 732–739. As-
sociation for Computational Linguistics, 2018. URL http://aclweb.org/anthology/
P18-2116.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of LSTMs to learn syntax-
sensitive dependencies. Transactions of the Association for Computational Linguistics, 4:521–
535, 2016.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word
representations. In Proceedings of NAACL-HLT, pp. 746–751, 2013.

10

http://aclweb.org/anthology/D17-1070
http://aclweb.org/anthology/D17-1070
https://arxiv.org/abs/1802.04302
https://arxiv.org/abs/1802.04302
http://www.aclweb.org/anthology/C04-1051
http://www.aclweb.org/anthology/C04-1051
http://aclweb.org/anthology/C18-1152
https://arxiv.org/abs/1709.09118
https://arxiv.org/abs/1709.09118
http://aclweb.org/anthology/J17-4003
http://aclweb.org/anthology/J17-4003
http://aclweb.org/anthology/P18-2116
http://aclweb.org/anthology/P18-2116

Published as a conference paper at ICLR 2019

Richard Montague. English as a formal language. In Richard Thomason (ed.), Formal Philosophy.
Selected papers by Richard Montague, pp. 188–221. Yale University Press, 1974.

Allen Newell. Physical symbol systems. Cognitive Science, 4(2):135–183, 1980.

Kenneth A. Norman, Sean M. Polyn, Greg J. Detre, and James V. Haxby. Beyond mind-reading:
multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9):424–430, 2006.

Christian W. Omlin and C. Lee Giles. Extraction of rules from discrete-time recurrent neural net-
works. Neural Networks, 9(1):41–52, 1996.

Hamid Palangi, Paul Smolensky, Xiaodong He, and Li Deng. Question-answering with
grammatically-interpretable representations. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018, 2018. URL
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17090.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A decomposable attention
model for natural language inference. In Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 2249–2255. Association for Computational Linguistics,
2016. doi: 10.18653/v1/D16-1244. URL http://aclweb.org/anthology/D16-1244.

Ellie Pavlick. Compositional lexical semantics in natural language inference. PhD thesis, University
of Pennsylvania, 2017.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 1532–1543, 2014.

Tony A. Plate. Holographic reduced representations. IEEE Transactions on Neural networks, 6(3):
623–641, 1995.

Adam Poliak, Yonatan Belinkov, James Glass, and Benjamin Van Durme. On the evaluation of se-
mantic phenomena in neural machine translation using natural language inference. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 2 (Short Papers), pp. 513–523. Association for
Computational Linguistics, 2018. URL http://aclweb.org/anthology/N18-2082.

Jordan B. Pollack. Recursive distributed representations. Artificial Intelligence, 46(1-2):77–105,
1990.

Imanol Schlag and Jürgen Schmidhuber. Learning to reason with third order tensor products. In
Advances in Neural Information Processing Systems, pp. 10003–10014, 2018.

Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681, 1997.

Xing Shi, Inkit Padhi, and Kevin Knight. Does string-based neural MT learn source syntax? In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
1526–1534. Association for Computational Linguistics, 2016. doi: 10.18653/v1/D16-1159. URL
http://www.aclweb.org/anthology/D16-1159.

Lawrence Sirovich and Michael Kirby. Low-dimensional procedure for the characterization of hu-
man faces. Journal of the Optical Society of America A, 4(3):519–524, 1987.

Paul Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial Intelligence, 46(1-2):159–216, 1990.

Paul Smolensky. Symbolic functions from neural computation. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1971):3543–3569, 2012.

Richard Socher, Christopher D. Manning, and Andrew Y. Ng. Learning continuous phrase repre-
sentations and syntactic parsing with recursive neural networks. In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature Learning Workshop, 2010.

11

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17090
http://aclweb.org/anthology/D16-1244
http://aclweb.org/anthology/N18-2082
http://www.aclweb.org/anthology/D16-1159

Published as a conference paper at ICLR 2019

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems, pp. 3104–3112, 2014.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic representations
from tree-structured long short-term memory networks. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 1556–1566, Beijing, China,
July 2015. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/P15-1150.

Shuai Tang, Paul Smolensky, and Virginia R de Sa. Learning distributed representa-
tions of symbolic structure using binding and unbinding operations. NeurIPS Workshop
https://openreview.net/forum?id=r1zvGR6jjm and arXiv preprint arXiv:1810.12456, 2018.

Joshua B Tenenbaum and William T Freeman. Separating style and content with bilinear models.
Neural computation, 12(6):1247–1283, 2000.

Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of cognitive neuroscience, 3
(1):71–86, 1991.

M. Alex O. Vasilescu and Demetri Terzopoulos. Multilinear image analysis for facial recognition.
In Proceedings of the 16th International Conference on Pattern Recognition, 2002., volume 2, pp.
511–514. IEEE, 2002.

M. Alex O. Vasilescu and Demetri Terzopoulos. Multilinear independent components analysis. In
Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition,
pp. 547–553. IEEE, 2005.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural networks
using queries and counterexamples. In ICML, pp. 5244–5253, 2018.

Wayne A. Wickelgren. Context-sensitive coding, associative memory, and serial order in (speech)
behavior. Psychological Review, 76(1):1–15, 1969.

12

http://www.aclweb.org/anthology/P15-1150
http://www.aclweb.org/anthology/P15-1150

Published as a conference paper at ICLR 2019

A LIST OF ACRONYMS AND ABBREVIATIONS

Bi Bidirectional
BOW Bag of words
LTR Left to right
MRPC Microsoft Research Paraphrase Corpus
RTL Right to left
SNLI Stanford Natural Language Inference corpus
SST Stanford Sentiment Treebank
STS-B Semantic Textual Similarity Benchmark
TPDN Tensor product decomposition network
TPR Tensor product representation
Uni Unidirectional
Wickel Wickelroles (see Section 2.1)

B ANALYSIS OF ARCHITECTURE COMPONENTS

Here we analyze how several aspects of the TPDN architecture contribute to our results. For all of
the experiements described in this section, we used TPDNs to approximate a sequence-to-sequence
network with a unidirectional encoder and unidirectional decoder that was trained to perform the
reversal task (Section 4); we chose this network because it was strongly approximated by right-to-
left roles, which are relatively simple (but still non-trivial).

B.1 IS THE FINAL LINEAR LAYER NECESSARY?

One area where our model diverges from traditional tensor product representations is in the presence
of the final linear layer (step 5 in Figure 2c). This layer is necessary if one wishes to have freedom to
choose the dimensionality of the filler and role embeddings; without it, the dimensionality of the rep-
resentations that are being approximated must factor exactly into the product of the dimensionality
of the filler embeddings and the dimensionality of the role embedding (see Figure 2c). It is natural
to wonder whether the only contribution of this layer is in adjusting the dimensionality or whether
it serves a broader function. Table 4 shows the results of approximating the reversal sequence-to-
sequence network with and without this layer; it indicates that this layer is highly necessary for the
successful decomposition of learned representations. (Tables follow all appendix text.)

B.2 VARYING THE DIMENSIONALITY OF THE FILLER AND ROLE EMBEDDINGS

Two of the parameters that must be provided to the TPDN are the dimensionality of the filler em-
beddings and the dimensionality of the role embeddings. We explore the effects of these parameters
in Figure 4. For the role embeddings, substitution accuracy increases noticeably with each increase
in dimensionality until the dimensionality hits 6, where accuracy plateaus. This behavior is likely
due to the fact that the reversal seq2seq network is most likely to employ right-to-left roles, which
involves 6 possible roles in this setting. A dimensionality of 6 is therefore the minimum embed-
ding size needed to make the role vectors linearly independent; linear independence is an important
property for the fidelity of a tensor product representation (Smolensky, 1990). The accuracy also
generally increases as filler dimensionality increases, but there is a less clear point where it plateaus
for the fillers than for the roles.

B.3 FILLER-ROLE BINDING OPERATION

The body of the paper focused on using the tensor product (fi ⊗ ri, see Figure 2b) as the operation
for binding fillers to roles. There are other conceivable binding operations. Here we test two alterna-
tives, both of which can be viewed as special cases of the tensor product or as related to it: circular
convolution, which is used in holographic reduced representations (Plate, 1995), and elementwise
product (fi � ri). Both of these are restricted such that roles and fillers must have the same embed-
ding dimension (Nf = Nr). We first try setting this dimension to 20, which is what was used as
both the role and filler dimension in all tensor product experiments with digit sequences.

13

Published as a conference paper at ICLR 2019

Figure 4: Heatmap of substitution accuracies with various filler and role embedding dimensions.
Red indicates accuracy under 1%; dark blue indicates accuracy over 80%. The models whose sub-
stitution accuracies are displayed are all TPDNs trained to approximate a sequence-to-sequence
model that was trained on the task of reversal.

We found that while these dimensions were effective for the tensor product binding operation, they
were not effective for elementwise product and circular convolution (Table 5). When the dimension
was increased to 60, however, the elementwise product performed roughly as well as as the tensor
product; circular convolution now learned one of the two viable role schemes (right-to-left roles)
but failed to learn the equally viable bidirectional role scheme. Thus, our preliminary experiments
suggest that these other two binding operations do show promise, but seem to require larger em-
bedding dimensions than tensor products do. At the same time, they still have fewer parameters
overall compared to the tensor product because their final linear layers (of dimensionality N) are
much smaller than those used with a tensor product (of dimensionality N2).

C THE DIGIT PARSING ALGORITHM

When inputting digit sequences to our tree-based model, the model requires a predefined tree struc-
ture for the digit sequence. We use the following algorithm to generate this tree structure: at each
timestep, combine the smallest element of the sequence (other than the last element) with its neigh-
bor immediately to the right, and replace the pair with that neighbor. If there is a tie for the smallest
digit, choose the leftmost tied digit.

For example, the following shows step-by-step how the tree for the sequence 523719 would be
generated:

• 5 2 3 7 1 9

• 5 2 3 7 [1 9]

• 5 [2 3] 7 [1 9]

• 5 [[2 3] 7] [1 9]

• [5 [[2 3] 7] [1 9]]

D FULL RESULTS OF SEQUENCE-TO-SEQUENCE EXPERIMENTS

Section 4 summarized the results of our experiments which factorially varied the training task, the
encoder and the decoder. Here we report the full results of these experiments in two tables: Table 6
shows the accuracies achieved by the sequence-to-sequence models at the various training tasks, and
Table 7 shows the substitution accuracies of TPDNs applied to the trained sequence-to-sequence
models for all architectures and tasks.

14

Published as a conference paper at ICLR 2019

E MODEL AND TRAINING DETAILS

E.1 SEQUENCE-TO-SEQUENCE MODELS

As much as possible, we standardized parameters across all sequence-to-sequence models that we
trained on the digit-sequence tasks.

For all decoders, when computing a new hidden state, the only input to the recurrent unit is the
previous hidden state (or parent hidden state, for a tree-based decoder), without using any previous
outputs as inputs to the hidden state update. This property is necessary for using a bidirectional
decoder, since it would not be possible to generate the output both before and after each bidirectional
decoder hidden state.

We also inform the decoder of when to stop decoding; that is, for sequential models, the decoder
stops once its output is the length of the sequence, while for tree-based models we tell the model
which positions in the tree are leaves. Stopping could alternately be determined by some action
of the decoder (e.g., generating an end-of-sequence symbol); for simplicity we chose the strategy
outlined above instead.

For all architectures, we used a digit embedding dimensionality of 10 (chosen arbitrarily) and a hid-
den layer size of 60 (this hidden layer size was chosen because 60 has many integer factors, making
it amenable to the dimensionality analyses in Appendix B.2). For the bidirectional architectures, the
forward and backward recurrent layers each had a hidden layer size of 30, so that their concatenated
hidden layer size was 60. For bidirectional decoders, a linear layer condensed the 60-dimensional
encoding into 30 dimensions before it was passed to the forward and backward decoders.

The networks were trained using the Adam optimizer (Kingma & Ba, 2015) with the standard initial
learning rate of 0.001. We used negative log likelihood, computed over the softmax probability
distributions for each output sequence element, as the loss function. Training proceeded with a
batch size of 32, with loss on the held out development set computed after every 1,000 training
examples. Training was halted when the loss on the heldout development set had not improved for
any of the development loss checkpoints for a full epoch of training (i.e. 40,000 training examples).
Once training completed, the parameters from the best-performing checkpoint were reloaded and
used for evaluation of the network.

E.2 TPDNS TRAINED ON DIGIT MODELS

When applying TPDNs to the digit-based sequence-to-sequence models, we always used 20 as both
the filler embedding dimension and the role embedding dimension. This decision was based on the
experiments in Appendix B.2; we selected filler and role embedding dimensions that were safely
above the cutoff needed to lead to successful decomposition.

The TPDNs were trained with the same training regimen as the sequence-to-sequence models, except
that, instead of using negative log likelihood as the loss function, for the TPDNs we used mean
squared error between the predicted vector representation and the actual vector representation from
the original sequence-to-sequence network.

The TPDNs were given the sequences of fillers (i.e. the digits), the roles hypothesized to go with
those fillers, the sequence embeddings produced by the RNN, and the dimensionalities of the filler
embeddings, role embeddings, and final linear transformation. The parameters that were updated by
training were the specific values for the filler embeddings, the role embeddings, and the final linear
transformation.

E.3 SENTENCE EMBEDDING MODELS

For all four sentence encoding models, we used publicly available and freely downloadable pre-
trained versions found at the following links:

• InferSent: https://github.com/facebookresearch/InferSent
• Skip-thought: https://github.com/ryankiros/skip-thoughts
• SST: https://nlp.stanford.edu/software/corenlp.shtml

15

https://github.com/facebookresearch/InferSent
https://github.com/ryankiros/skip-thoughts
https://nlp.stanford.edu/software/corenlp.shtml

Published as a conference paper at ICLR 2019

• SPINN: https://github.com/stanfordnlp/spinn

InferSent is a bidirectional LSTM with 4096-dimensional hidden states. For Skip-thought, we use
the unidirectional variant, which is an LSTM with 2400-dimensional hidden states. The SST model
is a recurrent neural tensor network (RNTN) with 25-dimensional hidden states. Finally, for SPINN,
we use the SPINN-PI-NT version, which is equivalent to a tree-LSTM (Tai et al., 2015) with 300-
dimensional hidden states.

E.4 TPDNS TRAINED ON SENTENCE MODELS

For training a TPDN to approximate the sentence encoding models, the filler embedding dimen-
sions were dictated by the size of the pretrained word embeddings; these dimensions were 300 for
InferSent and SPINN, 620 for Skip-thought, and 25 for SST. The linear transformation applied to
the word embeddings did not change their size. For role embedding dimensionality we tested all role
dimensions in {1, 5, 10, 20, 40, 60}. The best-performing dimension was chosen based on prelimi-
nary experiments and used for all subsequent experiments; we thereby chose role dimensionalities
of 10 for InferSent and Skip-thought, 20 for SST, and 5 for SPINN. In general, role embedding
dimensionalities of 5, 10, and 20 all performed noticeably better than 1, 40, and 60, but there was
not much difference between 5, 10, and 20.

The training regimen for the TPDNs on sentence models was the same as for the TPDNs trained
on digit sequences. The TPDNs were given the sequences of fillers (i.e. the words), the roles
hypothesized to go with those fillers, the sequence embeddings produced by the RNN, the initial
pretrained word embeddings, the dimensionalities of the linearly-transformed filler embeddings, the
role embeddings, and the final linear transformation. The parameters that were updated by training
were the specific values for the role embeddings, the linear transformation that was applied to the
pretrained word embeddings, and the final linear transformation.

The sentences whose encodings we trained the TPDNs to approximate were the premise sentences
from the SNLI corpus (Bowman et al., 2015). We also tried instead using the sentences in the
WikiText-2 corpus (Merity et al., 2016) but found better performance with the SNLI sentences. This
is plausibly because the shorter, simpler sentences in the SNLI corpus made it easier for the model
to learn the role embeddings without distraction from the fillers.

F DOWNSTREAM TASK PERFORMANCE FOR TPDNS APPROXIMATING
SENTENCE ENCODERS

For each TPDN trained to approximate a sentence encoder, we evaluate it on four downstream
tasks: (i) Stanford Sentiment Treebank (SST), which is labeling the sentiment of movie reviews
(Socher et al., 2013); this task is further subdivided into SST2 (labeling the reviews as positive
or negative) and SST5 (labeling the reviews on a 5-point scale, where 1 means very negative and
5 means very positive). The metric we report for both tasks is accuracy. (ii) Microsoft Research
Paraphrase Corpus (MRPC), which is labeling whether two sentences are paraphrases of each other
(Dolan et al., 2004). For this task, we report both accuracy and F1. (iii) Semantic Textual Similarity
Benchmark (STS-B), which is giving a pair of sentences a score on a scale from 0 to 5 indicating
how similar the two sentences are (Cer et al., 2017). For this task, we report Pearson and Spearman
correlation coefficients. (iv) Stanford Natural Language Inference (SNLI), which involves labeling
a pair of sentences to indicate whether the first entails the second, contradicts the second, or neither
(Bowman et al., 2015). For this task, we report accuracy as the evaluation metric.

F.1 SUBSTITUTION PERFORMANCE

The first results we report for the TPDN approximations of sentence encoders is similar to the
substitution accuracy used for digit encoders. Here, we use SentEval (Conneau & Kiela, 2018) to
train linear classifiers for all downstream tasks on the original sentence encoding model; then, we
freeze the weights of these classifiers and use them to classify the test-set encodings generated by
the TPDN approximation. We use the classifier parameters recommended by the SentEval authors:
using a linear classifier (not a multi-layer perceptron) trained with the Adam algorithm (Kingma &

16

https://github.com/stanfordnlp/spinn

Published as a conference paper at ICLR 2019

Ba, 2015) using a batch size of 64, a tenacity of 5, and an epoch size of 4. The results are shown in
Table 8.

F.2 AGREEMENT BETWEEN THE TPDN AND THE ORIGINAL MODEL

Next, we analyze the same results from the previous section, but instead of reporting accuracies we
report the extent to which the TPDN’s predictions agree with the original model’s predictions. For
SST, MRPC, and SNLI, this agreement is defined as the proportion of their labels that are the same.
For STS-B, the agreement is the Pearson correlation between the original model’s outputs and the
TPDN’s outputs. The results are in Table 9.

F.3 TRAINING A CLASSIFIER ON THE TPDN

Finally, we consider treating the TPDNs as models in their own right and use SentEval to both train
and test downstream task classifiers on the TPDNs. The results are in Table 10.

17

Published as a conference paper at ICLR 2019

Filler dim. Role dim. Without linear layer With linear layer

1 60 0.0002 0.003
2 30 0 0.042
3 20 0.001 0.82
4 15 0.0006 0.80
5 12 0 0.90
6 10 0 0.92

10 6 0.0002 0.99
12 5 0 0.67
15 4 0.0002 0.37
20 3 0 0.14
30 2 0.0002 0.02
60 1 0.001 0.0014

Table 4: Substitution accuracies with and without the final linear layer, for TPDNs using various
combinations of filler and role embedding dimensionality. These TPDNs were approximating a
seq2seq model trained to perform reversal.

LTR RTL Bi Wickel Tree BOW Parameters

Tensor product (20 dim.) 0.054 0.993 0.996 0.175 0.188 0.002 24k
Tensor product (60 dim.) 0.046 0.988 0.996 0.138 0.172 0.001 217k

Circular convolution (20 dim.) 0.004 0.045 0.000 0.000 0.003 0.001 1.5k
Circular convolution (60 dim.) 0.048 0.964 0.066 0.001 0.013 0.001 4.6k

Elementwise product (20 dim.) 0.026 0.617 0.386 0.024 0.027 0.001 1.5k
Elementwise product (60 dim.) 0.051 0.992 0.993 0.120 0.173 0.001 4.6k

Table 5: Approximating a unidirectional seq2seq model trained to perform sequence reversal: sub-
stitution accuracies using different binding operations.

Encoder Decoder Autoencode Reverse Sort Interleave

Uni Uni 0.999 1.000 1.000 1.000
Uni Bi 0.949 0.933 1.000 0.968
Uni Tree 0.979 0.967 0.970 0.964
Bi Uni 0.993 0.999 1.000 0.995
Bi Bi 0.834 0.883 1.000 0.939
Bi Tree 0.967 0.920 0.959 0.909
Tree Uni 0.981 0.978 1.000 0.987
Tree Bi 0.891 0.900 1.000 0.894
Tree Tree 0.989 0.962 0.999 0.934

Table 6: Accuracies of the various sequence-to-sequence encoder/decoder combinations at the dif-
ferent training tasks. Each number in this table is an average across five random initializations. Uni
= unidirectional; bi = bidirectional.

18

Published as a conference paper at ICLR 2019

Task Encoder Decoder LTR RTL Bi Wickel Tree BOW

Autoencode Uni Uni 0.871 0.112 0.992 0.279 0.246 0.001
Uni Bi 0.275 0.273 0.400 0.400 0.238 0.005
Uni Tree 0.053 0.086 0.094 0.105 0.881 0.009
Bi Uni 0.748 0.136 0.921 0.209 0.207 0.002
Bi Bi 0.097 0.124 0.179 0.166 0.128 0.006
Bi Tree 0.051 0.081 0.088 0.095 0.835 0.007
Tree Uni 0.708 0.330 0.865 0.595 0.529 0.007
Tree Bi 0.359 0.375 0.491 0.569 0.376 0.009
Tree Tree 0.041 0.069 0.076 0.095 0.958 0.009

Reverse Uni Uni 0.062 0.986 0.995 0.177 0.204 0.002
Uni Bi 0.262 0.268 0.386 0.406 0.228 0.006
Uni Tree 0.103 0.112 0.177 0.169 0.413 0.002
Bi Uni 0.037 0.951 0.965 0.084 0.146 0.001
Bi Bi 0.121 0.140 0.228 0.170 0.140 0.005
Bi Tree 0.085 0.105 0.17 0.151 0.385 0.002
Tree Uni 0.178 0.755 0.802 0.424 0.564 0.007
Tree Bi 0.302 0.332 0.442 0.549 0.368 0.009
Tree Tree 0.083 0.096 0.147 0.152 0.612 0.004

Sort Uni Uni 0.895 0.895 0.923 0.878 0.890 0.892
Uni Bi 0.898 0.894 0.923 0.916 0.915 0.904
Uni Tree 0.218 0.212 0.207 0.193 0.838 0.275
Bi Uni 0.886 0.884 0.917 0.812 0.871 0.847
Bi Bi 0.921 0.925 0.945 0.835 0.927 0.934
Bi Tree 0.219 0.216 0.209 0.194 0.816 0.273
Tree Uni 0.997 0.998 0.997 0.999 0.999 0.998
Tree Bi 1.000 1.000 0.997 1.000 1.000 1.000
Tree Tree 0.201 0.199 0.179 0.181 0.978 0.249

Interleave Uni Uni 0.269 0.181 0.992 0.628 0.357 0.003
Uni Bi 0.177 0.095 0.728 0.463 0.255 0.005
Uni Tree 0.040 0.033 0.116 0.089 0.373 0.003
Bi Uni 0.186 0.126 0.965 0.438 0.232 0.001
Bi Bi 0.008 0.074 0.600 0.128 0.162 0.002
Bi Tree 0.031 0.025 0.069 0.057 0.395 0.004
Tree Uni 0.330 0.208 0.908 0.663 0.522 0.005
Tree Bi 0.191 0.151 0.643 0.518 0.391 0.006
Tree Tree 0.027 0.025 0.059 0.069 0.606 0.004

Table 7: Substitution accuracies for TPDNs applied to all combinations of encoder, decoder, training
task, and hypothesized role scheme. Each number is an average across five random initializations.
Uni = unidirectional; bi = bidirectional.

19

Published as a conference paper at ICLR 2019

LTR RTL Bi Tree BOW Original

InferSent
SST2 0.79 0.79 0.77 0.79 0.80 0.85
SST5 0.40 0.39 0.40 0.41 0.42 0.46
MRPC (accuracy) 0.70 0.71 0.72 0.70 0.72 0.73
MRPC (F1) 0.81 0.82 0.82 0.80 0.81 0.81
STS-B (Pearson) 0.69 0.70 0.71 0.70 0.69 0.78
STS-B (Spearman) 0.68 0.68 0.69 0.68 0.67 0.78
SNLI 0.71 0.69 0.72 0.71 0.66 0.84

Skip-thought
SST2 0.58 0.51 0.50 0.50 0.61 0.81
SST5 0.29 0.27 0.21 0.25 0.31 0.43
MRPC (accuracy) 0.60 0.62 0.62 0.61 0.66 0.74
MRPC (F1) 0.73 0.75 0.76 0.75 0.79 0.82
STS-B (Pearson) -0.01 -0.07 -0.10 -0.05 0.06 0.73
STS-B (Spearman) 0.23 -0.01 -0.05 0.00 0.08 0.72
SNLI 0.35 0.35 0.34 0.35 0.35 0.73

SST
SST2 0.76 0.76 0.76 0.75 0.77 0.83
SST5 0.37 0.38 0.37 0.37 0.38 0.45
MRPC (accuracy) 0.67 0.67 0.67 0.66 0.66 0.66
MRPC (F1) 0.80 0.80 0.80 0.79 0.80 0.80
STS-B (Pearson) 0.24 0.21 0.22 0.19 0.24 0.29
STS-B (Spearman) 0.24 0.22 0.23 0.20 0.25 0.27
SNLI 0.40 0.41 0.41 0.41 0.40 0.42

SPINN
SST2 0.73 0.73 0.73 0.74 0.74 0.76
SST5 0.36 0.36 0.35 0.37 0.37 0.39
MRPC (accuracy) 0.67 0.68 0.67 0.67 0.68 0.70
MRPC (F1) 0.75 0.78 0.76 0.76 0.76 0.79
STS-B (Pearson) 0.60 0.60 0.62 0.62 0.53 0.67
STS-B (Spearman) 0.58 0.59 0.59 0.59 0.57 0.65
SNLI 0.67 0.67 0.68 0.69 0.54 0.79

Table 8: Substitution results on performing the applied tasks for TPDNs trained to approximate
the representations from each of the four downloaded models. For MRPC, we report accuracy and
F1. For STS-B, we report Pearson correlation and Spearman correlation. All other metrics are
accuracies.

20

Published as a conference paper at ICLR 2019

LTR RTL Bi Tree BOW Original

Infersent
SST2 0.85 0.84 0.82 0.83 0.84 1.00
SST5 0.60 0.59 0.58 0.59 0.61 1.00
MRPC 0.78 0.80 0.78 0.77 0.79 1.00
STS-B 0.87 0.86 0.87 0.86 0.84 1.00
SNLI 0.77 0.74 0.77 0.77 0.71 1.00

Skip-thought
SST2 0.58 0.54 0.50 0.51 0.60 1.00
SST5 0.41 0.41 0.18 0.35 0.43 1.00
MRPC 0.69 0.71 0.74 0.72 0.79 1.00
STS-B -0.10 -0.12 -0.16 -0.13 -0.04 1.00
SNLI 0.37 0.37 0.36 0.36 0.37 1.00

SST
SST2 0.84 0.84 0.83 0.84 0.85 1.00
SST5 0.65 0.64 0.64 0.64 0.65 1.00
MRPC 0.99 0.99 0.99 0.98 0.99 1.00
STS-B 0.64 0.59 0.62 0.68 0.60 1.00
SNLI 0.48 0.51 0.49 0.67 0.49 1.00

SPINN
SST2 0.77 0.77 0.77 0.79 0.79 1.00
SST5 0.61 0.62 0.63 0.63 0.62 1.00
MRPC 0.68 0.73 0.72 0.74 0.70 1.00
STS-B 0.72 0.73 0.74 0.76 0.70 1.00
SNLI 0.72 0.72 0.73 0.76 0.58 1.00

Table 9: The proportion of times that a classifier trained on a sentence encoding model gave the same
downstream-task predictions based on the original sentence encoding model and based on a TPDN
approximating that model, where the TPDN uses the role schemes indicated by the column header.
For all tasks but STS-B, these numbers show the proportion of predictions that matched; chance
performance is 0.5 for SST2 and MRPC, 0.2 for SST5, and 0.33 for SNLI. For STS-B, the metric
shown is the Pearson correlation between the TPDN’s similarity ratings and the original model’s
similarity ratings; chance performance here is 0.0.

21

Published as a conference paper at ICLR 2019

LTR RTL Bi Tree BOW Original

Infersent
SST2 0.82 0.82 0.81 0.81 0.83 0.85
SST5 0.44 0.44 0.44 0.44 0.43 0.46
MRPC (acc.) 0.71 0.73 0.72 0.70 0.73 0.73
MRPC (F1) 0.80 0.81 0.81 0.80 0.81 0.81
STS-B (Pearson) 0.71 0.71 0.71 0.71 0.71 0.78
STS-B (Spearman) 0.69 0.70 0.70 0.69 0.70 0.78
SNLI 0.77 0.76 0.77 0.77 0.75 0.84

Skip-thought
SST2 0.59 0.56 0.50 0.52 0.61 0.81
SST5 0.30 0.30 0.25 0.28 0.32 0.43
MRPC (acc.) 0.67 0.66 0.66 0.66 0.67 0.74
MRPC (F1) 0.80 0.80 0.80 0.80 0.79 0.82
STS-B (Pearson) 0.19 0.17 0.13 0.13 0.23 0.73
STS-B (Spearman) 0.17 0.16 0.08 0.10 0.20 0.72
SNLI 0.47 0.46 0.46 0.44 0.46 0.73

SST
SST2 0.78 0.78 0.77 0.78 0.79 0.83
SST5 0.40 0.40 0.40 0.39 0.41 0.45
MRPC (acc.) 0.67 0.67 0.66 0.66 0.67 0.66
MRPC (F1) 0.80 0.80 0.80 0.80 0.80 0.88
STS-B (Pearson) 0.28 0.23 0.23 0.20 0.28 0.29
STS-B (Spearman) 0.27 0.23 0.23 0.20 0.27 0.27
SNLI 0.45 0.44 0.45 0.43 0.45 0.42

SPINN
SST2 0.79 0.78 0.77 0.77 0.80 0.76
SST5 0.42 0.42 0.40 0.42 0.42 0.39
MRPC (acc.) 0.72 0.71 0.71 0.68 0.72 0.70
MRPC (F1) 0.81 0.80 0.80 0.79 0.80 0.79
STS-B (Pearson) 0.68 0.67 0.67 0.67 0.66 0.67
STS-B (Spearman) 0.67 0.66 0.66 0.65 0.65 0.65
SNLI 0.72 0.71 0.72 0.73 0.71 0.79

Table 10: Downstream task performance for classifiers trained and tested on the TPDNs that were
trained to approximate each of the four applied models. The rightmost column indicates the perfor-
mance of the original model (without the TPDN approximation).

22

	Introduction
	The Tensor Product Decomposition Network

	Approximating RNN autoencoder representations
	Experimental setup
	Results

	Encodings of naturally-occurring sentences
	TPDN approximation
	Performance on downstream tasks
	Analogies

	When do RNNs learn compositional representations?
	Related work
	Conclusion
	List of acronyms and abbreviations
	Analysis of architecture components
	Is the final linear layer necessary?
	Varying the dimensionality of the filler and role embeddings
	Filler-role binding operation

	The digit parsing algorithm
	Full results of sequence-to-sequence experiments
	Model and training details
	Sequence-to-sequence models
	TPDNs trained on digit models
	Sentence embedding models
	TPDNs trained on sentence models

	Downstream task performance for TPDNs approximating sentence encoders
	Substitution performance
	Agreement between the TPDN and the original model
	Training a classifier on the TPDN

