
HAL Id: hal-02274493
https://hal.science/hal-02274493v2

Submitted on 26 Apr 2020 (v2), last revised 29 Apr 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A posteriori estimates distinguishing the error
components and adaptive stopping criteria for numerical

approximations of parabolic variational inequalities
Jad Dabaghi, Vincent Martin, Martin Vohralík

To cite this version:
Jad Dabaghi, Vincent Martin, Martin Vohralík. A posteriori estimates distinguishing the error compo-
nents and adaptive stopping criteria for numerical approximations of parabolic variational inequalities.
Computer Methods in Applied Mechanics and Engineering, In press. �hal-02274493v2�

https://hal.science/hal-02274493v2
https://hal.archives-ouvertes.fr


A posteriori estimates distinguishing the error components and
adaptive stopping criteria for numerical approximations of

parabolic variational inequalities ∗

Jad Dabaghi†‡ Vincent Martin§ Martin Vohralík†‡

April 26, 2020

Abstract

We consider in this paper a model parabolic variational inequality. This problem is discretized with
conforming Lagrange finite elements of order p ≥ 1 in space and with the backward Euler scheme in
time. The nonlinearity coming from the complementarity constraints is treated with any semismooth
Newton algorithm and we take into account in our analysis an arbitrary iterative algebraic solver. In the
case p = 1, when the system of nonlinear algebraic equations is solved exactly, we derive an a posteriori
error estimate on both the energy error norm and a norm approximating the time derivative error. When
p ≥ 1, we provide a fully computable and guaranteed a posteriori estimate in the energy error norm
which is valid at each step of the linearization and algebraic solvers. Our estimate, based on equilibrated
flux reconstructions, also distinguishes the discretization, linearization, and algebraic error components.
We build an adaptive inexact semismooth Newton algorithm based on stopping the iterations of both
solvers when the estimators of the corresponding error components do not affect significantly the overall
estimate. Numerical experiments are performed with the semismooth Newton-min algorithm and the
semismooth Newton–Fischer–Burmeister algorithm in combination with the GMRES iterative algebraic
solver to illustrate the strengths of our approach.

Keywords: parabolic variational inequality, complementarity condition, semismooth Newton method, al-
gebraic solver, a posteriori error estimate, adaptivity, stopping criterion

1 Introduction
Let Ω ⊂ R2 be a polygonal domain and let T > 0 denote a final simulation time. Let H1(Ω) be the space of
L2 functions on the domain Ω which admit a weak gradient in [L2(Ω)]2 and H1

0 (Ω) its zero-trace subspace.
Consider the affine space H1

g (Ω) :=
{
v ∈ H1(Ω), v = g on ∂Ω

}
, where g is a positive constant, and denote

the dual space of H1
0 (Ω) by H−1(Ω), with the duality pairing 〈·, ·〉. Consider a bilinear continuous form

a(·, ·) :
[
H1(Ω)

]2 × [H1(Ω)
]2 → R, coercive on

[
H1

0 (Ω)
]2. Let Kg be a nonempty closed convex subset of

H1
g (Ω)×H1

0 (Ω) and let Kt
g be its evolutive-in-time version

Kt
g :=

{
v ∈ L2(0, T ;H1

g (Ω))× L2(0, T ;H1
0 (Ω)), v(t) ∈ Kg a.e. in ]0, T [

}
. (1.1)

We consider the following parabolic variational inequality: for the data f := (f1, f2) ∈
[
L2(0, T ;L2(Ω))

]2
and the initial condition u0 = (u0

1, u
0
2) ∈ Kg, find u = (u1, u2) ∈ Kt

g such that ∂tu ∈
[
L2(0, T ;H−1(Ω))

]2
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and such that for all v ∈ Kt
g∫ T

0

〈∂tu,v − u〉(t) dt +

∫ T

0

a(u,v − u)(t) dt ≥
∫ T

0

(f ,v − u)Ω(t) dt,

u(0) = u0.

(1.2)

Problem (1.2) belongs to the wide class of parabolic variational inequalities of the first kind, see Glowin-
ski [1] and Lions [2] for a general introduction. These have attracted a recent interest in a wide variety of
applications; we mention the obstacle problems in mechanics [2, 3, 4], the problems in modeling pricing of
American options [5, 6], the Stefan problem [7], the CO2 sequestration process [8], the mould filling [9],
and the underground storage of radioactive waste [10]. Though the existence and uniqueness of a weak
solution u ∈ Kt

g for (1.2) is classical, see [2] and the references therein, the numerical analysis of parabolic
variational inequalities is very challenging. [–]

A numerical discretization of problem (1.2) gives rise at each time step n to a system of algebraic
variational inequalities. This can be written as a system of linear equalities and complementarity constrains
of the form

Sn(Xn
h ) = 0,

Fn(Xn
h ) ≥ 0, Gn(Xn

h ) ≥ 0, Fn(Xn
h ) · Gn(Xn

h ) = 0,
(1.3)

where Sn, Fn, and Gn are affine operators and Xn
h ∈ Rm, m ≥ 1, is the unknown vector of degrees of

freedom. Among the spectrum of methods for their solution [–], let us mention the interior point method [11],
the active set strategy [12], and the primal-dual active set strategy together with the family of semismooth
Newton methods, see [13, 14, 15, 16, 17, 18, 19, 20] and the references therein.

The principle of any semismooth Newton linearization method is to approximate the solution of the
nonlinear system (1.3) by an iterative procedure requesting to solve on each step a system of linear algebraic
equations. The term “semismooth” describes here the particularity of this Newton linearization, which has
to be able to cope with the fact that the system (1.3) is not differentiable everywhere, because of the
algebraic inequalities in the constraints. More precisely, from an initial guess Xn,0

h ∈ Rm, a semismooth
Newton linearization requires to solve at each step k ≥ 1 the system of linear algebraic equations

An,k−1Xn,k
h = F n,k−1, (1.4)

where the matrix An,k−1 ∈ Rm,m and the vector F n,k−1 ∈ Rm are constructed from Xn,k−1
h ∈ Rm.

Solving (1.4) with a direct method may be very expensive. A popular approach to speed up the com-
putation is to employ an inexact algebraic solver. At each iterative linear algebraic step i ≥ 0 and each
linearization step k ≥ 1, this gives rise to a residual vector Rn,k,i

h ∈ Rm defined by

Rn,k,i
h := F n,k−1 − An,k−1Xn,k,i

h . (1.5)

In the present work, we focus on answering the following questions: To which precision should the linear
system (1.4) be approximated? To which precision should the nonlinear non-differentiable system (1.3) be
approximated? Can we estimate the total error, as well as the various error components (discretization,
linearization, algebraic) of the overall numerical approximation of the exact solution u of (1.2)? Can we
reduce the typical number of iterations of both linearization and algebraic solvers?

Our key tool to propose answers to the above questions is the a posteriori error analysis. An impor-
tant amount of work has been performed in the recent past on a posteriori error estimates for variational
inequalities, see Ainsworth and Oden [21] and Verfürth [22] for a general introduction. For the elliptic
setting, we can mention the contributions [23, 24, 25, 26], where typically P1 discretizations are addressed.
In contrast to these references, in Bürg and Schröder [27] and Dabaghi et al. [28], a Pp conforming finite
element discretization is considered. Moreover, in [28], three components of the error are distinguished: the
discretization error, the semismooth linearization error, and the iterative algebraic error.

In the context of parabolic problems, a posteriori analysis has also received a significant attention over
the past decade. For parabolic equations, we mention Verfürth [29], Bernardi, Bergham, and Mghazli [30],
and Ern, Smears, and Vohralík [31, 32], where in particular in [31], local efficiency in space and in time for
the estimators is proven. For parabolic variational inequalities, the edifice seems still under construction. We
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can mention Moon, Nochetto, Petersdorff, and Zhang [33] for a study of the Black–Scholes model, Achdou,
Hecht, and Pommier [3] for a study of the parabolic obstacle problem, and Gimperlein and Stocek [34] for
a large variety of parabolic variational inequalities. In the present work, we follow the methodology of [31]
and [28] to derive a posteriori error estimates with distinction of each component of the error. In particular,
this enables us to define adaptive stopping criteria for nonlinear semismooth and linear algebraic solvers,
which is new to the best of our knowledge. Importantly, it enables to save many unnecessary iterations.

To exemplify our approach, we consider the system of unsteady parabolic variational inequalities, as an
extension of the stationary model problem studied in [35, 36, 28], see (2.1) below. Two important difficulties
arise for the a posteriori analysis in this setting:
1) Denote by uk,ihτ :=

(
uk,i1hτ , u

k,i
2hτ

)
the space-time numerical approximation, where the indices k, i indicate

the presence of inexact linearization and algebraic solvers and where uk,ihτ is piecewise affine and continuous
in time and piecewise polynomial of degree p and continuous for each variable in space. Because of the
use of polynomials of order p ≥ 2, and because of the incomplete nonlinear and algebraic convergences in
inexact schemes (even when p = 1), uk,ihτ is nonconforming in the sense that uk,ihτ /∈ Kt

g (u
k,i
1hτ ≥ u

k,i
2hτ does not

hold everywhere in Ω for the model problem, see (2.1) below). The same phenomenon occurs for λk,ihτ that
denotes the discrete counterpart of the Lagrange multiplier λ. The conformity only occurs in the particular
case p = 1 and when both linearization and algebraic solvers have converged.
2) We cannot easily provide, as for the parabolic heat equation [31], an a posteriori upper bound for the
time derivative

∥∥∥∂t (u− uk,ihτ)∥∥∥
[L2(0,T ;H−1(Ω))]2

. To tackle this difficulty at least for p = 1 and exact solvers,

where we simply denote uhτ = uk,ihτ the numerical approximation, we construct an element z ∈ Kt
g such

that ‖u− z‖[L2(0,T ;H1
0 (Ω))]

2 is closely linked to ‖∂t (u− uhτ )‖[L2(0,T ;H−1(Ω))]2 and such that the a posteriori
error estimate holds as

‖u− uhτ‖2[L2(0,T ;H1
0 (Ω))]

2 + ‖u− z‖2[L2(0,T ;H1
0 (Ω))]

2 + ‖(u− uhτ ) (·, T )‖2L2(Ω) ≤ (η(uhτ ))
2
, (1.6)

with η(uhτ ) a fully computable a posteriori error estimate, only depending on the approximate solution
uhτ .

In this contribution, we first present the model problem, its weak formulation, and its discretization
with the backward Euler scheme in time and the conforming Pp (p ≥ 1) finite element method in space
which takes the form (1.3). Then, we present the concept of inexact semismooth Newton methods to
approximate the solution of our system of algebraic inequalities at each time step. Next, we provide the a
posteriori analysis following the approach of the equilibrated flux reconstructions. In particular, we derive
an a posteriori error estimate for the linear finite elements (p = 1) at each time step n, when the semismooth
Newton solver as well as the algebraic iterative solver have converged. Then we can estimate the error as
shown in (1.6). We next provide a second a posteriori error estimate in the energy norm, valid for any
polynomial degree p ≥ 1 and at each semismooth linearization iteration k ≥ 1 and each iterative algebraic
solver iteration i ≥ 0. This estimate only bounds the first component on the left-hand side of (1.6), but
distinguishes the different error components, namely the discretization error, the semismooth linearization
error, the algebraic error, and the initial error, taking the form∥∥∥u− uk,ihτ ∥∥∥[L2(0,T ;H1

0 (Ω))]
2
≤ η̃(uk,ihτ ) ≤ ηk,idisc + ηk,ilin + ηk,ialg + ηinit.

This leads us to a proposition of an adaptive inexact semismooth Newton algorithm for parabolic variational
inequalities which relies on a posteriori stopping criteria for the linear and nonlinear solvers. Finally, we
present numerical experiments when p = 1 and p = 2 with semismooth Newton linearization algorithms,
in particular the Newton-min and the Newton–Fischer–Burmeister ones, in combination with the GMRES
algebraic solver, assessing the strengths of our approach.
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2 Model problem and setting
Let Ω ⊂ R2 be a polygonal domain and T > 0 be the final simulation time. The model problem we consider
here is to find u1, u2, and λ such that

∂tu1 − µ1∆u1 − λ = f1 in Ω× ]0, T [ ,

∂tu2 − µ2∆u2 + λ = f2 in Ω× ]0, T [ ,

u1 − u2 ≥ 0, λ ≥ 0, (u1 − u2)λ = 0 in Ω× ]0, T [ ,

u1 = g, u2 = 0 on ∂Ω× ]0, T [ ,

u1(0) = u0
1, u2(0) = u0

2, u0
1 − u0

2 ≥ 0 in Ω.

(2.1)

Here, the real coefficients µ1 and µ2 are supposed constant and strictly positive, and, for the sake of
simplicity, we assume that the Dirichlet boundary condition g > 0 is also a constant. The source term
f := (f1, f2) is supposed to belong to

[
L2(0, T ;L2(Ω))

]2. Finally, the initial conditions are supposed to
satisfy u0 :=

(
u0

1, u
0
2

)
∈ H1

g (Ω) × H1
0 (Ω) and u0

1 − u0
2 ≥ 0 a.e. in Ω. The first two equations of (2.1) are

of parabolic type. The third line of (2.1) states linear complementarity conditions expressing that either
u1 − u2 > 0 and λ = 0, or u1 − u2 = 0 and λ > 0. Observe that when u1 − u2 > 0 and λ = 0 everywhere in
Ω×]0, T [, problem (2.1) is equivalent to solving two separated heat equations. On the other hand, when f1

and f2 are independent of time and ∂tu1 = ∂tu2 = 0, (2.1) becomes the stationary contact problem between
two membranes studied in [35, 37, 36, 28, 19].

We define the sets

Λ :=
{
χ ∈ L2(Ω), χ ≥ 0 a.e. in Ω

}
and Ψ := L2(0, T ; Λ).

We also introduce the nonempty closed convex set

Kg :=
{

(v1, v2) ∈ H1
g (Ω)×H1

0 (Ω), v1 − v2 ≥ 0 a.e. in Ω
}
, (2.2)

as well as its evolutive-in-time version Kt
g defined by (1.1). [–] For a set O of R2, we denote its Lebesgue

measure by |O| and the L2(O) scalar product for w := (w1, w2) ∈ [L2(O)]2 by (w1, w2)O :=
∫
O w1w2 dx.

We also use the notations ‖w1‖2O := (w1, w1)O, ‖w‖
2
O :=

∑
α=1,2 ‖wα‖

2
O. The compact notations

a(u,v) :=

2∑
α=1

µα (∇uα,∇vα)Ω , b(v, χ) := (χ, v1 − v2)Ω (2.3)

will be useful henceforth, where u = (u1, u2), v = (v1, v2), a is continuous and coercive as described in the
introduction, and b is a continuous bilinear form on

[
H1(Ω)

]2 × L2(Ω). In the sequel, boldface variables
such as v will denote couples of variables like (v1, v2). For v ∈ [H1

0 (O)]2 and w ∈ [L2(0, T ;H1
0 (Ω))]2, we

define the space energy and the space-time energy norms by

|‖v‖|O :=

{
2∑

α=1

µα ‖∇vα‖2O

} 1
2

, |‖w‖|Ω,T :=

{∫ T

0

|‖w‖|2Ω (t) dt

} 1
2

. (2.4)

The weak formulation of problem (2.1) is given by the parabolic variational inequality (1.2) and it is
well-posed. To illustrate the construction of the numerical discretization in Section 3 below, let us also
mention that alternatively, one could look for (u1, u2, λ) ∈ L2(0, T ;H1

g (Ω)) × L2(0, T ;H1
0 (Ω)) × Ψ such

that ∂tuα ∈ L2(0, T ;H−1(Ω)), α = 1, 2, and satisfying for almost all t ∈ ]0, T [ and for all (v1, v2, χ) ∈
H1

0 (Ω)×H1
0 (Ω)× Λ

〈∂tu(t),v〉+ a(u(t),v)− b(v, λ(t)) = (f(t),v)Ω ,

b(u(t), χ− λ(t)) ≥ 0

u(0) = u0.

(2.5)

The second line in (2.5) can be interpreted as a linear complementarity constraint, see a derivation in the
case of a stationary problem in [36],

(u1 − u2) (t) ≥ 0, λ(t) ≥ 0, λ(t) (u1 − u2) (t) = 0. (2.6)

[–]
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3 Discretization and semismooth Newton linearization
Our discretization of (2.1) relies on the backward Euler scheme in time and on the conforming finite element
method of degree p ≥ 1 in space. For the convenience of the reader, we give in this section the main results
concerning the discretization, without proofs. They are an extension to the case of parabolic inequalities
and for any p ≥ 2 of the results given in [37, 28] for a stationary problem. The details are provided in [38,
Sec. 2.5].

3.1 Setting
For the time discretization, we introduce a division of the interval [0, T ] into subintervals In := [tn−1, tn],
1 ≤ n ≤ Nt, such that 0 = t0 < t1 < · · · < tNt = T . The time steps are denoted by ∆tn := tn − tn−1,
n = 1, · · · , Nt. [–] The space domain Ω is discretized with a conforming triangular mesh Th. The set of
vertices of Th is denoted by Vh and is partitioned into interior vertices V i

h and boundary vertices Ve
h. The

vertices of an element K ∈ Th are collected in the set VK . Denote by hK the diameter of a triangle K and
h := maxK∈Th hK . For the vertex a ∈ Vh, let the patch ωa

h ⊂ Ω be the domain made up of the elements of
Th that share a. In the sequel, we use the discrete conforming space of piecewise polynomial and continuous
functions

Xp
h :=

{
vh ∈ C0(Ω); vh|K ∈ Pp(K) ∀K ∈ Th

}
⊂ H1(Ω),

where Pp(K) stands for the set of polynomials of total degree less than or equal to p on the element K.
We also denote by Vp the set of the Lagrange nodes xl and by N p its cardinality. The internal nodes are
collected in the set Vp,i whose cardinality is N p,i, and the boundary nodes are collected in the set Vp,e.
The Lagrange basis functions of Xp

h are denoted by (ψh,xl)1≤l≤Np , xl ∈ V
p; ψh,xl takes value one in xl

and zero in all other Lagrange nodes. In the particular case p = 1, the set V1 coincides with Vh, and the
Lagrange basis functions are the “hat” basis functions denoted by ψh,a, a ∈ Vh. We also introduce the
boundary-aware set and space

Xp
gh := {vh ∈ Xp

h, vh = g on ∂Ω} ⊂ H1
g (Ω), Xp

0h := Xp
h ∩H

1
0 (Ω),

and the convex set

Kp
gh :=

{
vh = (v1h, v2h) ∈ Xp

gh ×X
p
0h, v1h(xl)− v2h(xl) ≥ 0 ∀xl ∈ Vp,i

}
. (3.1)

Recall the definition (2.2) and observe that K1
gh ⊂ Kg holds in the case p = 1 but Kp

gh 6⊂ Kg for p ≥ 2. For
α = 1, 2, let us introduce the piecewise constant in time functions f̃α ∈ L2(0, T ;L2(Ω)) such that

(f̃α)|In :=
1

∆tn

∫
In

fα(t) dt, and denote f̃nα := (f̃α)|In ∈ L2(Ω), f̃ :=
(
f̃1, f̃2

)
, f̃n :=

(
f̃n1 , f̃

n
2

)
. (3.2)

3.2 Discrete reduced problem and discrete saddle-point problem
Let

cn(unh,vh) :=
1

∆tn

2∑
α=1

(unαh, vαh)Ω , 1 ≤ n ≤ Nt.

Given u0
h ∈ Kp

gh, the discrete reduced problem corresponding to (1.2) consists in searching for all 1 ≤ n ≤ Nt

unh ∈ Kp
gh such that for all vh ∈ Kp

gh

cn
(
unh − un−1

h ,vh − unh
)

+ a(unh,vh − unh) ≥
(
f̃n,vh − unh

)
Ω
. (3.3)

From the Lions–Stampacchia theorem [39], the discrete problem (3.3) admits a unique solution. [–] Recall
that when p ≥ 2, unh is typically nonconforming in the sense that unh /∈ Kg.

Following the methodology of [28, 35, 26, 27], we define the discrete scalar product for all (wh, vh) ∈
Xp
h ×X

p
h,

〈wh, vh〉h :=


∑
a∈Vh

wh(a)vh(a)
|ωa
h |
3

if p = 1, (3.4a)

(wh, vh)Ω if p ≥ 2. (3.4b)
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Then, knowing unh, the solution of (3.3), we define for 1 ≤ n ≤ Nt and for all α = 1, 2 the functions
λnαh ∈ X

p
h by

〈λnαh, zαh〉h := (−1)α
[
− 1

∆tn

(
unαh − un−1

αh , zαh
)

Ω
− µα (∇unαh,∇zαh)Ω +

(
f̃nα , zαh

)
Ω

]
∀zαh ∈ Xp

0h,

〈λnαh, ψh,xl〉h := 0 ∀xl ∈ Vp,e.
(3.5)

Next, we define the discrete convex set

Λph :=
{
vh ∈ Xp

h; 〈vh, ψh,xl〉h ≥ 0 ∀xl ∈ Vp,i, 〈vh, ψh,xl〉h = 0 ∀xl ∈ Vp,e
}
. (3.6)

Note that Λph 6⊂ Λ for p ≥ 2. For linear finite elements (p = 1), one has

Λ1
h =

{
vh ∈ X1

0h; vh(a) ≥ 0 ∀a ∈ V i
h

}
=
{
vh ∈ X1

0h; vh ≥ 0
}
⊂ Λ. (3.7)

The following Lemma is a generalization to the case of parabolic inequality and with p ≥ 2 of [37, Lemma 13].

Lemma 3.1. Let 1 ≤ n ≤ Nt be a time step and unh ∈ Kp
gh be the solution of the reduced discrete

problem (3.3). With the construction (3.5), the functions λn1h and λn2h defined by (3.5) coincide, and we set
λnh := λn1h = λn2h. Furthermore, there holds λnh ∈ Λph.

[–]
It will be useful to also consider the discrete formulation corresponding to problem (2.5). Given u0

h ∈
Kp
gh, it consists, for each n = 1 · · ·Nt, in searching (unh, λ

n
h) ∈ [Xp

gh ×X
p
0h]×Λph such that for all (vh, χh) ∈

[Xp
0h]2 × Λph,

cn
(
unh − un−1

h ,vh
)

+ a(unh,vh)− 〈λnh, v1h − v2h〉h =
(
f̃n,vh

)
Ω
, (3.8a)

〈χh − λnh, un1h − un2h〉h ≥ 0. (3.8b)

We can now link formulations (3.3) and (3.8). The proof of the following lemma is a direct extension
of [37, Lemma 13] in the case p = 1.

Lemma 3.2. Let 1 ≤ n ≤ Nt be a time step. For any solution (unh, λ
n
h) of problem (3.8), unh is a solution of

problem (3.3). Conversely, for any solution unh of problem (3.3), defining the function λnh := λnαh, α = 1, 2,
by (3.5), (unh, λ

n
h) is a solution of problem (3.8).

[–]
From Lemma 3.2, we deduce that problem (3.8) admits a unique weak solution for each n = 1, · · · , Nt.

We finish this section by the following remark:

Remark 3.3. Taking in (3.8b) χh = 0 and next χh = 2λnh ∈ Λph gives 〈λnh, un1h − un2h〉h = 0. As unh ∈ Kp
gh

and λnh ∈ Λph, we obtain a discrete equivalent of the complementarity condition (2.6) valid for all polynomial
degrees p ≥ 1 :

(un1h − un2h) (xl) ≥ 0 ∀xl ∈ Vp,i, 〈λnh, ψh,xl〉h ≥ 0, ∀xl ∈ Vp,i, 〈λnh, ψh,xl〉h = 0 ∀xl ∈ Vp,e,
〈λnh, un1h − un2h〉h = 0.

(3.9)

Note that for p = 1, (3.9) implies un1h ≥ un2h and λnh ≥ 0 everywhere, which means that uh ∈ Kt
g and

λh ∈ Λ: the solution is conforming.

3.3 Numerical resolution and discrete complementarity constraints
Let n be fixed in {1, . . . , Nt}. As in [28], we write in an algebraic form the discrete problem (3.8), using the
expression (3.9) for the constraints. For the Lagrange muliplier, we will use the basis (Θh,xl)1≤l≤Np of Xp

h,
dual to (ψh,xl)1≤l≤Np , given by

〈Θh,xl , ψh,xl〉h = 1 ∀xl ∈ Vp,〈
Θh,xl , ψh,x∗

l

〉
h

= 0 ∀xl∗ ∈ Vp, xl∗ 6= xl.
(3.10)
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Note that each vector Θh,xl of the dual basis can be determined by inverting a diagonal (lumped mass)
matrix for p = 1 and the finite element mass matrix for p ≥ 2. Note also that the support of Θh,xl is
typically not local. Importantly, all Θh,xl , ∀xl ∈ Vp,i, belong to Λph, so using (3.9), λh can be decomposed
on the subset (Θh,xl)1≤l≤Np,i of the basis (Θh,xl)1≤l≤Np [–].

Noting that Xp
gh is decomposed as Xp

gh = Xp
0h+g (recall that g > 0 is constant), the unknown piecewise

polynomial functions can be decomposed as

un1h =

Np,i∑
l=1

(Xn
1h)l ψh,xl + g, un2h =

Np,i∑
l=1

(Xn
2h)l ψh,xl , λnh =

Np,i∑
l=1

(Xn
3h)l Θh,xl , (3.11)

so the algebraic vector of unknowns is [Xn
h ]T := [Xn

1h,X
n
2h,X

n
3h]

T ∈ R3Np,i . The initial value u0
h ∈ Kp

gh

is represented in the same way by [X0
h]T :=

[
X0

1h,X
0
2h

]T ∈ R2Np,i . [–] In algebraic form, (3.8a) reads
EnpXn

h = F n, where Enp ∈ R2Np,i,3Np,i is the rectangular matrix defined by

Enp :=

[
µ1S + 1

∆tn
M 0 −Id

0 µ2S + 1
∆tn

M +Id

]
,

Id ∈ RNp,i,Np,i is the identity matrix, and the finite element mass and stiffness matrices M and S belonging
to RNp,i,Np,i are respectively defined by

Ml,m := (ψh,xl , ψh,xm)Ω , Sl,m := (∇ψh,xl ,∇ψh,xm)Ω , 1 ≤ l,m ≤ N p,i.

The right-hand side vector F n is defined by blocks [F n]
T

:= [F n1 ,F
n
2 ]
T as

(F nα )l :=

(
f̃nα +

1

∆tn
un−1
αh , ψh,xl

)
Ω

, 1 ≤ l ≤ N p,i, α = 1, 2.

Let 1 = (1, 1, · · · , 1)
T ∈ RNp,i . [–] Expressing the complementarity constraints by (3.9) and using (3.10), the

system (3.8) can be written for any p ≥ 1 as: for n = 1, · · · , Nt, given Xn−1
h ∈ R2Np,i , search Xn

h ∈ R3Np,i

such that

EnpXn
h = F n, (3.12a)

Xn
1h + g1−Xn

2h ≥ 0, Xn
3h ≥ 0, (Xn

1h + g1−Xn
2h) ·Xn

3h = 0. (3.12b)

Remark 3.4. Note that unh is expressed in the Lagrange basis (ψh,xl)1≤l≤Np,i , while λ
n
h is expressed with

the dual basis (Θh,xl)1≤l≤Np . It is also possible to express λnh in the Lagrange basis (ψh,xl)1≤l≤Np of Xp
h,

see [38, Sect. 2.5]. In such a case, the complementary constraints are expressed in a less convenient manner,
with submatrices of the finite element mass matrix. Note also that the blocks Id in the matrix Enp are replaced
by the mass matrix.

3.4 Equivalent rewriting using C-functions
The complementarity constraints (3.12b) write as algebraic inequalities. We now rewrite them as nonlinear
equalities. A function f : (Rm)

2 → Rm, m ≥ 1, is called a C-function or a complementarity function,
see [16, 17], if

∀(x,y) ∈ (Rm)
2

f(x,y) = 0 ⇐⇒ x ≥ 0, y ≥ 0, x·y = 0.

Examples of C-functions are respectively the min, max, Fischer–Burmeister or the Mangasarian functions,

(min{x,y})l := min {xl,yl} , l = 1, . . . ,m, (3.13a)
(max{x,y})l := max {xl,yl} l = 1, . . . ,m, (3.13b)

(fFB(x,y))l :=
√
x2
l + y2

l − (xl + yl) l = 1, . . . ,m, (3.13c)

(fM(x,y))l := ξ(|xl − yl|)− ξ(yl)− ξ(xl) l = 1, . . . ,m, (3.13d)
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where ξ : R 7→ R is an increasing function satisfying ξ(0) = 0. These functions take rather simple forms,
but unfortunately they are not Fréchet differentiable everywhere. Let C̃ be any C-function satisfying for
m = N p,i C̃(Xn

1h+g1−Xn
2h,X

n
3h) = 0 ⇐⇒ Xn

1h+g1−Xn
2h ≥ 0, Xn

3h ≥ 0, and (Xn
1h + g1−Xn

2h) ·Xn
3h =

0. Then, introducing the function C : R3Np,i → RNp,i defined as C(Xn
h ) := C̃(Xn

1h + g1 −Xn
2h,X

n
3h),

problem (3.12) can be equivalently rewritten: for each n ≥ 1, given Xn−1
h ∈ R2Np,i , search Xn

h ∈ R3Np,i

such that {
EnpXn

h = F n,

C(Xn
h ) = 0.

(3.14)

3.5 Linearization by semismooth Newton methods

Let a time step n ≥ 1 be fixed and let Xn−1
h ∈ R2Np,i be given. We describe in this section the linearization

of system (3.14) by a semismooth Newton method. Remark that the Newton method cannot be applied
to (3.14) since C is not Fréchet differentiable. Observe more precisely that the first 2N p,i lines of (3.14) are
linear and the nonlinearity occurs in the last N p,i lines of (3.14). The function C is locally Lipschitz and
continuous so that it is differentiable almost everywhere. The semismooth Newton linearization [16, 17, 40]
is defined as follows: let an initial guess Xn,0

h ∈ R3Np,i be given; typically, Xn,0
h := Xn−1

h , where Xn−1
h is

the last iterate from the previous time step. At linearization step k ≥ 1, one looks for Xn,k
h ∈ R3Np,i such

that
An,k−1Xn,k

h = Bn,k−1, (3.15)

where the matrix An,k−1 ∈ R3Np,i,3Np,i and the right-hand side vector Bn,k−1 ∈ R3Np,i are respectively
given by

An,k−1:=

[
Enp

JC(Xn,k−1
h )

]
, Bn,k−1:=

[
F n

JC(Xn,k−1
h )Xn,k−1

h −C(Xn,k−1
h )

]
. (3.16)

Here, the notation JC(Xn,k−1
h ) stands for the Jacobian matrix in the sense of Clarke [16, 17].

For illustration, consider the semismooth min function (3.13a). Then

min {Xn
1h + g1−Xn

2h,X
n
3h} = min




un1h(x1)− un2h(x1)
...

un1h(xNp,i)− un2h(xNp,i)

 ,


(Xn

3h)1
...

(Xn
3h)Np,i


 .

Let the block matrices K and G in RNp,i,3Np,i be defined respectively by K := [Id,−Id,0], and G := [0,0, Id].
The lth row of the Jacobian matrix JC(Xn,k−1

h ) is given by the lth row of K if un,k−1
1h (xl) − un,k−1

2h (xl) ≤(
Xn,k−1

3h

)
l
, and by the lth row of G if un,k−1

1h (xl)− un,k−1
2h (xl) >

(
Xn,k−1

3h

)
l
.

3.6 Iterative algebraic solvers
Let a linearization step k ≥ 1 be fixed, and apply an iterative algebraic solver with iteration index i ≥ 0 to
the linear system (3.15). Given an initial guess Xn,k,0

h ∈ R3Np,i , often taken as Xn,k,0
h := Xn,k−1

h , where
Xn,k−1
h is the last available iterate from the previous semismooth Newton step, the algebraic residual vector

on step i is defined by
Rn,k,i
h := Bn,k−1 − An,k−1Xn,k,i

h . (3.17)

It is a block vector [Rn,k,i
h ]T :=

[
Rn,k,i

1h ,Rn,k,i
2h ,Rn,k,i

3h

]T
∈ R3Np,i , where Rn,k,i

αh ∈ N p,i, α = 1, 2, are the

components associated to (3.12a), whereas Rn,k,i
3h ∈ N p,i is a representation of the constraints (3.12b). The

algebraic solver can be stopped when the relative algebraic residual satisfies∥∥∥Rn,k,i
h

∥∥∥/∥∥∥Bn,k−1 − An,k−1Xn,k,0
h

∥∥∥ ≤ εkalg. (3.18)
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3.7 Exact semismooth Newton method
The “exact semismooth Newton” method requires to solve “exactly” the linear (3.15) system. To achieve this
numerically, we consider an iterative solver applied to (3.15), stopped when the criterion (3.18) is satisfied
with εkalg close to the machine precision. For the linearization stopping criterion, we choose a tolerance εlin

close to the machine precision and stop the linearization procedure when the relative linearization residual
satisfies ∥∥∥∥∥

(
F n − EnpX

n,k
h

C(Xn,k
h )

)∥∥∥∥∥/
∥∥∥∥∥
(
F n − EnpX

n,0
h

C(Xn,0
h )

)∥∥∥∥∥ ≤ εlin, (3.19)

which means that (3.14) is solved up to εlin.

3.8 Traditional inexact semismooth Newton method
A traditional “inexact semismooth Newton” resolution of (3.14) consists in, on each step k ≥ 1, stopping the
algebraic solver when (3.18) is satisfied with the forcing term εkalg that can be “large” and generally depends
on k, see [41, 42, 40]. To stop the iterations in k, (3.19) is typically employed.

3.9 Adaptive inexact semismooth Newton method
We provide in Section 5.2 below an alternative to the classical stopping criteria (3.18) and (3.19), giving
rise to our “adaptive inexact semismooth Newton” linearization, see (5.13) and (5.14). We do not steer the
stopping via the l2-norm of the residual vectors, but via a posteriori error estimators, derived in the energy
norm. We also typically stop earlier the iterations both in i and k.

3.10 Notations for the updates
When the algebraic stopping criterion is satisfied, we update the solution

Xn,k
h := Xn,k,i

h .

Once the linearization stopping criterion is met, we update the solution

Xn
h := Xn,k

h .

Thus, un−1
1h , un−1

2h , and λn−1
h are the functional representations of the vectors Xn−1

1h , Xn−1
2h , and Xn−1

3h , i.e.
Xn−1,k,i
αh when the stopping criteria are met.

4 A posteriori error analysis
In this section, we derive two a posteriori error estimates. First, we establish an a posteriori error estimate
when p = 1 and when both the algebraic and linearization solvers have converged. Next, we derive an a
posteriori error estimate when p ≥ 1 at any semismooth linearization step k ≥ 1 and any step of the iterative
algebraic solver i ≥ 0.

Our a posteriori analysis relies on the equilibrated flux reconstructions following the concepts of [43,
44]. A discretization flux reconstruction σn,k,iαh,disc ∈ H(div,Ω), and an algebraic error flux reconstruction
σn,k,iαh,alg ∈ H(div,Ω) following the methodology of [45, Concept 4.1] are constructed. The sum of these
two fluxes represents a consistent (in H(div,Ω)) reconstruction of the gradient of unh (up to the sign and
constants µ1 and µ2). These reconstruction are devised to capture components of error linked respectively
to discretization or to the algebraic resolution. Note that as the first equation in (3.14) is linear, there is no
need for an additional linearization flux reconstruction as in [46]. We present very briefly the developments
here. Details can be found in [38, Sec. 2.6].
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4.1 Approximate solution

At each time step 1 ≤ n ≤ Nt, the approximation to the nonlinear system (3.14) gives the Xn,k,i
h ∈ R3Np,i ,

where k ≥ 1 is the semismooth Newton step and i ≥ 0 is the algebraic solver step. The functional
representations of the vectors Xn,k,i

1h , Xn,k,i
2h , and Xn,k,i

3h are then un,k,i1h , un,k,i2h and λn,k,ih , as in (3.11).
Obviously,

(
un,k,i1h , un,k,i2h , λn,k,ih

)
∈ Xp

gh×X
p
0h×X

p
h, ∀1 ≤ n ≤ Nt. We associate to the space functions un,k,i1h

and un,k,i2h [–], their space-time representations uk,i1hτ , u
k,i
2hτ

uk,i1hτ |In :=
un,k,i1h − un−1

1h

∆tn
(t− tn) + un,k,i1h ∀1 ≤ n ≤ Nt,

uk,i2hτ |In :=
un,k,i2h − un−1

2h

∆tn
(t− tn) + un,k,i2h ∀1 ≤ n ≤ Nt.

Concerning the discrete Lagrange multiplier λn,k,ih ∈ Xp
h, its space-time representation is defined by a

piecewise constant-in-time function λk,ihτ
λk,ihτ |In := λn,k,ih .

Note that this construction ensures that uk,iαhτ , α = 1, 2, are continuous and piecewise affine in time, so that
∂tu

k,i
αhτ ∈ L2(0, T ;H−1(Ω)). In the expressions of uk,i1hτ , u

k,i
2hτ , and λ

k,i
hτ , the indices k, i are kept to indicate

the presence of inexact solvers; more precisely, un−1
αh are equal to un−1,k,i

αh for the last iterates k and i on
time step n− 1 when the stopping criteria are met, see Section 3.10. For each time step n, we also denote

un,k,i1hτ := uk,i1hτ |In , un,k,i2hτ := uk,i2hτ |In , (4.1)

so that
∂tu

n,k,i
1hτ |In =

1

∆tn

(
un,k,i1h − un−1

1h

)
, ∂tu

n,k,i
2hτ |In =

1

∆tn

(
un,k,i2h − un−1

2h

)
.

4.2 Representation of the residual
To proceed, we need to give a functional representation to (3.17). Following [45], we associate respectively
with Rn,k,i

1h and Rn,k,i
2h discontinuous elementwise polynomials rn,k,i1h and rn,k,i2h of degree p ≥ 1 that vanish on

the boundary of Ω. These can be easily computed solving on each element K ∈ Th a small problem with an
element mass matrix given as follows. For xl ∈ Vp,i, denote by Nh,xl the number of mesh elements forming
the support of the basis function ψh,xl . Then, for all K ∈ Th and for all α ∈ {1, 2}, define rn,k,iαh |K ∈ Pp(K)
such that:

(rn,k,iαh , ψh,xl)K :=
(Rn,k,i

αh )l
Nh,xl

and rk,iαh|∂K∩∂Ω := 0

for all Lagrange basis functions ψh,xl ∈ X
p
h, xl ∈ Vp,i, nonzero on K. It is easily seen that the first 2N p,i

lines of (3.17) then read: ∀l = 1, . . . ,N p,i,

µ1

(
∇un,k,i1h ,∇ψh,xl

)
Ω

=
(
f̃n1 + λ̃n,k,ih,l − r

n,k,i
1h − ∂tun,k,i1hτ , ψh,xl

)
Ω
∀l = 1, . . . ,N p,i,

µ2

(
∇un,k,i2h ,∇ψh,xl

)
Ω

=
(
f̃n2 − λ̃

n,k,i
h,l − r

n,k,i
2h − ∂tun,k,i2hτ , ψh,xl

)
Ω

((((((((
∀l = 1, . . . ,N p,i,

(4.2)

where

λ̃n,k,ih,l :=

{
λn,k,ih (xl) (real number given by the vertex value of λk,ih ) if p = 1,

λn,k,ih (function λn,k,ih , the index l is discarded) if p ≥ 2.
(4.3)

We also use the shorthand notation for a ∈ Vh

λ̃n,k,ih,a =

{
λn,k,ih (a) if p = 1,

λn,k,ih if p ≥ 2.

[–]
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4.3 Flux reconstructions
Let α ∈ {1, 2}, 1 ≤ n ≤ Nt, k ≥ 1, and i ≥ 0 be fixed. The discretization fluxes are constructed by
solving local mixed problems in patches of elements ωa

h for each vertex a ∈ Vh. This provides σn,k,i,aαh,disc, and
their sums σn,k,iαh,disc :=

∑
a∈Vh σ

n,k,i,a
αh,disc are the discretization fluxes. With respect to the stationary case [28,

Sec. 4.2], the only difference is the source term for the divergence equation in the mixed system:

g̃n,k,i,aαh :=
(
f̃nα − (−1)αλ̃n,k,ih,a − r

n,k,i
αh − ∂tun,k,iαhτ |ωa

h

)
ψh,a − µα∇un,k,iαh ·∇ψh,a,

where λ̃n,k,ih,a and rn,k,iαh are defined in the previous section. [–] This yields σn,k,iαh,disc ∈ RTp(Ω) ⊂ H(div,Ω),
where RTp(Ω) is the Raviart–Thomas subspace of H(div,Ω) of order p ≥ 1, [47].

The algebraic error flux reconstructions σn,k,iαh,alg are obtained by the methodology of [45, Concept 4.1]
and yield

σn,k,iαh,alg ∈ RTp(Ω) ⊂ H(div,Ω) and ∇·σn,k,iαh,alg = rn,k,iαh .

The total flux reconstructions are the sums

σn,k,iαh := σn,k,iαh,disc + σn,k,iαh,alg α = 1, 2. (4.4)

They crucially satisfy(
∇·σn,k,iαh , qh

)
K

=
(
f̃nα − (−1)αλn,k,ih − ∂tun,k,iαhτ , qh

)
K
∀qh ∈ Pp(K), ∀K ∈ Th. (4.5)

For α = 1, 2, we finally define the piecewise-constant-in-time reconstructions,(
σk,iαhτ ,σ

k,i
αhτ,disc,σ

k,i
αhτ,alg

)
∈
[
L2(0, T ;H(div,Ω))

]3
,

σk,iαhτ |In = σn,k,iαh , σk,iαhτ,disc|In = σn,k,iαh,disc, σ
k,i
αhτ,alg|In = σn,k,iαh,alg, ∀1 ≤ n ≤ Nt.

(4.6)

4.4 An a posteriori error estimate for p = 1 and exact solvers
In this section, we establish an a posteriori error estimate between the exact solution u ∈ Kt

g given by (1.2)
and the approximate numerical solution uhτ , for p = 1 when the semismooth Newton solver and the
iterative algebraic solver have converged. Here, we discard the indices k and i. Recall that when p = 1 and
for exact solvers, the constraints in (3.9) imply that the approximate solution is conforming in the sense
that uhτ ∈ Kt

g and λhτ ∈ Ψ.

Definition 4.1. Let 1 ≤ n ≤ Nt, K ∈ Th, and α = 1, 2. We define the residual estimator ηnR,K,α, the flux
estimator ηnF,K,α, the constraint estimator ηnC,K , and the data oscillation estimator ηnosc,K,α by the temporal
functions, for all t ∈ In,

ηnR,K,α(t) :=
hK
π
µ
− 1

2
α

∥∥∥f̃nα − ∂tunαhτ − (−1)αλnh −∇·σnαh
∥∥∥
K
, (4.7)

ηnF,K,α(t) :=
∥∥∥µ 1

2
α∇unαhτ + µ

− 1
2

α σnαh

∥∥∥
K
, (4.8)

ηnC,K(t) := 2 (λnh, u
n
1hτ − un2hτ )K , (4.9)

ηnosc,K,α(t) := CPFhΩµ
− 1

2
α

∥∥∥fα − f̃nα∥∥∥
K
. (4.10)

Remark 4.2. The estimators (4.7)–(4.10) are an extension of the estimators of [28] derived in the case of
elliptic variational inequations to the parabolic case. They reflect various violations of physical properties
of the approximate solution (un1hτ , u

n
2hτ , λ

n
hτ ): ηnR,K,α and ηnF,K,α represent the nonconformity of the flux,

i.e., the fact that −µα∇unαhτ 6∈ L2(0, T ;H(div,Ω)); ηnC,K reflects inconsistencies in the complementarity
conditions at the discrete level, i.e., the fact that (un1hτ − un2hτ )λnh 6= 0. Note that the last constraint in (3.9)
for p = 1 only requires that (un1h−un2h)λnh vanishes at each vertex of Th but not everywhere in Ω and not on
the whole time interval In. Finally, ηnosc,K,α represents the local distance between the right hand side and its

time-averages over In. Note that this latter term is an estimator of
∥∥∥fα − f̃nα∥∥∥

H−1(Ω)
(see (4.16) further)

with a rather pessimistic constant, see the discussion in [31, Rem. 5.4] and the references therein).
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4.4.1 A control of the energy error

Recall the Poincaré–Friedrichs and the Poincaré–Wirtinger inequalities, denoting by vO the mean value of
v over domain O and hO the diameter of O,

‖v‖O ≤ CPFhO ‖∇v‖O ∀v ∈ H1
0 (O), (4.11a)

‖v − vO‖O ≤ CPWhO ‖∇v‖O ∀v ∈ H1(O). (4.11b)

We then have:

Theorem 4.3 (case p = 1 and exact solvers). Let u ∈ Kt
g be the exact solution given by (1.2). Let

uhτ ∈ Kt
g and λhτ ∈ Ψ be the approximate solutions for p = 1 and exact solvers. Consider the equilibrated

flux reconstructions σαhτ ∈ L2(0, T ;H(div,Ω)) given by (4.4), (4.6). Using the error estimators defined
by (4.7)–(4.10), there holds

|‖u− uhτ‖|2Ω,T + ‖(u− uhτ ) (·, T )‖2Ω ≤ η
2 :=

(
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηnR,K,α+ ηnF,K,α

)2)1
2

+

(
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηnosc,K,α

)2)1
2


2

+

Nt∑
n=1

∫
In

∑
K∈Th

ηnC,K(t) dt + ‖(u− uhτ ) (·, 0)‖2Ω .

(4.12)

To prove Theorem 4.3, we first introduce the following lemma.

Lemma 4.4. Let a and b be the forms defined in (2.3). Let u ∈ Kt
g be the weak solution from (1.2)

and let y := (y1, y2) ∈ Kt
g be arbitrary. Then, for the vector y∗ := (y∗1 , y

∗
2) := (u1 − y1, u2 − y2) ∈[

L2(0, T ;H1
0 (Ω))

]2, there holds

A :=

∫ T

0

((f ,y∗)Ω − (∂tuhτ ,y
∗)Ω − a(uhτ ,y

∗) + b(y∗, λhτ )) (t) dt

≤

{ Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηnR,K,α + ηnF,K,α

)2
(t) dt

} 1
2

+

{
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηnosc,K,α

)2
(t) dt

} 1
2

 |‖y∗‖|Ω,T .
(4.13)

Proof. Adding and subtracting σαhτ (t) ∈ H(div,Ω), using the Green formula with y∗α(t) ∈ H1
0 (Ω), α = 1, 2,

and employing the decomposition fα = f̃nα +
(
fα − f̃nα

)
, we have

A =

∫ T

0

2∑
α=1

(
f̃nα − ∂tuαhτ −∇·σαhτ − (−1)αλhτ , y

∗
α

)
Ω

(t) dt

−
∫ T

0

2∑
α=1

(
µ

1
2
α∇uαhτ + µ

− 1
2

α σαhτ , µ
1
2
α∇y∗α

)
Ω

(t) dt +

∫ T

0

2∑
α=1

(
fα − f̃nα , y∗α

)
Ω

(t) dt.

Let α = 1, 2, 1 ≤ n ≤ Nt, t ∈ In, and K ∈ Th be fixed. Denoting by wK the mean value over K of
w ∈ L2(Ω) and using the property (4.5), one has(

f̃nα − ∂tunαhτ − (−1)αλnh −∇·σnαh, y∗α
)
K

(t)

=
(
µ
− 1

2
α

(
f̃nα − ∂tunαhτ − (−1)αλnh −∇·σnαh

)
, µ

1
2
α

(
y∗α −

(
y∗α
)
K

))
K

(t).

Using the Cauchy–Schwarz inequality and next the Poincaré–Wirtinger inequality (4.11b) with CPW = 1
π

for the convex mesh element K, we get(
f̃nα − ∂tunαhτ − (−1)αλnh −∇·σnαh, y∗α

)
K

(t) ≤ ηnR,K,α
∥∥∥µ 1

2
α∇y∗α

∥∥∥
K

(t). (4.14)
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Next, as a result of the Cauchy–Schwarz inequality, we have(
µ

1
2
α∇unαhτ + µ

− 1
2

α σnαh, µ
1
2
α∇y∗α

)
K

(t) ≤ ηnF,K,α
∥∥∥µ 1

2
α∇y∗α

∥∥∥
K

(t). (4.15)

Finally, the Cauchy–Schwarz inequality and the Poincaré–Friedrichs inequality over the entire computational
domain Ω give (

fα − f̃nα , y∗α
)

Ω
(t) ≤ CPFhΩµ

− 1
2

α

∥∥∥fα − f̃nα∥∥∥
Ω

∥∥∥µ 1
2
α∇y∗α

∥∥∥
Ω

(t)

=

( ∑
K∈Th

(ηnosc,K,α)2(t)

) 1
2 ∥∥∥µ 1

2
α∇y∗α

∥∥∥
Ω

(t).
(4.16)

Therefore, combining (4.14)–(4.16) and applying the Cauchy–Schwarz inequality, we get the desired result.

Proof of Theorem 4.3. From the identity

1

2
‖(u− uhτ ) (·, T )‖2Ω =

1

2
‖(u− uhτ ) (·, 0)‖22 +

∫ T

0

2∑
α=1

〈∂t(uα − uαhτ ), uα − uαhτ 〉(t) dt, (4.17)

posing B := |‖u− uhτ‖|2Ω,T +
1

2
‖(u− uhτ ) (·, T )‖2Ω, using definition (2.4) and (4.17), we get

B =

∫ T

0

(a(u− uhτ ,u− uhτ ) + 〈∂tu,u− uhτ 〉 − (∂tuhτ ,u− uhτ )Ω) (t)dt +
1

2
‖(u− uhτ ) (·, 0)‖2Ω .

Then, using the weak formulation (1.2) with v = uhτ ∈ Kt
g, we obtain

B ≤
∫ T

0

((f − ∂tuhτ ,u− uhτ )Ω − a(uhτ ,u− uhτ )) (t) dt +
1

2
‖(u− uhτ ) (·, 0)‖2Ω .

Next, adding and subtracting
∫ T

0

b(u − uhτ , λhτ )(t) dt and noting that (−λhτ , u1 − u2)Ω (t) ≤ 0 for a.e

t ∈]0, T [ because λhτ ∈ Ψ, we obtain

B ≤
∫ T

0

((f − ∂tuhτ ,u− uhτ )Ω − a(uhτ ,u− uhτ ) + b(u− uhτ , λhτ )) (t) dt

+

Nt∑
n=1

∫
In

∑
K∈Th

ηnC,K
2

(t) dt +
1

2
‖(u− uhτ ) (·, 0)‖2Ω .

Finally, employing Lemma 4.4 with y = uhτ ∈ Kt
g and using the Young inequality A1A2 ≤ 1

2

(
A2

1 +A2
2

)
,

A1, A2 ≥ 0, we get the desired result.

4.4.2 A control of the temporal derivative error

So far, we have established an a posteriori error estimate between the exact solution u ∈ Kt
g and its

approximate solution uhτ ∈ Kt
g in the energy norm. As we mentioned in the introduction, we cannot easily

estimate the norm ‖∂t (u− uhτ )‖[L2(0,T ;H−1(Ω))]2 . We now give our replacement result. Given u ∈ Kt
g and

for the approximate solution uhτ ∈ Kt
g, let z ∈ Kt

g be such that, for all v ∈ Kt
g,∫ T

0

a(z − u,v − z)(t) dt ≥ −
∫ T

0

2∑
α=1

〈∂t (uα − uαhτ )− (−1)αλhτ , vα − zα〉(t) dt,

z(0) = uhτ (0) ∈ Kg.

(4.18)

As a result of the Lions–Stampacchia theorem [39], problem (4.18) is well posed. Now, we give an a posteriori
error estimate on the error |‖u− z‖|Ω,T .
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Theorem 4.5 (case p = 1 and exact solvers). Let u ∈ Kt
g be the solution of the weak formulation given by

(1.2) and let z ∈ Kt
g be the solution of (4.18). Assume that the hypotheses of Theorem 4.3 hold and let the

total estimator η be defined by (4.12). Then

|‖u− z‖|Ω,T ≤ 2η.

Proof. Setting w∗ := u − z, we have |‖w∗‖|2Ω,T =

∫ T

0

a(u − z,u − z) dt. For v = u ∈ Kt
g, we in turn get

from (4.18)

|‖w∗‖|2Ω,T ≤
∫ T

0

(〈∂t (u− uhτ ) ,w∗〉+ b(w∗, λhτ )) (t) dt +

∫ T

0

(a(u− uhτ ,w∗)− a(u− uhτ ,w∗)) (t) dt.

Employing the weak formulation (1.2) with v = z ∈ Kt
g we obtain

|‖w∗‖|2Ω,T ≤
∫ T

0

[(f − ∂tuhτ ,w∗)Ω + b(w∗, λhτ )− a(uhτ ,w
∗)− a(u− uhτ ,w∗)] (t) dt. (4.19)

To bound the first three terms of (4.19), we employ Lemma 4.4 with y = z ∈ Kt
g and next the Young

inequality (AB ≤ 1
4A

2 +B2) to see

|‖w∗‖|2Ω,T ≤

{ Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

(
ηnR,K,α + ηnF,K,α

)2
(t) dt

} 1
2

+

{∫ T

0

2∑
α=1

∑
K∈Th

(
ηnosc,K,α

)2
(t) dt

} 1
2

2

+
1

4
|‖w∗‖|2Ω,T −

∫ T

0

a(u− uhτ ,w∗)(t) dt.

(4.20)

The Cauchy–Schwarz inequality and the Young inequality give

−
∫ T

0

a(u− uhτ ,w∗)(t) dt ≤ |‖u− uhτ‖|Ω,T |‖w
∗‖|Ω,T ≤ |‖u− uhτ‖|

2
Ω,T +

1

4
|‖w∗‖|2Ω,T . (4.21)

Finally, combining (4.20) and (4.21) with (4.12), we get |‖w∗‖|2Ω,T ≤ 4η2 which is the desired result.

Combining Theorems 4.3 and 4.5, we infer

Corollary 4.6 (case p = 1 and exact solvers). Assume the hypotheses of Theorem 4.5. Then

|‖u− uhτ‖|2Ω,T + |‖u− z‖|2Ω,T + ‖(u− uhτ ) (·, T )‖2Ω ≤ 5η2. (4.22)

We show now that the error measure |‖u− z‖|Ω,T is linked to the temporal derivative error; unfortunately
we could not obtain the (more interesting) converse estimate that would allow to control the temporal
derivative error by the estimators.

Lemma 4.7. Assuming the hypotheses of Theorem 4.5 and denoting by Cµ := 2/min
(
µ

1
2
1 , µ

1
2
2

)
we have

|‖u− z‖|Ω,T ≤ Cµ

(∫ T

0

2∑
α=1

‖∂t (uα − uαhτ )‖2H−1(Ω) (t) dt

) 1
2

+

(∫ T

0

‖λhτ − λ‖2H−1(Ω) (t) dt

) 1
2

 .

Proof. Denoting by w∗ := u− z, we have

|‖w∗‖|2Ω,T ≤
∫ T

0

2∑
α=1

〈∂t (uα − uαhτ ) , w∗α〉(t) dt +

∫ T

0

(λhτ , w
∗
1 − w∗2)Ω (t) dt.
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Next, we have (λhτ , w
∗
1 − w∗2)Ω = (λhτ − λ,w∗1 − w∗2)Ω + (λ,w∗1 − w∗2)Ω, [–] and from (2.1) λ(u1 − u2) = 0.

As λ ∈ Ψ and z ∈ Kt
g, we have ∫ T

0

(λ,w∗1 − w∗2)Ω (t) dt ≤ 0,

and thus ∫ T

0

(λhτ , w
∗
1 − w∗2)Ω (t) dt ≤

∫ T

0

(λhτ − λ,w∗1 − w∗2)Ω (t) dt.

Finally,

|‖w∗‖|2Ω,T ≤
∫ T

0

2∑
α=1

〈∂t (uα − uαhτ ) , w∗α〉(t) dt +

∫ T

0

(λhτ − λ,w∗1 − w∗2)Ω (t) dt. (4.23)

We denote by A1 the first term in the right-hand side of (4.23). For A1, we have as a result of the H−1

norm definition and using the Cauchy–Schwarz inequality

A1 ≤
∫ T

0

2∑
α=1

sup
Φα∈H1

0 (Ω)

〈
µ
− 1

2
α ∂t (uα − uαhτ ) , µ

1
2
αΦα

〉
∥∥∥µ 1

2
α∇Φα

∥∥∥
Ω

∥∥∥µ 1
2
α∇w∗α

∥∥∥
Ω

(t) dt

=

∫ T

0

2∑
α=1

∥∥∥µ− 1
2

α ∂t (uα − uαhτ )
∥∥∥
H−1(Ω)

∥∥∥µ 1
2
α∇w∗α

∥∥∥
Ω

(t) dt

≤

(∫ T

0

2∑
α=1

∥∥∥µ− 1
2

α ∂t (uα − uαhτ )
∥∥∥2

H−1(Ω)
(t) dt

) 1
2

|‖w∗‖|Ω,T .

(4.24)

For A2, we employ the Cauchy–Schwarz inequality

A2 =

∫ T

0

(
µ
− 1

2
1 (λhτ − λ) , µ

1
2
1 w
∗
1

)
Ω

(t) dt−
∫ T

0

(
µ
− 1

2
2 (λhτ − λ) , µ

1
2
2 w
∗
2

)
Ω

(t) dt

(((((((((((((((((((((((

≤
∫ T

0

2∑
α=1

∥∥∥µ− 1
2

α (λhτ − λ)
∥∥∥
H−1(Ω)

∥∥∥µ 1
2
α∇w∗α

∥∥∥
Ω

(t) dt

≤ Cµ

(∫ T

0

‖λhτ − λ‖2H−1(Ω) (t) dt

) 1
2

|‖w∗‖|Ω,T .

(4.25)

Combining (4.23), (4.24), and (4.25), we obtain the desired result.

4.5 An a posteriori error estimate for p ≥ 1 and each step k ≥ 1, i ≥ 0

In this section, we devise an a posteriori error estimate which is valid for any polynomial degree p ≥ 1, at
any time step 1 ≤ n ≤ Nt, at any semismooth Newton step k ≥ 1, and at any algebraic step i ≥ 0. Several
difficulties arise. Contrary to the previous case of Section 4.4, the constraints (3.9) are not satisfied because
the convergence is not reached. Moreover, even if they were satisfied, the solution remains nonconforming
for p ≥ 2 because Kp

gh 6⊂ Kg and Λph 6⊂ Λ. Consequently, we have to work with a nonconforming space-time
solution uk,ihτ /∈ Kt

g and λhτ /∈ Ψ. To cope with these difficulties, we employ the decomposition

λn,k,ih = λn,k,i,pos
h + λn,k,i,neg

h where λn,k,i,pos
h = max

{
λn,k,ih , 0

}
and λn,k,i,neg

h = min
{
λn,k,ih , 0

}
.

(4.26)
We also introduce a potential s̃k,ihτ :=

(
s̃k,i1,hτ , s̃

k,i
2,hτ

)
∈ Kt

g as a piecewise affine and continuous function

in time over the whole time interval ]0, T [, verifying s̃k,i1,hτ (t)− s̃k,i2,hτ (t) ≥ 0 for all t ∈ ]0, T [.
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Remark 4.8. A possible construction for s̃k,ihτ ∈ Kt
g can be derived from the stationary version presented

in [28, Sec. 5.2]. We recall the main ingredients here. First, construct sn,k,ih ∈ Kp
gh at each node xl ∈ Vp,i

by

sn,k,ih (xl) :=


un,k,ih (xl) =

(
un,k,i1h (xl), u

n,k,i
2h (xl)

)
if
(
un,k,i1h − un,k,i2h

)
(xl) ≥ 0,(

un,k,i1h (xl) + un,k,i2h (xl)

2
,
un,k,i1h (xl) + un,k,i2h (xl)

2

)
if
(
un,k,i1h − un,k,i2h

)
(xl) < 0.

(4.27)

For p = 1, this gives sn,k,i1h ≥ sn,k,i2h everywhere, so we can set s̃n,k,ih := sn,k,ih .
For p ≥ 2, imposing sn,k,i1h (xl) ≥ sn,k,i2h (xl) in the Lagrange nodes is not sufficient to have sn,k,i1h ≥ sn,k,i2h . So,
we add to sn,k,i1h − sn,k,i2h bubble functions, first on all edges, then on all triangles.This builds s̃n,k,ih such that
s̃n,k,i1h ≥ s̃n,k,i2h , and we define s̃n,k,ihτ from s̃n,k,ih as its corresponding space-time function.

Definition 4.9. Let CΩ,µ := hΩCPF

(
1

µ1
+

1

µ2

) 1
2

. For all 1 ≤ n ≤ Nt, we define the error estimators

ηn,k,iR,K,α(t) := hΩCPFµ
− 1

2
α

∥∥∥f̃nα − ∂ts̃n,k,iαhτ −∇·σn,k,iαh − (−1)αλn,k,ih

∥∥∥
K

(t),

ηn,k,iF,K,α(t) :=
∥∥∥µ 1

2
α∇s̃n,k,iαhτ + µ

− 1
2

α σn,k,iαh

∥∥∥
K

(t),

ηn,k,i,pos
C,K (t) := 2

(
λn,k,i,pos
h , un,k,i1hτ − u

n,k,i
2hτ

)
K

(t),

ηn,k,inonc,1,K(t) := CΩ,µ

∥∥∥λn,k,i,neg
h

∥∥∥
K

(t),

ηn,k,inonc,2,K(t) :=
∣∣∣∥∥∥s̃n,k,ihτ − un,k,ihτ

∥∥∥∣∣∣
K

(t),

ηn,k,inonc,3,K(t) := 2
(
λn,k,i,pos
h ,

(
s̃n,k,i1hτ − u

n,k,i
1hτ

)
−
(
s̃n,k,i2hτ − u

n,k,i
2hτ

))
K

(t),

ηnosc,K,α(t) := CPFhΩµ
− 1

2
α

∥∥∥fα − f̃nα∥∥∥
K
.

We observe that the estimators given by Definition 4.9 are slightly different from the ones provided
in Definition 4.1. Indeed, in the estimators ηn,k,iR,K,α and ηn,k,iF,K,α, there appears s̃n,k,iαhτ in place of un,k,iαhτ ,
and hΩ instead of hK . The constraint estimator ηn,k,i,pos

C,K is as in Definition 4.1 (remember that λnh ≥ 0 at

convergence for p = 1) and expresses that λn,k,ih

(
un,k,i1hτ − u

n,k,i
2hτ

)
= 0 is not valid everywhere. Next, ηn,k,inonc,1,K ,

ηn,k,inonc,2,K , and ηn,k,inonc,3,K are nonconformity estimators expressing the possible negativity of the discrete
Lagrange multiplier and measuring how far the potential reconstruction s̃n,k,ihτ is from the displacements
un,k,ihτ . [–]

Theorem 4.10 (case p ≥ 1 and inexact solvers). Let u ∈ Kt
g be the exact solution given by (1.2) and let

uk,ihτ /∈ Kt
g be the approximate solution issued from inexact linearization step k ≥ 1 and algebraic solvers

step i ≥ 0 at each time step 1 ≤ n ≤ Nt. Consider the total equilibrated flux reconstruction σk,iαhτ ∈
L2(0, T,H(div,Ω)) given by (4.4) and (4.6). Let s̃k,ihτ ∈ Kt

g and consider the estimators of Definition 4.9.
Then, for

(
ηk,i
)2

:=

{ Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

(
ηn,k,iR,K,α

)2

(t) dt

} 1
2

+

{
Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

(
ηn,k,iF,K,α

)2

(t) dt

} 1
2

+

{
Nt∑
n=1

∫
In

∑
K∈Th

(
ηn,k,inonc,1,K

)2

(t) dt

} 1
2

+

{
Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

(
ηnosc,K,α

)2
(t) dt

} 1
2

2

+

Nt∑
n=1

∫
In

∑
K∈Th

ηn,k,i,pos
C,K (t) dt +

Nt∑
n=1

∫
In

∑
K∈Th

ηn,k,inonc,3,K(t) dt +
∥∥∥(u− s̃n,k,ihτ

)
(·, 0)

∥∥∥2

Ω
,
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we have the a posteriori error estimate

∣∣∣∥∥∥u− uk,ihτ ∥∥∥∣∣∣
Ω,T
≤ η̃k,i := ηk,i +

{
Nt∑
n=1

∫
In

∑
K∈Th

(
ηn,k,inonc,2,K

)2

(t) dt

} 1
2

. (4.28)

Proof. We start by the triangle inequality, leading to∣∣∣∥∥∥u− uk,ihτ ∥∥∥∣∣∣
Ω,T
≤
∣∣∣∥∥∥u− s̃k,ihτ ∥∥∥∣∣∣

Ω,T
+
∣∣∣∥∥∥s̃k,ihτ − uk,ihτ ∥∥∥∣∣∣

Ω,T
. (4.29)

The second term of (4.29) immediately equals to

∣∣∣∥∥∥s̃k,ihτ − uk,ihτ ∥∥∥∣∣∣2
Ω,T

=

Nt∑
n=1

∫
In

∑
K∈Th

(
ηn,k,inonc,2,K

)2

(t) dt. (4.30)

Next, observe that ∣∣∣∥∥∥u− s̃k,ihτ ∥∥∥∣∣∣2
Ω,T
≤
∣∣∣∥∥∥u− s̃k,ihτ ∥∥∥∣∣∣2

Ω,T
+

1

2

∥∥∥(u− s̃k,ihτ) (·, T )
∥∥∥2

Ω
.

Employing the fact that

1

2

∥∥∥(u− s̃k,ihτ) (·, T )
∥∥∥2

Ω
=

1

2

∥∥∥(u− s̃k,ihτ) (·, 0)
∥∥∥2

Ω
+

∫ T

0

〈
∂t

(
u− s̃k,ihτ

)
,u− s̃k,ihτ

〉
(t) dt,

we have ∣∣∣∥∥∥u− s̃k,ihτ ∥∥∥∣∣∣2
Ω,T
≤

2∑
α=1

∫ T

0

µα

(
∇
(
uα − s̃k,iαhτ

)
,∇
(
uα − s̃k,iαhτ

))
Ω

(t) dt

+

2∑
α=1

∫ T

0

〈
∂t

(
uα − s̃k,iαhτ

)
, uα − s̃k,iαhτ

〉
(t) dt +

1

2

∥∥∥(u− s̃k,ihτ) (·, 0)
∥∥∥2

Ω
.

We now use the weak formulation (1.2) with v = s̃k,ihτ ∈ Kt
g and we add and subtract

2∑
α=1

∫ T

0

(
f̃nα , uα −

s̃k,iαhτ
)

Ω
(t) dt to get

∣∣∣∥∥∥u− s̃k,ihτ ∥∥∥∣∣∣2
Ω,T
≤

2∑
α=1

∫ T

0

(
f̃nα − ∂ts̃

k,i
αhτ , uα − s̃

k,i
αhτ

)
Ω

(t)−
2∑

α=1

∫ T

0

µα

(
∇s̃k,iαhτ ,∇

(
uα − s̃k,iαhτ

))
Ω

(t) dt

+

2∑
α=1

∫ T

0

(
fα − f̃nα , uα − s̃

k,i
αhτ

)
Ω

(t) dt +
1

2

∥∥∥(u− s̃k,ihτ) (·, 0)
∥∥∥2

Ω
.

Adding and subtracting
2∑

α=1

∫ T

0

(
(−1)αλk,ihτ , uα − s̃

k,i
αhτ

)
Ω

(t) dt and
2∑

α=1

∫ T

0

(
σk,iαhτ ,∇

(
uα − s̃k,iαhτ

))
Ω

(t) dt

with σk,iαhτ ∈ L2(0, T ;H(div,Ω)) and using the Green formula with
(
uα − s̃k,iαhτ

)
(t) ∈ H1

0 (Ω) a.e. t ∈ ]0, T [,
we obtain ∣∣∣∥∥∥u− s̃k,ihτ ∥∥∥∣∣∣2

Ω,T
≤ A1 +A2 +A3 +A4 +

1

2

∥∥∥(u− s̃k,ihτ) (·, 0)
∥∥∥2

Ω
(4.31)
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with

A1 :=

2∑
α=1

∫ T

0

(
f̃nα − ∂ts̃

k,i
αhτ −∇·σk,iαhτ − (−1)αλk,ihτ , uα − s̃

k,i
αhτ

)
Ω

(t) dt,

A2 := −
2∑

α=1

∫ T

0

(
µ

1
2
α∇s̃k,iαhτ + µ

− 1
2

α σk,iαhτ , µ
1
2
α∇

(
uα − s̃k,iαhτ

))
Ω

(t) dt,

A3 :=

2∑
α=1

∫ T

0

(
(−1)αλk,ihτ , uα − s̃

k,i
αhτ

)
Ω

(t) dt,

A4 :=

2∑
α=1

∫ T

0

(
fα − f̃nα , uα − s̃

k,i
αhτ

)
Ω

(t) dt.

(4.32)

To bound A1, A2, and A4 we proceed as follows. We apply the Cauchy–Schwarz inequality and next the
Poincaré–Friedrichs inequality (4.11a) to get

A1 ≤

(
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηn,k,iR,K,α

)2

(t) dt

) 1
2 ∣∣∣∥∥∥u− s̃n,k,ihτ

∥∥∥∣∣∣
Ω,T

, (4.33)

A2 ≤

(
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηn,k,iF,K,α

)2

(t) dt

) 1
2 ∣∣∣∥∥∥u− s̃n,k,ihτ

∥∥∥∣∣∣
Ω,T

, (4.34)

A4 ≤

(
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηnosc,K,α

)2
(t) dt

) 1
2 ∣∣∣∥∥∥u− s̃n,k,ihτ

∥∥∥∣∣∣
Ω,T

. (4.35)

It remains to bound the term A3. Observe that

A3 = −
∫ T

0

b(u− s̃k,ihτ , λ
k,i,neg
hτ )(t) dt−

∫ T

0

b(u− s̃k,ihτ , λ
k,i,pos
hτ )(t) dt.

Next, adding and subtracting b(uk,ihτ , λ
k,i,pos
hτ ) and noting that −b(u, λk,i,pos

hτ ) ≤ 0 since u ∈ Kt
g and

λk,i,pos
hτ (t) ≥ 0 for all t ∈ ]0, T [, we have

A3 ≤ A31 +A32 +A33

withA31 := −
∫ T

0

b(u−s̃k,ihτ , λ
k,i,neg
hτ )(t) dt, A32 :=

∫ T

0

b(s̃k,ihτ−u
k,i
hτ , λ

k,i,pos
hτ )(t) dt, A33 :=

∫ T

0

b(uk,ihτ , λ
k,i,pos
hτ )(t) dt.

The Cauchy–Schwarz inequality and the Poincaré–Friedrichs inequality (4.11a) yield [–]

A31 ≤

(
Nt∑
n=1

∫
In

∑
K∈Th

(
ηn,k,inonc,1,K

)2

(t) dt

) 1
2 ∣∣∣∥∥∥u− s̃n,k,ihτ

∥∥∥∣∣∣
Ω,T

. (4.36)

Next, we have [–]

A32 =
1

2

Nt∑
n=1

∫
In

∑
K∈Th

ηn,k,inonc,3,K(t) dt, A33 =
1

2

Nt∑
n=1

∫
In

∑
K∈Th

ηn,k,i,pos
C,K (t) dt. (4.37)

Finally, combining (4.31)–(4.37), employing the Young inequality ab ≤ 1
2

(
a2 + b2

)
, (a, b) ≥ 0, and us-

ing (4.30) provides the desired result.
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5 Error components and adaptive inexact algorithm
In Section 4.5, we have derived an a posteriori error estimate between the exact solution and approximate
solution at each semismooth Newton step k ≥ 1 and each algebraic iterative solver step i ≥ 0. We now
provide an a posteriori error estimate distinguishing the different error components (discretization ηn,k,idisc ,
semismooth linearization ηn,k,ilin , and linear algebra ηn,k,ialg ) for any p ≥ 1. To identify these components,
we note that ηn,k,ialg must vanish when i → ∞, ηn,k,ilin must vanish when i and k → ∞, and ηn,k,idisc must
vanish when i, k → ∞ and h and ∆t → 0. The components are adapted from the ideas of [28, Sec. 5.4].
This will allow us to define the adaptive inexact semismooth Newton algorithm for instationary variational
inequalities.

5.1 Distinguishing the error components for p ≥ 1

Let n ∈ {1, . . . , Nt}. In this section, the dependency on the time variable is not shown explicitely. First,
using (4.4), the triangle inequality reads

ηn,k,iF,K,α ≤
∥∥∥µ 1

2
α∇s̃n,k,iαhτ + µ

− 1
2

α σn,k,iαh,disc

∥∥∥
K︸ ︷︷ ︸

discretization

+
∥∥∥µ− 1

2
α σn,k,iαh,alg

∥∥∥
K︸ ︷︷ ︸

algebra

, (5.1)

which separates algebraic and discretization contributions of the error. Define

ηn,k,idisc,F,K,α :=
∥∥∥µ 1

2
α∇s̃n,k,iαhτ + µ

− 1
2

α σn,k,iαh,disc

∥∥∥
K
, ηn,k,ialg,K,α :=

∥∥∥µ− 1
2

α σn,k,iαh,alg

∥∥∥
K
. (5.2)

Case p = 1: let β ∈ {1, 2, 3}. The estimators ηn,k,inonc,β,K can be interpreted as semismooth linearization
estimators. Indeed, at convergence for k and i → ∞, λn,k,i,pos

h = λnh ∈ Λ, λn,k,i,neg
h = 0, and s̃n,k,ih = unh ∈

Kg. Thus η
n,k,i
nonc,β,K vanish at convergence, and we can set:

ηn,k,ilin,β,K := ηn,k,inonc,β,K for β = 1, 2, 3 when p = 1. (5.3)

The estimators ηn,k,i,pos
C,K are attributed to the discretization component, as they vanish only when h,∆t→ 0.

Case p ≥ 2: the procedure is more intricate. We employ the triangle inequality and the construction of
Remark 4.8 to get

ηn,k,inonc,2,K ≤
∣∣∣∥∥∥s̃n,k,ihτ − sn,k,ihτ

∥∥∥∣∣∣
K︸ ︷︷ ︸

discretization

+
∣∣∣∥∥∥sn,k,ihτ − un,k,ihτ

∥∥∥∣∣∣
K︸ ︷︷ ︸

linearization

. (5.4)

The first term in (5.4) vanishes assuming uk,ihτ → u ∈ Kt
g, when h,∆t→ 0 and k, i→∞. Using (4.27), the

second term vanishes when k and i→∞. Next, using (4.26), we treat the estimators ηn,k,i,pos
C,K ,∑

K∈Th

ηn,k,i,pos
C,K = 2

(
−λn,k,i,neg

h , un,k,i1hτ − u
n,k,i
2hτ

)
Ω︸ ︷︷ ︸

discretization

+2
(
λn,k,ih , un,k,i1hτ − u

n,k,i
2hτ

)
Ω︸ ︷︷ ︸

linearization

. (5.5)

The first term of (5.5) is a discretization estimator, as it vanishes assuming that λk,ihτ → λ ∈ Ψ, when
h,∆t→ 0, and k, i→∞. By virtue of (3.9) and (3.4), the second term of (5.5) is a linearization estimator,
as it vanishes when k, i→∞. Next, we decompose λn,k,ih = λ̃n,k,i,pos

h + λ̃n,k,i,neg
h , with

λ̃n,k,i,pos
h :=

Np,i∑
l=1

max
{(
Xn,k,i

3h

)
l
, 0
}

Θh,xl , λ̃
n,k,i,neg
h :=

Np,i∑
l=1

min
{(
Xn,k,i

3h

)
l
, 0
}

Θh,xl ,

so that λ̃n,k,i,pos
h and −λ̃n,k,i,neg

h ∈ Λph (recall that λk,i,pos
h , λk,i,neg

h 6∈ Xp
h in general), and

ηn,k,inonc,1,K ≤ CΩ,µ

(∥∥∥λn,k,i,neg
h − λ̃n,k,i,neg

h

∥∥∥
K︸ ︷︷ ︸

discretization

+
∥∥∥λ̃n,k,i,neg

h

∥∥∥
K︸ ︷︷ ︸

linearization

)
, (5.6)

19



where λ̃n,k,i,neg
h → 0 when k, i → ∞, and λn,k,i,neg

h → 0 when h → 0. Finally, similarly to (5.4), the term
ηn,k,inonc,3,K is decomposed into two components, one with sn,k,iαhτ − u

n,k,i
αhτ , the other with s̃n,k,iαhτ − s

n,k,i
αhτ .

Regrouping this last term and (5.4)–(5.6), we define the semismooth linearization estimators for p ≥ 2

ηn,k,ilin,1,K := CΩ,µ

∥∥∥λ̃n,k,i,neg
h

∥∥∥
K
, ηn,k,ilin,2,K :=

∣∣∣∥∥∥sn,k,ihτ − un,k,ihτ

∥∥∥∣∣∣
K
,

ηn,k,ilin,3,K := 2
(
λn,k,i,pos
h , sn,k,i1hτ − u

n,k,i
1hτ − (sn,k,i2hτ − u

n,k,i
2hτ )

)
K
,

ηn,k,ilin,C,K := 2
(
λn,k,ih , un,k,i1hτ − u

n,k,i
2hτ

)
K
.

(5.7)

We also define the discretization estimators for p ≥ 2

ηn,k,idisc,1,K := CΩ,µ

∥∥∥λn,k,i,neg
h − λ̃n,k,i,neg

h

∥∥∥
K
, ηn,k,idisc,2,K :=

∣∣∣∥∥∥s̃n,k,ihτ − sn,k,ihτ

∥∥∥∣∣∣
K
,

ηn,k,idisc,3,K := 2
(
λn,k,i,pos
h , s̃n,k,i1hτ − s

n,k,i
1hτ − (s̃n,k,i2hτ − s

n,k,i
2hτ )

)
K
,

ηn,k,idisc,C,K := 2
(
−λn,k,i,neg

h , un,k,i1hτ − u
n,k,i
2hτ

)
K
.

(5.8)

Definition 5.1. Using (5.2), (5.3) for p = 1, and (5.2), (5.7), (5.8) for p ≥ 2, we define the initial
error estimator ηinit, the local-in-time algebraic error estimator ηn,k,ialg , the local-in-time discretization error
estimator ηn,k,idisc , and the local-in-time semismooth linearization error estimator ηn,k,ilin , respectively, by (5.9),
(5.10) for p = 1, and (5.9), (5.11) for p ≥ 2.

ηinit :=
∥∥∥(u− s̃k,ihτ) (·, 0)

∥∥∥
Ω
. (5.9)

Case p = 1:

ηn,k,idisc :=

{∫
In

∑
K∈Th

(
5

[
2∑

α=1

(
ηn,k,iR,K,α

)2

+
(
ηn,k,idisc,F,K,α

)2

+
(
ηnosc,K,α

)2]

+
∣∣∣ηn,k,i,pos

C,K

∣∣∣)(t) dt
} 1

2

,

ηn,k,ilin :=2
1
2

{∫
In

∑
K∈Th

(
5
(
ηn,k,ilin,1,K

)2

+
(
ηn,k,ilin,2,K

)2

+ 5
∣∣∣ηn,k,ilin,3,K

∣∣∣) (t) dt

} 1
2

,

ηn,k,ialg :=

{
5∆tn

∑
K∈Th

2∑
α=1

(
ηn,k,ialg,K,α

)2
} 1

2

.

(5.10)

Case p ≥ 2:

ηn,k,idisc :=2
1
2

{∫
In

∑
K∈Th

[
2∑

α=1

6

((
ηn,k,iR,K,α

)2

+
(
ηn,k,idisc,F,K,α

)2

+
(
ηnosc,K,α

)2)

+6
(
ηn,k,idisc,1,K

)2

+
(
ηn,k,idisc,2,K

)2

+
∣∣∣ηn,k,idisc,3,K

∣∣∣+
∣∣∣ηn,k,idisc,C,K

∣∣∣ ] (t) dt

} 1
2

,

ηn,k,ilin :=2
1
2

{∫
In

∑
K∈Th

[
6

((
ηn,k,ilin,1,K

)2

+
∣∣∣ηn,k,ilin,3,K

∣∣∣+
∣∣∣ηn,k,ilin,C,K

∣∣∣)+
(
ηn,k,ilin,2,K

)2
]}1

2

,

ηn,k,ialg :=

{
6∆tn

∑
K∈Th

2∑
α=1

(
ηn,k,ialg,K,α

)2
} 1

2

.

(5.11)
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For β ∈ {disc, lin, alg}, we introduce global-in-time estimators denoted by ηk,iβ :=

(∑Nt

n=1

(
ηn,k,iβ

)2
) 1

2

.

Using Definition 5.1, we have:

Corollary 5.2. For p ≥ 1, we have the following a posteriori error estimate distinguishing the error
components: ∣∣∣∥∥∥u− uk,ihτ ∥∥∥∣∣∣

Ω,T
≤ ηk,idisc + ηk,ilin + ηk,ialg + ηinit.

Proof. Using (4.28), employing (5.1) and the Minkowski inequality[–], using the Cauchy–Schwarz inequality,
and the inequality (A + B)

1
2 ≤ A

1
2 + B

1
2 for A and B ≥ 0, to gather the terms, we obtain the desired

result.

5.2 Adaptive inexact semismooth Newton algorithm
We finally present our adaptive inexact semismooth Newton algorithm. Following the concept of [28, 46], it
is designed to only perform the linearization and algebraic resolutions with minimal necessary precision, and
thus to avoid unnecessary iterations, on the basis of the energy error a posteriori estimators of Definition 5.1.
Let γlin and γalg be two positive parameters, typically of order 0.1, representing the desired relative sizes of
the algebraic and linearization errors. Supposing that ηinit is negligible, we propose:

Algorithm 1 Adaptive inexact semismooth Newton algorithm at each time step n

0. Choose an initial vector Xn,0
h ∈ R3Np,i and set k = 1.

1. From Xn,k−1
h define An,k−1 ∈R3Np,i,3Np,i and Bn,k−1 ∈R3Np,i by (3.16).

2. Consider the linear system

An,k−1Xn,k
h = Bn,k−1. (5.12)

3. Set Xn,k,0
h = Xn,k−1

h (initial guess for the linear solver), set i = 0.
4a. Perform ν ≥ 1 steps of a chosen linear solver for (5.12), starting from Xn,k,i

h . Set i = i+ ν. This
yields on step i an approximation Xn,k,i

h satisfying

An,k−1Xn,k,i
h = Bn,k−1 −Rn,k,i.

4b. Compute the estimators of (5.10), (5.11) and check the stopping criterion for the linear solver in
the form:

ηn,k,ialg ≤ γalg max
{
ηn,k,idisc , η

n,k,i
lin

}
. (5.13)

If satisfied, set Xn,k
h = Xn,k,i

h . If not go back to 4a.
5. Check the stopping criterion for the nonlinear solver in the form

ηn,k,ilin ≤ γlinη
n,k,i
disc . (5.14)

If satisfied, return Xn
h = Xn,k

h . If not, set k = k + 1 and go back to 1.

6 Numerical experiments
This section illustrates numerically our theoretical developments in the case of linear and quadratic finite
elements p = 1 and p = 2. We first assume p = 1 and that the semismooth Newton solver and the iterative
algebraic solver have converged, i.e., we apply the “exact semismooth Newton” method as described in
Section 3.7, using stopping criteria (3.18) and (3.19) with εkalg = 10−11 ∀k ≥ 1 and εlin = 10−9. In this
scenario, the semismooth Newton index k and the linear iterative algebraic solver index i will be discarded.
We extend to the parabolic setting the test case given in [36] in which the domain Ω is given by the unit
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disk: Ω := {(r, θ) ∈ [0, 1]× [0, 2π]}. We are interested in the shape of the numerical solution after several
time steps and in the behavior of the estimators at convergence of the solvers given by Theorem 4.3.

Second, we will focus on our adaptive inexact semismooth Newton strategy given by Algorithm 1, based
on Theorem 4.10, and Corollary 5.2. For this purpose, we will consider the geometry given in the first test
case with different source terms. We will test our adaptive strategy with two semismooth Newton solvers:
the Newton-min solver (see (3.13a)) with p = 1 and p = 2, and the Newton–Fischer–Burmeister solver
(see (3.13c)) with p = 1 only. We rely on the stopping criteria (5.13) and (5.14) with γlin = γalg = 10−3

for the adaptive inexact semismooth Newton strategy. The approaches with the exact Newton method and
with the adaptive inexact Newton method are compared. The iterative algebraic solver that we employ at
each semismooth Newton step k ≥ 1 is GMRES (see [48]) with an ILU preconditioner with zero level fill-in.

For all the studies, the parameters µ1 and µ2 are set to 1 and the boundary condition for the first
unknown g is equal to 0.05. We take a constant time step ∆tn = ∆t = 0.001 for all 1 ≤ n ≤ Nt = 300,
and the final time of simulation is T = 0.3. The initial value is (X0

h)T = [g1,0]T ∈ R2Np,i . For p = 1, we
consider a mesh containing approximately 21000 elements, and for p = 2 a mesh with 4000 elements.

6.1 Exact semismooth Newton method for p = 1

Following [36], we take a constant-in-time source term

f1(r, θ, t) :=

{
−10g if r ≤ 1/

√
2,

−8g if r ≥ 1/
√

2,
f2(r, θ, t) :=


−6g if r ≤ 1/

√
2,

−g 1 + 8r − 18r2

r

√
2√

2− 1
if r ≥ 1/

√
2.

In this case, fα|In = f̃nα , so the data oscillation estimator ηnosc,α is zero.
In this section, we use linear finite elements (p = 1). Figure 1 displays the behavior of the numerical

solution (un1h, u
n
2h, λ

n
h) at three instants t = 0.02, t = 0.17, and t = 0.3. In the first situation, corresponding to

the beginning of the simulation t = 0.02 (first line of Figure 1), the complementarity constraint un1h−un2h > 0
is satisfied, and the discrete Lagrange multiplier λnh vanishes. Next, at the time value t = 0.17, un1h and
un2h coincide in a subset of Ω. Finally, at the end of the simulation (t = 0.3, last line of Figure 1) the
discrete Lagrange multiplier λnh is positive in the whole area r ≤ 1√

2
, recovering the numerical result of the

stationary case [36].
In Figure 2, the constraint estimator ηnC,K (4.9) is plotted at t = 0.17, and t = 0.3 (it is 0 at t = 0.02). It

detects at each time step the elements where un1h and un2h become in contact (or detach one from another).
We note that the constraint estimator ηnC,K takes very small values.

Figure 3 displays the behavior of the flux estimator ηnF,K,2 (4.7) and of the residual estimator ηnR,K,2 (4.7)
(see Theorem 4.3) associated to the second discrete unknown un2h at the final simulation time t = 0.3. We
observe that the residual estimator ηnR,K,2 is small with respect to the flux estimator ηnF,K,2. Furthermore,
in several elements K ∈ Th, the estimator ηnF,K,2 is quite large which corresponds to zones where the finite
element discretization error is important.

6.2 Comparison of exact and adaptive inexact semismooth Newton algorithms
The domain Ω is still the unit disk, but the data f1 and f2 are given by

f1(r, θ, t) :=



−20g if r ≤ 1/5,

−50g if 1/5 ≤ r ≤ 2/5,

+50g if 2/5 ≤ r ≤ 3/5,

−50g if 3/5 ≤ r ≤ 4/5,

+50g if 4/5 ≤ r ≤ 1,

f2(r, θ, t) :=



+90g if r ≤ 1/5,

−40g if 1/5 ≤ r ≤ 2/5,

+70g if 2/5 ≤ r ≤ 3/5,

−30g if 3/5 ≤ r ≤ 4/5,

+40g if 4/5 ≤ r ≤ 1.

Here again ηnosc,α vanishes.
First of all, we display for several time steps the behavior of the numerical solution. Next, for a fixed time

value, we represent the estimators as a function of the Newton iterations. Furthermore, for one selected
Newton iteration, we also present the evolution of the various estimators as a function of the GMRES
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Figure 1: Numerical solution un1h and un2h (left column) and λnh (right column) at convergence for approxi-
mately 21000 elements with p = 1. Time values from top to bottom: t = 0.02, t = 0.17, and t = 0.3.

iterations. Finally, we test for each adaptive inexact semismooth Newton solver its overall performance and
we compare the results with the classical exact resolution.

Figure 4 displays the numerical solution at three time values when the Newton-min solver and GMRES
solver have converged. There are three different phases in the simulation: at first, there is no contact,
see the first line of Figure 4. In the second period, the contact occurs in a disk around the center of the
domain and we observe in the discrete Lagrange multiplier λnh a peak indicating the elements where un1h
and un2h coincide. In the last period (last line of Figure 4), there exist two separate contact zones, a disk
for 0 ≤ r ≤ 1/5 and a ring for 2/5 ≤ r ≤ 3/5. These contacts occur at t ≈ 0.011 and t ≈ 0.060; we will see
below in Figures 6 and 9 (left) that more Newton-min iterations will be required at these transition periods.
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Figure 2: Constraint estimators ηnC,K at convergence for approximately 21000 elements with p = 1, at times
t = 0.17 (left) and t = 0.3 (right).
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Figure 3: Estimators at convergence for approximately 21000 elements at t = 0.3 with p = 1. Left: flux
estimator ηnF,K,2. Right: residual estimator ηnR,K,2.

6.2.1 Newton-min linearization with p = 1

We present in this section some results for the adaptive inexact Newton-min Algorithm 1, taking the min
C-function (3.13a), and using linear finite elements.

Figure 5 presents the evolution of the various estimators as a function of the Newton-min iterations (left),
and as a function of the GMRES iterations at the first Newton-min step (right), both at the fixed time value
t = 0.084. From the left part of Figure 5, we observe that the discretization estimator globally dominates and
coincides with the total estimator (the two curves are roughly superimposed). The linearization estimator
(blue curve) is small from the first Newton-min iteration (around 10−6) and next increases at the second
iteration (around 10−3) and afterwards decreases rapidly to reach the value 10−11 at the third Newton-
min iteration. From the first Newton-min iteration, the discretization estimator (coinciding with the total
estimator) stagnates which means that the other components of the error do not influence the behavior
of the total error estimator. Then, the Newton-min algorithm performs unnecessary iterations and can be
stopped at the first iteration. In right part of Figure 5, we test our adaptive inexact Newton-min strategy
in terms of the GMRES iterations for the first Newton-min iteration. We observe that the discretization
and linearization estimators roughly stagnate after few iterations. The algebraic estimator is large at the
beginning of the iterations and influences the behavior of the total estimator but decreases rapidly to reach
at i = 53 the value 10−12. The adaptive inexact Newton-min algorithm stops the GMRES after i = 24
iterations, when the total estimator almost coincides with the discretization estimator. Note that the curve
of the algebraic estimator is here close to the curve of the norm

∥∥∥Rn,k,i
h

∥∥∥ of the algebraic residual vector
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Figure 4: Numerical solutions un1h and un2h (left column) and λnh (right column) at convergence for approx-
imately 21000 elements with p = 1. Time values from top to bottom t = 0.001, t = 0.03, and t = 0.3.
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estimators as a function of the GMRES iterations on 1st Newton-min iteration.
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Figure 6: Case p = 1. Left: number of Newton-min iterations at each time step. Right: cumulated number
of Newton-min iterations as a function of time.
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Figure 7: Case p = 1. Left: number of GMRES iterations per time and Newton-min steps. Right: cumulated
number of GMRES iterations as a function of time.

from (3.17).
Figure 6 provides the number of Newton-min iterations and the cumulated number of Newton-min

iterations required to satisfy the given stopping criteria at each time step of the simulation. In particular,
the first graph shows that for almost all time steps, our adaptive strategy is cheaper in terms of Newton-min
iterations than the exact resolution. Observe that at some (rare) time steps (13 and 57 for instance), the
adaptive approach requires more iterations than the classical resolution: it detects automatically when a
few more iterations are necessary to preserve the accuracy. Interestingly, this occurs at times when un1h
and un2h enter in contact. The second graph presents the cumulated number of Newton-min iterations as a
function of the time step. We observe a substantial benefit for our adaptive inexact Newton-min approach
as it saves at the end of the simulation roughly 50% of the iterations.

In Figure 7, left, we plot the number of GMRES iterations per time and Newton-min steps, between time
steps 22 and 72. We can observe that significantly fewer iterations are needed in the adaptive approach. We
illustrate the overall performance of the two approaches in Figure 7, right, where we display the cumulated
number of GMRES iterations for the two methods as a function of the time steps. The second graph
shows that the adaptive inexact Newton-min algorithm requires approximately 7000 cumulated iterations
to converge whereas the classical algorithm requires roughly 19000 iterations. Our adaptive algorithm thus
saves many unnecessary iterations.
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γalg = γlin = 10−3 tn = 0.001 tn = 0.011 tn = 0.07 tn = 0.15 tn = 0.3∥∥∥µ 1
2
1 ∇(un,exact

1h − un,adapt
1h )

∥∥∥
Ω

1.41× 10−7 1.81× 10−7 8.83× 10−8 2.03× 10−7 3.44× 10−7∥∥∥µ 1
2
2 ∇(un,exact

2h − un,adapt
2h )

∥∥∥
Ω

1.32× 10−7 1.63× 10−7 8.82× 10−8 1.71× 10−7 3.43× 10−7∥∥∥λn,exact
h − λn,adapt

h

∥∥∥
Ω

0 2.77× 10−4 3.19× 10−4 4.25× 10−4 8.07× 10−8

Table 1: Accuracy of the adaptive inexact Newton-min solution for several time values (p = 1).
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Figure 8: Case p = 1. At t = 0.11. Left: estimators as a function of the Newton–FB iterations. Right:
estimators as a function of the GMRES iterations at the first Newton–FB step.

In Table 1, we give the global energy norm of the difference between the approximate solution given by
the exact and by the adaptive inexact Newton-min algorithms. We observe that for several time values,
the three numerical solutions are close to each other, which confirms that our adaptive strategy does not
degrade the accuracy of the numerical solution.

6.2.2 Newton–Fischer–Burmeister linearization with p = 1

In this section, we proceed as in Section 6.2.1, employing this time the C-function of Fischer–Burmeister (3.13c).

Figure 8 represents the evolution of the various estimators as a function of the Newton–Fischer–Burmeister
(denoted Newton–FB in the sequel) iterations (left), and as a function of the GMRES iterations at the first
Newton–FB step (right), both at the time value t = 0.011. From the left plot, we observe that the discretiza-
tion estimator globally dominates and almost coincides with the total estimator (the two curves are roughly
superimposed). The linearization estimator is small and decreases rapidly after k = 5 steps (adaptive stop-
ping criterion) to reach the value of 10−11 at k = 11 (classical stopping criterion). Taking γlin = 10−2

instead of γlin = 10−3 in (5.14) will reduce the number of Newton–FB iterations at this instant to merely
4 iterates. In the right plot, we take the first Newton–FB iteration and we observe that the discretization
and the linearization estimators stagnate from the beginning of the iterations, while the algebraic estimator
is dominant at the beginning. The adaptive inexact Newton–FB algorithm stops the GMRES iterations at
i = 9, whereas the classical criterion stops at i = 33. Note that, like in the Newton-min case, the behavior
of the algebraic estimator follows closely the one of the algebraic residual.

Figure 9 focuses on the number of Newton–FB iterations required to satisfy the various stopping criteria
at each time step. We observe from the first figure that the adaptive strategy (red curve) is economic in
comparison with the classical resolution especially from t = 0.1 onwards, where the adaptive algorithm
requires 1 Newton–FB iteration at each time step. Furthermore, the right plot depicts the overall perfor-
mance in terms of Newton–FB iterations. With no surprise, the adaptive resolution requires at the end of
the simulation much fewer semismooth Newton iterations (approximately 700 for the adaptive algorithms
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Figure 9: Case p = 1. Left: number of Newton–FB iterations at each time step. Right: cumulated number
of Newton–FB iterations as a function of time.
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Figure 10: Case p = 1. Left: number of GMRES iterations per time and Newton–FB step. Right: cumulated
number of GMRES iterations per time step.

and 1500 for the classical resolution). Thus, our adaptive semismooth approach reduces by 50% the number
of Newton–FB iterations.

Figure 10 illustrates the overall performance of the two approaches. We display the number of GMRES
iterations for each linear system solved as a function of time/Newton–FB step between t = 0.014 and
t = 0.057 (left) and the cumulated number of GMRES iterations as a function of time step (right). We
see that our adaptive strategy is very economic in terms of the total algebraic iterations, as it requires at
the end of the simulation approximately 7000 iterations, whereas the classical resolution requires roughly
27000 iterations. We present in Table 2 the energy norm of the difference between the exact solution given

γalg = γlin = 10−3 tn = 0.001 tn = 0.011 tn = 0.07 tn = 0.15 tn = 0.3∥∥∥µ 1
2
1 ∇(un,exact

1h − un,adapt
1h )

∥∥∥
Ω

9.9× 10−6 1.7× 10−5 5.8× 10−5 7.7× 10−5 2.1× 10−3∥∥∥µ 1
2
2 ∇(un,exact

2h − un,adapt
2h )

∥∥∥
Ω

5.5× 10−6 2.1× 10−5 7.1× 10−5 1.8× 10−4 2.1× 10−3∥∥∥λn,exact
h − λn,adapt

h

∥∥∥
Ω

0 7.9× 10−3 3.3× 10−4 2.3× 10−2 2.2× 10−7

Table 2: Accuracy of the adaptive inexact Newton–FB solution for several time values (p = 1).

28



1 2 3 4 5

Semismooth Newton iteration

10 -15

10 -10

10 -5

10 0

E
s
ti
m

a
to

rs

total estimator

discretization estimator

linearization estimator

algebraic estimator

linearization residual

adaptive stopping

criterion

classical stopping

criterion

0 10 20 30 40 50 60 70

Algebraic iteration

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

E
s
ti
m

a
to

rs

total estimator

discretization estimator

linearization estimator

algebraic estimator

algebraic residual

Adaptive stopping

criterion

Classical stopping

criterion

Figure 11: Case p = 2. At t = 0.14. Left: estimators as a function of Newton-min iterations. Right:
estimators as a function of GMRES iterations at the first Newton-min step.

by the classical Newton–FB algorithm and the adaptive inexact one for several time values. In particular,
it measures the accuracy and precision of our adaptive strategy. We observe that each numerical unknown
obtained by the adaptive strategy is close to the unknown given by the classical resolution. Thus, our
adaptive algorithm saves many iterations and does not deteriorate the numerical solution.

6.2.3 Newton–min linearization with p = 2

In this section, we present results for the adaptive inexact Newton-min algorithm with quadratic finite
elements (p = 2). Figures 11, 12, and 13 are respectively the counterparts of Figures 5, 6, and 7. The
comments made in Section 6.2.1 apply globally to this case.

In Figures 12 and 13 (right graphs), we plotted the cumulated number of Newton-min iterations and of
GMRES iterations for both linear and quadratic finite elements, using the same mesh with 4000 elements.
Note that there are 4 times more degrees of freedom when p = 2 than with p = 1. In the case p = 2, the
exact Newton-min requires 912 semismooth iterations, whereas the adaptive inexact Newton-min requires
only 585 semismooth iterations, see Figure 12. The economy is more impressive in terms of cumulated
GMRES iterations, see Figure 13. In the case p = 2, the adaptive inexact algorithm is roughly 3 times
cheaper in terms of number of cumulated GMRES iterates than the exact version (8760 iterates instead of
27085). When passing from p = 1 to p = 2, we note that the rate of increase of the number of iterations is
smaller for the adaptive inexact case than for the exact Newton-min case. Indeed, the number of cumulated
GMRES increases by a factor of 3.5 in the exact case, and only by a factor 2.8 in the adaptive case.

6.3 Comments on implementation and cost
In terms of CPU, the adaptive inexact semismooth strategy presented here requires an overhead to compute
the estimators. In particular, the computation of the algebraic error flux reconstruction based on a multilevel
strategy can be a little long. However, all the estimators enable a completely parallel implementation, and
we believe that the cost is worth paying for, as 1) the number of iterations (both semismooth Newton and
algebraic) is drastically reduced. It seems that the more expensive the simulation (compare p = 1 and
p = 2), the greater the gain. And 2) the guarantee on the total error is a real advantage, as one can have a
confidence in the result.

The computation of the parabolic estimators in the general case (p ≥ 2, when the linearization and
algebraic solvers have not converged, see Definitions 4.9 and 5.1), requires the evaluation of positive and
negative parts of λn,k,ih , as well as the evaluation of λ̃n,k,i,pos

h and λ̃n,k,i,neg
h . The latter terms are easy to

compute, as it suffices to restrict the vector Xn,k,i
3h to its positive and negative parts (recall that λh is

decomposed in the dual basis to the Lagrange basis function). The former terms however do not take a
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Figure 12: Case p = 2. Left: number of Newton-min iterations at each time step. Right: cumulated number
of Newton-min iterations as a function of time, comparison p = 1, p = 2.
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Figure 13: Case p = 2. Left: number of GMRES iterations per time and Newton-min step between t = 0.008
and t = 0.065. Right: cumulated number of GMRES iterations per time step, comparison p = 1, p = 2.

polynomial form on the mesh Th and are more expensive to compute. To integrate approximately the terms
λn,k,i,pos
h and λn,k,i,neg

h (see ηn,k,i,pos
C,K for instance), we typically separate the positive and negative parts of

λn,k,ih in the quadrature points.

7 Conclusion
In this work, we focused on deriving a posteriori error estimates for a model parabolic variational inequality.
We employed the conforming Pp finite element method for the discretization in space and the backward
Euler scheme for the discretization in time. We designed a posteriori error estimates when p = 1 valid at
convergence of the semismooth Newton solver and of the iterative algebraic solver. In this case, we estimate
both energy and time derivative errors. Next, we extended the study to all polynomial degrees p ≥ 1 and
for each semismooth Newton step k ≥ 1 and each iterative linear algebraic solver step i ≥ 0. Here, we only
estimate the energy error. Based on the separation of the components of the errors, we finally propose an
adaptive inexact semismooth Newton algorithm [–]. The main idea is to stop the two involved iterative
solvers at a suitable moment decided adaptively. We have presented numerical experiments for two inexact
semismooth Newton solvers for p = 1 and p = 2, and we showed that our adaptive inexact semismooth
strategy saves many iterations while preserving the accuracy of the numerical solution.
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